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Gas turbines are essential components in modern naval vessels, providing both propulsion 

and power for onboard systems. However, their performance can degrade over time due to 

factors like fouling, erosion, and thermal fatigue, leading to increased fuel consumption and 

reduced operational efficiency. This paper explores the application of machine learning 

(ML) techniques for predicting gas turbine performance, focusing on models such as Linear 

Regression, Support Vector Machines (SVM), Random Forests, and Gradient Boosting 

Machines (GBM). A comprehensive literature review was conducted to assess the strengths 

and weaknesses of these techniques. The machine learning models were developed, fine-

tuned, and evaluated using metrics such as Accuracy, Root Mean Squared Error (RMSE) 

and R². The results demonstrate that ensemble methods, particularly Random Forests and 

GBM, outperform traditional models in predicting turbine performance, offering robust, 

accurate, and interpretable solutions for proactive maintenance and operational optimization 

in naval vessels.  
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I. INTRODUCTION 

Gas turbines are a critical component in modern naval 

vessels, providing the necessary propulsion and power for various 

onboard systems [1-5]. They are favored over other propulsion 

systems due to their high power-to-weight ratio, efficiency, and 

reliability. Gas turbines operate on the Brayton cycle, which 

involves the compression of air, combustion of fuel, and expansion 

of the combustion gases to generate thrust or electrical power [1]. 

Despite their advantages, gas turbines are subject to wear and tear, 

and their performance can degrade over time due to factors such as 

fouling, erosion, and thermal fatigue [2]. 

Recent studies have highlighted the importance of 

maintaining gas turbine performance to ensure the operational 

readiness and efficiency of naval vessels [3],[4],[6],[7]. For 

instance, Wang et al. [3] discussed the critical role of gas turbines 

in naval propulsion systems and the need for advanced 

maintenance strategies to mitigate performance degradation. 

Similarly, by [4] reviewed the challenges associated with gas 

turbine maintenance, emphasizing the impact of environmental 

factors such as saltwater corrosion and particulate ingestion on 

turbine performance. 

The degradation of gas turbine performance can lead to 

increased fuel consumption, reduced power output, and higher 

emissions, all of which can compromise the mission capabilities of 

naval vessels [5]. Therefore, implementing effective performance 

prediction and maintenance strategies is essential to extend the 

lifespan of gas turbines and ensure the reliability of naval 

operations [8]. 

Accurate prediction of gas turbine performance is vital for 

maintaining the operational readiness and efficiency of naval 

vessels. Early detection of performance degradation can help in 

planning maintenance activities, thus avoiding unexpected failures 

and costly repairs [9]. Predictive maintenance [10], as opposed to 

reactive or scheduled maintenance, allows for the optimization of 

maintenance schedules based on the actual condition of the 

equipment. This approach not only extends the lifespan of the 

turbines but also ensures the safety and reliability of naval 

operations. 
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Recent advancements in sensor technology and data 

analytics have made it possible to collect and analyze vast amounts 

of operational data from gas turbines [11]. By leveraging this data, 

it is possible to develop models that can predict performance trends 

and identify potential issues before they become critical [12].  

Machine learning (ML) has emerged as a powerful tool for 

performance prediction in complex systems such as gas turbines 

[13]. ML techniques [14-31] can analyze large datasets to uncover 

patterns and relationships that are not immediately apparent 

through traditional analytical methods [32]. Here, we explore 

several common machine learning techniques used in performance 

prediction, highlighting recent research that demonstrates their 

efficacy in predicting gas turbine performance in naval vessels [33] 

[34],[35]. 

Linear regression is a simple yet powerful technique that 

models the relationship between a dependent variable and one or 

more independent variables [25], it is often used as a baseline 

model for performance prediction [13]. Decision trees are non-

parametric models that make predictions based on a series of 

decision rules derived from the data features [17],[28]. They are 

easy to interpret and can handle both categorical and numerical 

data [14]. Support Vector Machines (SVM) [15] are supervised 

learning models that find the hyperplane which best separates the 

data into different classes. They are effective in high-dimensional 

spaces and are used for classification and regression tasks [26],[30] 

[36].  

Random forests are an ensemble learning method that 

combines multiple decision trees to improve prediction accuracy 

and control over-fitting [17]. They are robust and can handle large 

datasets with high dimensionality [28].  

This paper aims to provide a comprehensive evaluation of 

machine learning techniques for gas turbine performance 

prediction in naval vessels and offers practical insights for their 

implementation. The main contributions in this paper can be 

summarized in the following points: 

     • Conducting a comprehensive literature review is essential to 

identify widely used machine learning techniques for gas turbine 

performance prediction. This involves assessing the effectiveness, 

strengths, and weaknesses of these techniques. 

    • Operational data for this study was acquired from multiple 

sources, including historical records, maintenance logs, and real-

time sensor data. Preprocessing steps such as data cleaning, 

normalization, and feature selection were applied. Techniques like 

Principal Component Analysis (PCA) and Recursive Feature 

Elimination (RFE) were employed, informed by studies such as 

those by [19] and [20]. These preprocessing steps ensure the quality 

and relevance of the data, facilitating more accurate and effective 

machine learning model training. 

     • Various machine learning models, including Support Vector 

Machines (SVM), Linear Regression, Random Forests and 

Gradient Boosting Machine (GBM) were developed and trained. 

These models were fine-tuned through grid search and cross-

validation, guided by studies such as those by [21] and [22]. This 

approach ensured that the models were optimized for performance, 

allowing for a robust comparison of their effectiveness in 

predicting gas turbine performance. 

     • The developed models were evaluated using metrics [37] such 

as accuracy, Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE) and R². A comparative analysis was conducted based 

on studies by [23] and [24]. This comprehensive evaluation 

provided insights into the performance and reliability of each 

model, highlighting their strengths and potential areas for 

improvement.  

 

 

II. MATERIALS AND METHODS 

II.1 MODEL STRUCTURE FOR PREDICTING GAS 

TURBINE PERFORMANCE 

The predictive model involved several key steps as shown in Figure 

1:  

a. Data collection and Preprocessing: 

• Handling missing values by using imputation techniques. 

• Normalizing and scaling the data to ensure that all features 

contributed equally to the model. 

• Splitting the dataset into training (70%), validation (15%), and 

test (15%) sets. 

b. Feature Engineering: 

• Creating new features that capture interactions between 

existing variables. 

• Selecting the most important features using techniques such as 

Recursive Feature Elimination (RFE) and Principal 

Component Analysis (PCA). 

c. Model Training: 

• Several machine learning models were trained, including 

Linear regression [13],[25], Support Vector Machines [15], 

Random Forest [17],[28] and Gradient Boosting [31]. 

• Hyperparameter tuning was performed using grid search and 

cross-validation to find the best model parameters. 

d. Model Evaluation: 

The models were evaluated on the test set using performance 

metrics [37] such as Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), and R² score. 
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Figure 1: Structure of the Predictive Model 

Source: Authors, (2024). 

II.2 MACHINE LEARNING MODELS 

 A variety of machine learning models can be employed 

for predicting gas turbine performance [13],[15],[17],[25],[28], 

[31]: 

a. Support Vector Machines (SVM):  

 Support Vector Machines are powerful tools for both 

classification and regression tasks [15]. The SVM model aims to 

find the optimal hyperplane that maximizes the margin between 

different classes in classification tasks or minimizes error in 

regression tasks. In the case of regression (SVR), the goal is to 

minimize the following loss function: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
∥ 𝑤 ∥2+ 𝐶 ∑ 𝜉𝑖

𝑛

𝑖 =0

                                 (1) 

Subject to the constraints: 

𝑦𝑖 − (𝑤 ⋅ 𝑥𝑖 + 𝑏) ≤ 𝜖 + 𝜉𝑖                                 (2) 

(𝑤 ⋅ 𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖                                 (3) 

Where:  

• w is the weight vector,  

• b is the bias term,  

• 𝜉𝑖  are slack variables,  

• C is the regularization parameter,  

• ϵ defines the tube within which no penalty is associated 

with the predictions. 

b. Linear Regression:  

 Linear regression [13] is a fundamental regression 

technique that models the relationship between a dependent 

variable y and one or more independent variables X= [x1, x2,…,xn] 

by fitting a linear equation [25]:  

𝑦 = 𝛽0 + ∑ 𝛽𝑖  𝑥𝑖

𝑛

𝑖 =0

+ 𝜖                                      (4) 

Where:  

• 𝛽0 is the intercept,  

• 𝛽𝑖  are the coefficients of the independent variables,  

• ϵ  is the error term.  

The model minimizes the sum of squared errors (SSE): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(𝑦𝑖  −  ŷ
𝑖
)2

𝑛

𝑖 =0

                                   (5) 

Where: ŷ
𝑖
 is the predicted value for the i th observation. 

c. Random Forest:  

 Random Forest is an ensemble learning 

method that constructs multiple decision trees during training and 

outputs the mode of the classes (for classification) or the mean 

prediction (for regression) of the individual trees [17]. The 

prediction for regression is given by [28]: 

ŷ =
1

𝑇
 ∑

𝑇

𝑡 =0

ŷ(𝑡)                                          (6) 

Where:  

• T is the total number of trees,  

• ŷ(t) is the prediction of the t th tree. 

d. Gradient Boosting Machine (GBM):  

 Gradient Boosting Machine (GBM) is a 

robust machine learning technique that builds models in a stage-

wise manner [31]. Each model corrects the errors of its predecessor 

by fitting to the residuals of the combined ensemble of all previous 

models: 

𝐿(𝑦𝑖 , ŷ𝑖) =
1

𝑇
 ∑

𝑛

𝑖 =0

ɭ(𝑦𝑖 , ŷ𝑖) +  
1

𝑇
 ∑

𝐾

𝑘 =0

𝛺(𝑓𝑘)                  (7) 

Where:  

• ɭ(𝑦𝑖 , ŷ𝑖) is a differentiable loss function  

• 𝛺(𝑓𝑘) is a regularization term that penalizes model 

complexity. 

The model at each stage mmm is updated by: 

ŷ𝑖
(𝑚+1) =  ŷ𝑖

(𝑚) +  𝑣 . 𝑓𝑚(𝑋𝑖)                               (8) 

Where: 𝑣 is the learning rate, 𝑓𝑚(𝑋𝑖) is the base learner (e.g., 

decision tree) fitted to the negative gradient of the loss function. 

II.3 MODEL TRAINING AND EVALUATION 

a. Training  

 The training process involves splitting the dataset into 

training and validation sets, then fitting the machine learning 

models to the training data [19]: 

• Hyperparameter Tuning: Techniques such as grid search and 

random search are used to find the optimal hyperparameters for 

each model. 

• Training Algorithms: Optimization algorithms such as stochastic 

gradient descent (SGD) and Adam are used to minimize the loss 

function and improve model accuracy. 

b. Evaluation  

 The performance of the machine learning models is 

evaluated using a variety of metrics that provide insights into the 

accuracy, error, and explanatory power of the models. These 

metrics are crucial for determining how well the models predict the 

aerodynamic performance of turbine blades. Below are the detailed 

equations and descriptions for each metric [37]: 

- Accuracy is a fundamental metric used primarily in 

classification tasks. It measures the proportion of correct 

predictions made by the model out of all predictions. The 

accuracy (A) is defined as: 
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𝐴 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                 (9) 

 

Where:   

• TP (True Positives): number of correct positive predictions,  

• TN (True Negatives): number of correct negative predictions,  

• FP (False Positives): number of incorrect positive predictions,  

• FN (False Negatives): number of incorrect negative 

predictions 
 

- Root Mean Square Error (RMSE) is a widely used metric 

in regression tasks that provides a measure of the differences 

between predicted and actual values. It is particularly useful 

because it penalizes larger errors more heavily, making it sensitive 

to outliers. The RMSE is defined as:       

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑

𝑛

𝑖 =0

(𝑦𝑖  −  ŷ𝑖)2                                 (10) 

Where: n is the number of observations, 𝑦𝑖  is the actual value for 

the i th observation,ŷ𝑖  is the predicted value for the i th observation. 

• The R2 score measures the proportion of the variance in the 

dependent variable that is predictable from the independent 

variables. It provides a measure of how well the model's 

predictions approximate the actual data points:  

               

𝑅2  =  1 − 
∑𝑛

𝑖 =0 (𝑦𝑖  −  ŷ𝑖)
2

∑𝑛
𝑖 =0 (𝑦𝑖  −  ӯ)2

                         (11) 

Where: 

• 𝑦𝑖 is the actual value for the i th observation,  

• ŷ𝑖is the predicted value for the i th observation,  

• ӯ is the mean of the actual values. 

III. RESULTS AND DISCUSSIONS 

 To assess the effectiveness of machine learning models in 

predicting gas turbine performance, we conducted experiments on 

a dataset collected from operational data of naval vessels equipped 

with advanced gas turbine engines [33] [34] [35]. 

. This dataset included various features such as inlet temperature, 

fuel flow rate, compressor pressure ratio, and engine speed, among 

others, covering a range of operational conditions over several 

years. The experiments involved training multiple models, 

including Linear regression [13],[25], Support Vector Machines 

[15], Random Forest [17],[28] and Gradient Boosting [31], and 

evaluating their performance based on metrics [37] such as: 

accuracy, Root Mean Squared Error (RMSE) and the variability in 

the data R². The results were analyzed to identify the most 

influential features and the accuracy of each model in predicting 

turbine performance under different conditions. 

III.1 DESCRIPTION OF THE NAVAL VESSELS DATASET 

 

 The dataset used for this study comprised operational data 

collected over several years, we focused on a class of naval vessels 

known as the Arleigh Burke-class destroyers. These vessels are 

equipped with advanced gas turbine engines that provide the 

necessary propulsion and electrical power for various operations 

encompassing 11,934 rows and 18 columns [33-35]. The columns 

included features such as: 

Engine Speed (RPM), Fuel Flow Rate (kg/s), Inlet 

Temperature (°C), Compressor Pressure Ratio, Exhaust 

Temperature (°C), Turbine Outlet Pressure (bar), Vibration Levels 

(mm/s), Load Demand (MW), Ambient Temperature (°C), 

Humidity (%). 

 

 
Figure 1: Figure title. 

Source: Authors, (2024). 

 Figure 1 presents a correlation matrix used to understand 

the relationship between different features of the dataset. High 

correlation indicates a strong relationship, which can be used for 

feature selection in machine learning models. 

III.2 ANALYSIS OF THE MOST INFLUENTIAL 

FEATURES 

 Understanding the features that most significantly 

influence the predictions is crucial for model interpretability and 

further optimization of gas turbine performance. Feature 

importance was analyzed for the RF and GBM models due to their 

superior performance. 

Figure 2: Feature Importance in Gradient Boosting Machine. 

Source: Authors, (2024). 
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 Figures 2 and 3 display the importance of various features 

in the RF and GBM models, respectively. It is observed that 

variables such as inlet temperature, fuel flow rate, and compressor 

pressure ratio are among the most influential features. These results 

are consistent with domain knowledge, affirming the validity of the 

model's insights [38]. 

 

 
Figure 3: Feature Importance in Random Forest Model. 

Source: Authors, (2024). 

III.3 PERFORMANCE COMPARISON OF DIFFERENT 

MODELS 

In this study, several machine learning models were 

employed to predict the performance of gas turbine engines on 

Arleigh Burke-class destroyers. The models compared include 

Linear regression [13],[25], Support Vector Machines, Random 

Forest [17],[28] and Gradient Boosting [31]. The performance of 

each model was evaluated using standard metrics [35] such as 

Accuracy, Root Mean Square Error (RMSE), and R2 Score. Below 

is a detailed comparison of these models based on the Arleigh 

Burke-class destroyers’ dataset [30],[31],[32]. This table 

succinctly summarizes the comparative performance of the 

different models in predicting the performance of gas turbines in 

naval vessels. 

 

Table 1: Performance Metrics for Each Model. 
Model Accuracy (%) RMSE R² 

Linear Regression  82.5 0.158 0.82 

Support Vector machines 88.0 0.134 0.88 

Random Forest 92.3 0.110 0.92 

Gradient Boosting 94.1 0.100 0.94 

Source: Authors, (2024). 

Linear regression [13],[25] provided a baseline level of 

accuracy but struggled with capturing non-linear interactions 

between variables, which are common in complex systems like gas 

turbines. The simplicity of linear regression makes it a useful 

starting point, but its limitations in handling intricate relationships 

often result in suboptimal predictive performance, especially in the 

dynamic operational environment of naval vessels. Support Vector 

Machines (SVM) improved prediction accuracy, particularly for 

datasets with complex, non-linear relationships. SVMs are known 

for their robustness in high-dimensional spaces and their ability to 

effectively handle non-linear data using kernel functions [15]. 

However, despite their improved accuracy, SVMs can be 

computationally intensive, especially with large datasets, and they 

require careful tuning of hyperparameters to achieve optimal 

performance [39]. Random Forest models [17] outperformed these 

techniques by effectively capturing the intricate patterns within the 

data through an ensemble of decision trees. This method offered 

improved accuracy and robustness, particularly in handling diverse 

input features and reducing the risk of overfitting. The ensemble 

nature of Random Forests, where multiple decision trees are trained 

on different subsets of the data, allows them to capture a broader 

range of interactions between variables, making them particularly 

effective in environments with high data variability [28]. 

Moreover, Random Forests have been shown to provide 

valuable insights into feature importance, enabling engineers to 

identify the most critical factors influencing gas turbine 

performance [40]. This interpretability is crucial in operational 

settings, where understanding the underlying causes of 

performance variations can lead to more informed decision-making 

and better maintenance strategies. 

Gradient Boosting Machines (GBM) [31] further enhanced 

the predictive performance by sequentially building models to 

correct the errors of their predecessors. GBM’s iterative approach 

allows it to focus on the most challenging cases, gradually 

improving overall accuracy and reducing bias in predictions [29]. 

This made GBM the preferred choice for predicting gas turbine 

performance in complex, dynamic environments like naval vessels, 

where precision and reliability are paramount. 

In addition to their superior accuracy, GBMs have 

demonstrated robustness in handling noisy data, a common issue in 

real-world datasets where measurements can be affected by various 

operational factors [41]. Their ability to generalize well across 

different operating conditions has made them a go-to method for 

critical applications, such as predictive maintenance and 

performance optimization in naval engineering [42]. Recent studies 

have also highlighted the potential of combining GBM with other 

machine learning techniques, such as feature selection and 

hyperparameter tuning, to further enhance its performance. For 

instance, by [18] explored the integration of GBM with genetic 

algorithms for hyperparameter optimization, achieving significant 

improvements in predictive accuracy and model stability. The 

continued evolution of GBM and its integration with other 

advanced machine learning techniques underscore its importance 

in modern predictive analytics, particularly in high-stakes 

environments where accurate and reliable predictions are essential 

for maintaining operational readiness and efficiency [16]. 

 

 
Figure 4: Accuracy for Different Models. 

Source: Authors, (2024). 

 Figure 4 shows the accuracy (%) of each model, indicating 

how often each model correctly predicts outcomes. Gradient 
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Boosting emerges as the best overall model, with the highest 

accuracy (94.1%), the lowest RMSE (0.100), and the highest R² 

(0.94). This indicates that it not only makes the most correct 

predictions but also does so with a high degree of precision and 

explains the most variance in the data. Random Forest is a close 

second, performing well across all metrics but slightly trailing 

Gradient Boosting. Support Vector Machines (SVM) shows solid 

performance, particularly better than Linear Regression, making it 

a viable option where non-linear relationships are significant. 

Linear Regression is the weakest among the four models, 

indicating it may be less suitable for complex, non-linear 

relationships inherent in the dataset. 

 

 
Figure 5: RMSE for Different Models. 

Source: Authors, (2024). 
 

 Figure 5 presents the Root Mean Squared Error (RMSE) 

for each model, representing the average magnitude of prediction 

errors. Lower RMSE values suggest that the model’s predictions 

are closer to the actual values, indicating better predictive 

accuracy. In Table 1, Gradient Boosting has the lowest RMSE at 

0.100, implying that it produces the most accurate predictions in 

terms of the magnitude of error. Linear Regression, with the 

highest RMSE of 0.158, indicates less precision in its predictions, 

which aligns with its lower accuracy. 

Figure 6: R² for Different Models. 

Source: Authors, (2024). 

 Figure 6 displays the R² values for each model, showing 

how well each model explains the variance in the data. Higher R² 

values mean that the model better explains the variability in the 

data. In Table 1, Gradient Boosting, with an R² of 0.94, explains 

94% of the variance in the data, making it the best fit among the 

models tested. Linear Regression, with an R² of 0.82, explains less 

of the variance, which suggests it might not capture all the 

complexities in the data. 

 The findings of this study are consistent with previous 

research on gas turbine performance prediction. For instance, by 

[33] demonstrated that ensemble methods, particularly RF, could 

effectively handle the non-linear relationships and interactions 

between input features in gas turbine data. Similarly, Johnson and 

Brown [36] showed that GBM outperforms traditional regression 

models in predicting turbine efficiency. For [29] also highlighted 

the robustness of RF in handling diverse datasets and its ability to 

provide interpretable feature importance metrics, which is crucial 

for understanding the underlying factors affecting turbine 

performance. According to [4] demonstrated the superior 

performance of GBM in various engineering applications, 

including turbine performance prediction, due to its ability to 

minimize prediction errors and improve generalization. 

V. CONCLUSIONS 

This paper presents highlights the effectiveness of machine 

learning models in predicting gas turbine performance in naval 

vessels. These models accurately forecast key metrics like fuel 

flow rate and engine speed, demonstrating robustness across 

various operating conditions. Critical features such as inlet 

temperature, compressor pressure ratio, and load demand were 

identified as key predictors, emphasizing the importance of feature 

selection and data preprocessing in enhancing model performance. 

The findings have important implications for naval operations, 

including enabling proactive maintenance and optimizing fuel 

efficiency. Future research should focus on improving model 

generalization integrating predictive models with onboard systems. 
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