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This work aims to develop the CPU industry by distributing its time between the threads 

efficiently. To do so, an unprecedentedly developed equation is suggested as a new powerful 

software to increase the CPU performance. This proposed equation dedicates to solve the 

problem of children inheriting their parents priorities equivalently without a thoughtful basis 

in multithreading by involving big O to give threads different values, whose importance is 

inversely proportional to their O(n)s. The second originality is breaking complexity rule, 

which considers loop iterations if the threads have the same O(n), since usually threads run 

on the same computer. Therefore, the ratio (No. of loop’s iterations to go/total iterations 

multiplied by O(n)) determines thread importance inversely. The third novelty is replacing 

Round Robin with Big O and iteration ratio. A parser is applied to seek “for” and “while” 

tokens for O(n) measuring purposes. Three threads, p1 O(n2), p2 O(n), and p3 O(n2), 

approved the equation with results of 32, 51, and 8 time slices, respectively, during the 

period 0-1000 ms. Meanwhile, Round Robin gives the children the same slice number.  
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I. INTRODUCTION 

 

In modern computer systems, threads are preferred over 

processes, and multithreading over multitasking [1]. 

Multithreading has a problem that has not touched before which is 

the equivalency among the priorities of threads. This problem 

prevents exploiting the full multithreading utilities efficiently since 

its objective is to decrease CPU idle time in order to improve 

system performance, use less memory, and execute context 

switching in order to share memory and speed up thread switching 

(scheduling) [2]. The scheduling policy includes these rules: the 

threads with higher priority receive more CPU time than those with 

lower priority; a higher priority thread may preempt a lower 

priority thread; and threads with equal priority receive equal CPU 

time [3]. The problem is with the third rule because the scheduler 

gives equal priorities to the children threads without studying their 

background. For example, any Java program that is executed starts 

its code from the main function. In order to begin running the code 

included in the main function, the JVM generates a thread which is 

referred to as "main thread". The main thread is crucial to 

understand since it inherits the priority of all other threads, is the 

source from which they are formed, and must be the last thread to 

complete execution at all times as depicted in Figure 1 [4]. Each 

new process is therefore formed with a single thread that competes 

using priority over its parent process for the processor with the 

threads of other processes and shares the private segment and other 

resources [5]. 

Therefore, they are given arbitrarily the same priority 

causing unfair competitive between high and low priorities threads 

as can be seen in the priority techniques that are used by Java and 

IBM. So, as known, Java is fully based object-oriented which 

operates in a multithreading environment where a thread scheduler 

allocates the processor to a thread based on its priority. Java 

requires that every thread be given a priority when it is created. 

Priorities can vary from 1 to 10, with 10 being the highest priority. 

With IBM, for each thread, the kernel keeps track of a priority 

value, also known as the scheduling priority. The significance of 

the thread corresponds in reverse with the priority value, which is 

a positive integer. In other words, a thread with a lower priority 

value has higher priority. [6], [ 7]. 

Moreover, there are two types of thread priorities: fixed and 

nonfixed; the fixed-priority has an unchanged value, whereas a 

nonfixed-priority adjusts depending on the processor-usage 

penalty, the thread's nice value (20 by default), and the least priority 
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of user threads (40). A thread's priority value is subject to quick 

and frequent adjustments. The scheduler’s priorities recalculation 

method is the consequence of the ongoing movement. However, 

for threads with fixed-priority, this is not the case. Meanwhile, the 

time slice is the maximum amount of time that a thread can be in 

charge before it risks being displaced by another thread [8]. 

There are many efforts has been done to improve the 

priority or utilize it in other systems. For instant, in [9], Based on 

the RTCOP framework and using multithreading, an architecture 

for preemptive layer activation called as PLAM has been 

presented. The non-exception handling layers can be triggered 

concurrently using PLAM. More work, the majority of complicated 

processing issues can be solved by applying the Chip 

Multiprocessor (CMP) technique, which is known for its good 

performance and high speed for personal computers and 

Smartphone [10], [11]. For example, in [12] and [13] 

Multithreading on Android Matrix multiplication program run on 

single and multi-core for comparing purposes in order to determine 

the constraints that stand up as obstacles against accomplishing the 

best execution of time reduction. 

Additionally, multithreading middleware for sensor 

virtualization is built in both the sensor node and the gateway, 

which lessens the latency brought on by the virtualization of the 

sensors. Otherwise, scheduling policy, energy use, and memory 

resources are the three fundamental networking challenges; [14-

16] offer prioritization approach to resolve these problems by 

spotting in the thread priorities' derivation mechanism that is based 

on inputs from three different sources: threads, the operating 

system, and external sources like timers to meet the needs of their 

unique nature. Else, [17] and [18] demonstrate that, in the best 

instances, the schedulable utilization for the hardware under 

consideration is roughly multiplied compared to partitioned 

scheduling without SMT. On the other hand, time complexity is a 

crucial component for efficient usage on real platforms to decrease 

the executing time of the algorithm and the completion time of 

applications, which results in lowering user waiting time [19]. 

The size of the input is multiplied by the time complexity of 

an algorithm to determine how long it will take to run [20]. Time 

complexity involves in many pieces of research specially these are 

related to the algorithms. For example, designing algorithms to 

reduce the schedule time for linear and binary PSO, [21] Develops 

an algorithm to address the issue of the subsequence matching's 

inherent time complexity. 

Other studies, [22] and [23] identify the most effective 

Traveling Salesman Problem algorithm by evaluating complexity, 

which has been confirmed to be polynomial equation. All these 

works are the most related pieces of research to our paper, and it is 

noticeable that they are located either in multithreading priority 

field or time complexity field without combining between them 

which makes this paper the first attempt.  So, in this study, a new 

priority equation is developed to involve time complexity for 

deciding the next run thread among threads that have equal 

priorities. Furthermore, an iteration ratio supports the time 

complexity taking decision among the same polynomial rank 

threads. 

II. METHODOLOGY 

This work suggests a developed Multithreading priority 

equation to solve the equivalent priorities problem by involving 

constant O(1) and polynomial O(ni) times from Big O notation as 

one of its terms for the first time in the priority world. 

  
Figure 1: Priority inheriting: P1, P2, and P3 inherit the priority M 

of the parent Main when they are created. P11 inherits the P1 

priority at its creating time t1 = M1. P31 and P32 inherit the P3 

priority at their creating time t3= M3. 

Source: Authors, (2025). 

The big O task is the engaging in the equation calculation, 

Eq. (1), whenever there are equivalent priorities to give them 

different values which their importance is being inversely with 

their O(ni) levels. The second originality is breaking the rule of 

time complexity which is the number of loop iterations taking part 

in the equation calculation, Eq. (2), if the threads have the same 

O(ni) since usually threads run at the same computer and operating 

system. Therefore, Eq. (2) is multiplied by O(ni) to decide thread 

importance inversely as well. Third novelty is replacing the Round 

Robin method, which gives the same slice number to all threads 

with the sane priorities, by Big O and iteration ratio. The time slice 

is the time that a thread is allowed to consume without interrupting 

by the scheduler and swapping it with another same priority thread. 

In this algorithm, the priority value is increased by the CPU usage 

counter causing lowering the priority since the relation between 

them is reciprocal. A thread's most recent CPU usage is utilized to 

determine the processor penalty. At the end of each time slice (10 

ms), the recent processor usage value or counter grows by 1, until 

reaching the value 120 when the swapper recalculates it for all 

threads. The swapper recalculates the recent processor usage values 

every second as well. The minimum priority and the nice value in 

Eq. (1) equal the defaults 40 and 20 respectively [6]. 

 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =  𝑏𝑎𝑠𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 + 𝑛𝑖𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 +
((𝑡𝑖𝑚𝑒 𝑠𝑙𝑖𝑐𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑟)  ×  (𝑠𝑐ℎ𝑒𝑑𝑜 −  𝑜 𝑠𝑐ℎ𝑒𝑑_𝑅))  +

        (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜   ×  𝑂(𝑛))                                               (1)  

 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑜𝑝’𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑔𝑜

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
              (2) 

 

Where nice value is the factor that controls the priority and 

considered a measure of how much the thread cooperates in sharing 

the CPU, schedo is a CPU scheduler tuning by changing its 

parameters that are used to calculate threads’ priority [6]. 

For complexity and the iteration ratio part, the formula is 

applied as is follows: 

1- The priority of thread = swapper calculation, if its iteration 

ratio × O (ni) is the lowest among all threads. 

2- If the thread has the lowest (iteration ratio × O (ni)) among all 

threads with same O (ni), then its priority = highest priority among 

all threads of O (ni-1) + 1. 

3-If the thread has higher (iteration ratio × O (ni)) than other threads 

which have the same O (ni), then the thread priority = Highest 

priority among these threads + 1. 
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So, instead of giving arbitrary equal priorities for all threads 

at time zero, time complexity assigns actual priorities at the same 

time. 

II.1 MULTITHREADING 

In a multithreading, the priority is assigned to thread by the 

scheduler of the operating system. There are multi priority levels 

where each thread is granted a specific priority level according to 

its importance [24], [25]. With large number of threads and limited 

resources execution environment, control the priority becomes 

very crucial to organize threads competing for CPU time [26]. 

Different operating systems implement different priority 

scheduling algorithms such as Earliest Deadline First (EDF), 

Multilevel Feedback Queue Scheduling (MLFQ), and Fixed-

Priority Scheduling (FPS). Developing any priority scheduling 

algorithm always faces two major deficiencies that are thread 

inversion and starvation. Thread inversion is holding resource by 

low priority thread when the higher priority thread demands it. 

Starvation, on the other hand, is depriving a thread with lower 

priority of CPU time consistently because of overtaking by higher 

priority threads [27]. Figure 2 illustrates these problems, where 

threads P1 and P2 share S1 and S2 resources, according to these 

scenarios: if P1 priority > P2 priority and holds S1 or S2 without 

releasing and P2 demands that resource, then the starvation occurs. 

On the other hand, if the same scenario is happened, but with P1 

priority < P2 priority, then inversion occurs. These two scenarios 

are represented by the vertical gray and white box in the figure and 

vice versa if P2 holds S1 or S2 which may enter P1 into starvation 

or inversion state represented by the horizontal light gray box in 

the figure. So, in this work, these two problems are solved by 

limiting the count of successive time slices that thread may get 

them. Each algorithm offers advantages and trade-offs, but no one 

solves the equivalent multithreading priorities, which is unique to 

this research, by abolition this disorder using a new priority 

equation, Eq. (1) that has a new pathless concept [28], [29]. 

II.2 TIME COMPLEXITY 

Run time and scalability are the most important parameters 

to evaluate the algorithms’ performances. Since the relation 

between these features is reversible, algorithms’ worst-cases 

measuring is represented by runtime growth rate verses the 

increasing of the input size, and big O notation is the tool that is 

used as measurement for these algorithms which is called a 

complexity [30], [31]. The complexity of an algorithm is a scale of 

the data segment that is needed for processing in order to function 

sufficiently. The number of times the algorithm must execute, 

relative to the length of the input, is known as time complexity [32], 

[33]. Since other factors such as operating system, processor 

power, and programming language are considered, time 

complexity is not working as a measure of how long a specific 

algorithm taking to run. Time complexity depicts the run time 

needed to finish the whole algorithm, not measures exact running 

time in second or millisecond [34]. So, one of the tools to describe 

the algorithm time complexity is the Big O notation that applies 

mathematical equations. These equations include constant time 

O(1), divide and conquer O(log(n)), polynomials O(ni), 

exponentials O(2ⁿ), factorials O(n!) [35]; Table 1 shows some of 

the runtimes for various algorithms. 

 

 
Figure 2: Threads P1 and P2 Starvation and Inversion diagram. 

P1 execution is represented as x-axis (arrow) and P2 is waiting. 

P2 execution is represented in the y-axis (arrow) and P1 is 

waiting. 

Source: Authors, (2025). 

Where: 

         = P1 & P2 request resource S1. 

 

         = P1 & P2 request resource S2. 

 

         = Starvation or Inversion starting   region of P1 or P2. 

 

         = Starvation or Inversion region of P1. 
   

         = Starvation or Inversion region of P1.  

 

          = Starvation or Inversion region of P2.  

 

                   = Possible progress path of P and Q.  

 

Horizontal portion of path indicates P is executing and Q is 

waiting. Vertical portion of path indicates Q is executing and P is 

waiting. 

 

Since this work is the first work that Big O notation is 

involving in multithreading priority, just two of its equations, 

constant and polynomials times, have been chosen to prove the idea 

since the basic concept is the same for all equations just needed to 

extend the parser. Figure 3 is the flowchart that illustrates the 

individual algorithmic loop process to measure the thread 

complexity that is used in this work by finding nested loop with the 

highest depth to use it later to specify the thread priority. By 

tracking the flowchart path, two things are gotten as outputs: first, 

the highest depth among nested loops, and second, the loop with 

the largest remaining iteration count. So, from the “into” and “out 

of” the flowchart the dominant loop is specified which is taking the 

largest part to the algorithm's runtime. Next, the growth rate of the 

dominant loop is used in the algorithm’s time complexity 

calculation. So, let’s take the bubble sort algorithm as an example 

to calculate the complexity where the goal of the algorithm is 

sorting unarranged members. To do so, the number of nested loops 

is calculated guiding to complexity of O(n2) because the algorithm 

needs two loops (nested) to reorder the members [36-38]. A parser 
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program in C++ has been written to seek “for” and “while” tokens 

for O(ni) measuring purposes. The flowchart in Figure 3, depicts 

the parser flow of the thread algorithm to get its complexity 

according to the count of nested loops in order to use it in to assign 

priority to the thread. The second output of the flowchart is the loop 

with highest remaining iteration count, which is used as priority 

backup plan to differentiate threads with same complexity. 

 

Table 1:Runtime complexity for various algorithms with least 

numbers of consecutive operations. 

Algorithm Runtime Complexity 
Consecutive 

Operation 

Recurrent O(n) O(n) 

Transformer O(n2) O(1) 

Sparse 

Transformer 
O(n √𝑛) O(1) 

Reformer O(n log(n)) O(log(n)) 

Source: Authors, (2025). 

III. IMPLEMENTATION 

For the implementation, this paper applies an experiment 

with three threads: p1 O(n2), p2 O(n), and p3 O(n2) as its steps are 

shown below where they are started at time T = 0 and ended at T = 

1000 msec. By running the three threads, this information is gotten: 

p2 needs 70 time slices, meanwhile p1 and p3 need 2817 and 4205 

time slices respectively; Figures 4-6 are the screenshots of the 

number of slices calculation program that are needed by each 

thread to finish their whole executions. Therefore, p2 should have 

higher priority and that would not be discovered without time 

complexity. Furthermore, the iteration ratio supports time 

complexity by differentiating threads with the same complexity. 

So, p2 runs first, and then gives up the processor after time slice 

number 8 because its priority value rises and becomes equivalent 

to p1 priority values because of CPU usage counter.  

Next, iteration ratio gives the control to p1 since iteration 

numbers of p1 and p2 are 10000000, 15000000 respectively. Here, 

the iteration ratio is not applied at time zero because it is always 

equals 1 for all threads. So, the equation assigns at T = 0 the 

priorities 61, 60, 62 to p1, p2, and p3 respectively. Below is the 

actual calculations based on Eq. (1). 

 

T = 0          p2 = 40 + 20 + (0   * 4/32) =   60 

 p2 takes the control 

  T = 0          p1 = p2 + 1 = 61 

  T = 0          p3 = p1 + 1 = 62  

  T = 10 ms      p2 = 40 + 20 + (1   * 4/32) =   60 

  T = 20 ms      p2 = 40 + 20 + (2   * 4/32) =   60 

  T = 30 ms      p2 = 40 + 20 + (3   * 4/32) =   60 

  T = 40 ms      p2 = 40 + 20 + (4   * 4/32) =   60 

  T = 50 ms      p2 = 40 + 20 + (5   * 4/32) =   60 

  T = 60 ms      p2 = 40 + 20 + (6   * 4/32) =   60 

  T = 70 ms      p2 = 40 + 20 + (7   * 4/32) =   60 

  T = 80 ms    p2 = 40 +20 + (8   * 4/32) = 61 

 p2 releases control 

  T = 90 ms      p1 = 40 + 20 + (9   * 4/32) =   61 

  ……… 

T = 160ms      p1 = 40 + 20 + (16 * 4/32) =   62 

 p1 releases control 

 

 
Figure 3: Parser flowchart to get thread complexity according to 

the count of nested loop with highest depth. 

Source: Authors, (2025). 
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  Reset counter = 9  

  T = 170ms      p2 = 40 + 20 + (9 * 4/32) =   61 

  ……… 

  T = 240ms      p2 = 40 + 20 + (16 * 4/32) =   62 

 p2 releases control 

Apply Eq. (1): 

P1 = 40 + 20 + (17 * 4/32) + ((10000000–

26418)/10000000 × 2) = 63.9947164 

P2 = 40 + 20 + (17 * 4/32) + ((40000000–

49835804)/40000000 × 1) = 62.8754 

P3 = 40 + 20 + (17 * 4/32) + (15000000/15000000 × 2) = 

64 

Therefore, p2 = 62, p1 = 63, p3 = 64, so p2 takes control 

  T = 250ms      p2 = 40 + 20 + (17 * 4/32) =   62 

  ……… 

  T = 320ms      p2 = 40 + 20 + (24 * 4/32) =   63  

  T = 330ms      p1 = 40 + 20 + (25 * 4/32) =   63 

  ……… 

  T = 400ms      p1 = 40 + 20 + (32 * 4/32) =   64 

  Reset counter = 25 

T = 410ms      p2 = 40 + 20 + (25 * 4/32) =   63 

  ……… 

T = 480ms      p2 = 40 + 20 + (32 * 4/32) =   64 

Apply Eq. (1): 

P1 = 40 + 20 + (33 * 4/32) + ((10000000–26418)/10000000 × 2) 

= 65.9894326 

P2 = 40 + 20 + (33 * 4/32) + ((40000000–9937962)/40000000 × 

1) = 64.75155095 

P3 = 40 + 20 + (33 * 4/32) + (15000000/15000000 × 2) = 66 

Therefore, p1 = 65, p2 = 64, p3 = 66, so p2 takes control 

 

  T = 490ms      p2 = 40 + 20 + (33 * 4/32) =   64   

  ……… 

  T = 560ms      p2 = 40 + 20 + (40 * 4/32) =   65   

  T = 570ms      p3 = 40 + 20 + (41 * 4/32) =   65   

  ………  

  T = 640ms      p3 = 40 + 20 + (48 * 4/32) =   66   

 

 (Skipping forward to 1000msec or 1 second) 

        . 

  T = 1000ms     p2 = 40 + 20 + (60 * 4/32) =   67 

  T = 1000ms     swapper recalculates the accumulated 

CPU usage counts of all processes. For the above process: 

new_CPU_usage = 67 * 31/32 = 64 (if d=31) 

After decaying by the swapper: p = 40 + 20 + (64 * 4/32) 

= 68 

Apply the equation: 

P1 = 40 + 20 + (64 * 4/32) + ((10000000–26418)/10000000 × 2) 

= 69.9788174 

P2 = 40 + 20 + (64 * 4/32) + ((40000000–15600330)/40000000 × 

1) = 68.6099917 

P3 = 40 + 20 + (64 * 4/32) + ((15000000-20896)/15000000 × 2) 

= 69.997213866 

Therefore, p1 = 69, p2 = 68, and p3 = 70 

 

Table 2 is a tracing example of p1, p2, and p3, which its 

explanation is as follows: 

 

At T = 0, p1 = 61, p2 = 60, p3 = 62, therefore, p2 controls 

the CPU since it has the lowest time complexity. 

At T = 90, p2 relinquishes the control since its priority value 

becomes equivalent to the p1 priority value = 61. Therefore, p1 

takes the control since the iteration ratios for both of p1 and p3 =1,  

 

 

 

 

 

 

 

 

 

 

Figure 4: P1’s total execution slice number calculation. 

Source: Authors, (2025). 

 

 
Figure 5: P2’s total execution slice number calculation. 

Source: Authors, (2025). 

 

 
Figure 6: P3’s total execution slice number calculation. 

Source: Authors, (2025). 

 

Table 2: Tracing of p1, p2, and p3. 
T (ms) p1 Priority  p2 Priority  p3 Priority  CPU control Counter 

0 61 60 62 p2 0 

90 61 61 62 p1 1 

160 62 61 62 p2 9 reset 

240 63 62 64 p2 10 

320 63 63 64 p1 11 

400 64 63 64 p2 25 reset 

480 65 64 66 p2 26 

560 65 65 66 p3 27 

1000 69 68 70 p2 31 

Source: Authors, (2025). 

 

but the number of p1 iterations = 10000000 < 15000000 the 

number of p3 iterations making p1 = 61 and p3 =62. 

 

At T = 160 ms, p1 gives up the control to p2 again since its 

value rises to 62 while p2 value = 61. But before that, the algorithm 

reset the counter to 9 the start of value 61 because it reaches 62 

while p2 value = 61 which means that p2 will give up the slice right 

away. For example, the p2 value after one round if the equation 

applied without resetting the counter is p2 = 40 + 20 + (17 * 4/32) 

= 62 making the algorithm useless.  

At T = 240 ms, p2 releases the control since its value rises 

up to 62 and becomes equal to p1 and p3 values. Since all the 
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threads have equal priorities p1 = p2 = p3 = 63, the equation is 

applied to assign new real priorities. Therefore, the new priorities 

are p1 = 63, p2 = 62, and p3 = 64. Therefore, p2 takes the control. 

At T = 320 ms, p2 = 63 relinquishes the control to p1 = 63 

for the second time.  

At T = 400 ms, p1 = 64 relinquishes the control to p2 = 63 

after resetting counter to 25.  

At T = 480 ms, p2 = 64 relinquishes the control. Since p1 = 

p2 = p3 = 64, the equation is applied and the new proprieties are: 

p1 = 65, p2 = 64, and p3 = 66. p2 takes the control. 

At T = 560 ms, p2 = 65 releases control to p3 = 66 in spite 

of p1< p3 since p1 has the control two consecutive times. 

 

At T = 1000 ms (1 sec), swapper recalculates the 

accumulated CPU usage counter, when thr1, thr2, and thr3 had 32, 

51, and 8 time slices respectively and the number of completed 

iterations for each thread are 26418, 15600330, and 20896 

respectively. Therefore, p1 = 69, p2 = 68, and p3 = 70, so p2 takes 

the control. 

From the trace, it is clear that the goal is accomplished since 

p2 has 51 slices, p1 has 32 slices, and p3 has 8 slices during the 

period of time 0-1000 ms. Meanwhile, traditional method, which 

applies Round Robin, gives the same opportunity to the all threads 

with the sane priorities. The concept of this experiment is giving 

thread with lowest time complexity and loop iterations more time 

slices. Therefore,  they are involving in the equation whenever the 

priorities of all threads become equivalent because this state turns 

the equation to Round Robin and gives equal time slices for every 

thread. So, the task is giving different priorities for each thread 

whenever this state occurs. Completing the concept, any state 

rather than the above one, the time complexity will not involve in 

the priority calculation, but instead Round Robin is replaced with 

it. So, every time there are two or more threads with the same 

priority but not all threads, the time complexity and iteration ratio 

decide the next thread to control the CPU instead of FIFO, which 

is used by Round Robin method. To avoid starvation among 

threads with the same time complexity, the algorithm takes the 

control from the thread with lower iteration ratio and gives it to the 

other threads after every two consecutive turns. For example, in 

this work, thr1 iteration number = 10000000, while thr3 iteration 

number = 15000000, so thr1 is always taking the control since its 

iteration number to go is always decreasing, meanwhile thr3 time 

to go iteration number stays still 15000000. 

 

IV. CONCLUSION 

1- This work represents a new generation where is no 

concept of multithreading with equivalent priorities. 

2- The technique acts as Round Robin with multithreading 

that have constant time for all threads since there is no loops to 

calculate their iteration ratios 

3- This equation rules out the first in first out approach 

including Round Robin from multithreading system. 

4- This work does not work with threads having time 

complexity involving log, exponential, and factorial times, but 

extending the parser to include them solve it. 

5- The starvation avoidance can be manipulated by changing 

the number of consecutive call times. 

6- The probability that the next time slice is allocated to a 

thread which has allocated many time slices recently is decreasing. 

7- Since time complexity considers the time of iterations’ 

numbers trivia, the equation works more efficient with single-

processor than multi-processor. 
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