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The Navier-Stokes equation has been a standard of calculus in hydrodynamics; however, its 

conceptual and computational problems make it necessary to look for better alternatives. 

One of the causes of this failure is that it is a "reductionist" model, which does not involve 

the emergence of new laws at other scales. In this article, a different model is presented in 

detail, based on a State Function, with clear advantages, since it involves mechanisms at all 

levels, respecting the principle of "breaking temporal symmetry", according to irreversible 

thermodynamics. Keywords: 

Hydrometrics, 

Dynamic Equilibrium, 

Irreversible thermodynamics, 

Linear thermodynamics, 

State functions. 
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I. THE PROBLEM OF CLASSICAL DYNAMICS AND THE 

NAVIER-STOKES EQUATION 

I.1 SOME LIMITATIONS OF THE NAVIER-STOKES 

APPLICATION 

A classic theme in hydraulics and fluid mechanics is the 

difficulty of understanding and solving problems and calculations 

related to turbulence flows from nonlinear differential equations, 

such as the Navier-Stokes equation, to describe the motion of a 

viscous fluid, which is usually used, with great limitations [1]. 

 

𝜌 ቀ
𝜕𝒗

𝜕𝑡
+ 𝑣 ∗ ∇𝑣ቁ = −∇𝑝 + ∇ ∗ 𝜏 + 𝑓                   (1) 

 

This equation is a developed version of Newton's 2nd law, 

since the left member is the acceleration of a very small region of 

fluid moving in the flow, and the right member is the sum of the 

forces that create that acceleration. Here "ρ" is the density of the 

liquid, "v" is the velocity of the region, "p" is the pressure, "τ" is 

the tangential frictional stress on the surface of the region, and "f" 

is the internal forces of the bodies [2]. Although versions of these 

equations developed in numerical methods are currently used, their 

application is not general due to limitations outlined below. 

A first problem arises regarding the "smallness" of the 

region of the fluid under consideration, since it cannot be very 

large, since the nature of the differential equation used fails, since 

the concept of "limit" involves smaller and smaller regions; But it 

cannot be infinitely small, because the fluid is not ideally 

"continuous" (infinitely divisible and homogeneous), making it 

difficult to establish how far this equation can represent turbulence, 

which is composed of increasingly large whirlwinds [3]. 

A second problem, but not the least difficult, is that its 

mathematical nature is non-linear, which implies an analytical 

difficulty, since there are currently no general methods for its 

resolution, and because in the conceptual part, this mechanism is 

based on feedback loops in which cause, and effect are 

intermingled. According to [4],[5] making It virtually impossible 

to separate them. 

A third problem, equally significant, is that the new 

dynamics of irreversible processes [6],[7] postulate that the 
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"trajectories" of bodies in the space of phases collapse into massive 

irreversible systems. This effect derives from the interpretation of 

mechanical interactions as coupling "degrees of freedom" 

associated with Fourier frequencies [8]. 

In these cases, the interaction of these degrees of freedom 

can become "resonant", implying "very small" divisors, which lead 

to the destruction of the trajectories considered, which tend to 

infinity. Figure 1. 

 

 
Figure 1: Trajectories in the space of phases. 

Source: Authors, (2024). 

While it is true that the mechanical description of motions 

in a turbulent fluid is impossible in terms of trajectory, it is possible 

to define it in statistical terms, by means of "probability 

distributions", ρ, which are the only elements of physical 

description that survive the absence of "computability" in these 

chaotic systems.  

This paradigm shift is not minor because the dynamics of 

"distributions" are oriented in time, microscopically coinciding 

with the rupture of the temporal symmetry that is observed 

macroscopically. 

I.2 OPEN SYSTEMS AND PROCESSES OF DYNAMIC 

EQUILIBRIUM. 

Real physical bodies are open systems in that they receive 

and expel energy and substance from and outward. Depending on 

this balance, an open system, close to equilibrium, promotes 

processes of "Dynamic Equilibrium" in which the system achieves 

"stable states" of quasi-equilibrium in Figure 2. 

 

 
Figure 2: Open systems seeking a "stable state" with quasi-

equilibrium. 

Source: Authors, (2024). 

Small variations in state variables are random distributions 

of a Markovian nature, in that they represent a drift towards more 

probable states, i.e., their mean value evolving with an "arrow of 

time".[9][10]. The representation of this mean value is a 

deterministic "pattern" of the evolution of these real systems, and 

together with the fluctuations, they represent a single facet of the 

process of "Dynamic Equilibrium" in Figure 3. 

Figure 3: Fluctuations and mean value as an indivisible part of 

the process of "Dynamic Equilibrium". 

Source: Authors, (2024). 

As long as the Navier-Stokes equation corresponds to some 

degree to the type of motion described by "trajectories," and its 

application does not correspond to an irreversible, time-oriented 

process, its application to the practical problems of fluid mechanics 

will be very limited. 

 

II. CONDICIONES PARA UNA DESCRIPCION 

COMPLETA EN DINAMICA FLUVIAL 

II. 1. MORE IS DIFFERENT”, A NEW PARADIGM IN 

MODERN SCIENCE 

The "intelligibility" of nature, according to the philosopher 

A.N. Whitehead, [11] results as a product of a system of general 

ideas, which is necessary, logical, coherent, in which the function 

of all the elements of experience can be interpreted. 

In this context, the centuries-old scientific paradigm of 

"Reductionism" had remained unquestioned, [12] in which 

understanding the world was possible only by understanding its 

most basic parts. For example, by understanding atoms, it was 

possible to understand chemistry and hence the very essence of life. 

This fallacy, which ignored some difficulties inherent in 

contemporary science, was brought to the fore by Nobel laureate 

A.P. Anderson in 1973 with his hypothesis: "More is different", 

[13],[14] in which, due to the breaking of temporal symmetry, a 

new hierarchy appears in nature, an "Emergence" of new physical 

facts at each level of reality. 

Thus, for example, even if the balance of forces and 

acceleration effects in a very small plot of a fluid under turbulence 

conditions were described in great detail, it was not possible to 

anticipate feedback mechanisms, which appearing at a second 

level, not explicitly described in the Navier-Stokes equation, would 

greatly disturb the fidelity of the model in relation to experimental 

reality. 

II.2. "STEADY STATES" FOR OPEN RIVER SYSTEMS  

In an isolated system (without any interaction with the 

outside), over time, the energy is distributed homogeneously 

throughout the system, reaching a limiting thermal equilibrium 

(single, equal temperature at all points of the system). This limit 

equilibrium is characterized by a maximum of entropy. (S→max). 

In a closed system (which only exchanges energy with the 

environment, but no substance), these exchanges of energy with the 

outside can define a given equilibrium, in which the temperature 

no longer varies (T≈ Cte). 

 

𝐹 ≈ 𝐸 − 𝑇 ∗ 𝑆                                        (2) 
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This system varies between the predominance of an 

"energetic" scheme (E>T*S), or an entropic scheme (T*S>E). At 

low temperatures, an "orderly" system (Crystal like) predominates, 

while at medium temperature there is a mixture of order and 

disorder (liquid like), and at high temperature "disorder" (gas like) 

predominates. 

 

In an open system (which exchanges energy and substance 

with the environment) different components of entropy must be 

identified: 

 

𝑑𝑆 ≈ 𝑑𝑖𝑆 + 𝑑𝑒𝑆                                  (3) 

 

The total entropy, S, is the algebraic sum of the entropy 

produced within the system by irreversible (loss) processes, diS, 

and of the entropy entering or leaving the system, deS, from and 

out in Figure 4. 

 

 
Figure 4: Open systems. 

Source: Authors, (2024). 

In this case the equilibrium is a steady state that corresponds 

to the Minimum Entropy Output", P≈ diS/dT, although the total 

entropy, S, is also a relative maximum. Depending on the balance 

between the internal and the external, the production of entropy and 

entropy will have larger or smaller sizes (dotted line) in Figure 5.  

 

 
Figure 5: Open systems. 

Source: Authors, (2024). 

River systems are, of course, open systems, in which 

entropy maximums will be presented, depending on the balance 

between what is produced inside and what is exchanged with the 

outside. The most direct manifestation of the entropy condition in 

this type of system is the so-called "Granulation Volume", or 

"Coarse Grain Volume", which is defined by the Boltzmann 

equation: 

𝑆 ≈ 𝑘 ∗ 𝐿𝑛 (𝑊) ≈ 𝑘 ∗ 𝐿𝑛(𝑉)                           (4) 

Here k is Boltzmann's constant, W is the number of 

microstates indistinguishable from the energy of the system, and V 

is the volume of the macrostate, which is observed with an 

instrument. This volume is identified as the "Coarse Grain" which 

defines the stable state of the system. For maximum entropy you 

will have a certain volume of "coarse granules".  In the riverbed, 

the size of these granulation zones will be larger or smaller, 

depending on the balance, in the channel under consideration. 

Figure 6 [15],[16]. 

 

 
Figure 6: Variable granulation zones depending on the balance. 

Source: Authors, (2024). 

 

II.3 “LINEAR” REGION FOR IRREVERSIBLE 

THERMODYNAMICS APPROXIMATION FOR 

NATURAL FLOWS, AND INTERMITECIES DUE TO 

LACK OF PERFEC “LINEAR” REGIME. 

"Linear" regime is defined as the thermodynamic region 

close to equilibrium [17], region in which thermodynamic forces 

and flows are proportional to each other. A thermodynamic force 

is basically a gradient of gravitational, electrical, or thermal 

potential, which originates a flow of charge, mass, electric charge, 

or heat. In this regime the forces are weak, and so the flows [18]. 

When you have this regime, the entropy production is 

minimal, and the entropy is maximum, i.e., the volume of "coarse 

grain" is maximum, compatible with the balance at the boundary 

of the system. Applying the criterion of proportionality between 

thermodynamic flow and force for a natural flow, [19] it is 

approximately necessary that: 

 

𝑈~
𝑑𝐻

𝑑𝑋
≈ 𝑆                                       (5) 

 

But according to the Chezy-Manning equation, the velocity 

is proportional to the square root of the Slope. 

 

𝑈~√𝑆                                            (6) 

 

An analysis of the "non-linearity" of the above equation, for 

specific typical cases, yields percentages of approximately 15%, 

using Taylor-MacClaurin serial analysis [20]. Now, the net effect 

of not complying with a perfect "linearity" is that the coarse 

granularity zone is not perfect either, in the sense that it has 

Page 30



 
 
 

 

One, Two and Three, ITEGAM-JETIA, Manaus, v.10 n.48 p. 28-35, July/August., 2024. 

 

randomly distributed "patches" that correspond to different macro 

states, which are detected as “intermittencies” with the instruments. 

Figure 7. 

 
Figure 7: Intermittency of coarse granules. 

Source: Authors, (2024). 

These intermittencies are reflected as fluctuations in the 

measurements of the state parameters, characterized by larger 

"variances". 

III. CONDITIONS FOR AN ALTERNATIVE SOLUTION 

TO RIVER DYNAMICS: A DISCUSSION ON NATURE OF 

STATISTICAL DISTRIBUTIONS. 

III.1 MARKOVIAN MODEL FOR DESIRED 

DISTRIBUTION. 

 A proposal for a successful methodology that can replace 

the Navier-Stokes equation in contemporary hydrometry must 

meet the requirements that Whitehead has imposed on the method 

that contains generality, logical coherence, and correspondence 

with all aspects of experimental making. 

The first thing to analyze is the general nature of the type 

of probabilistic distribution to be considered, its nature and the 

consequences of its application to river dynamics, in particular it is 

necessary to establish two basic ideas on which to build the desired 

model: 

The model must respond to the principle of the "Detailed 

Balance", in such a way that the transitions, from left or rigth, of 

the most probable value- mean value-are equivalent (Gaussian 

model). 

B.- That the Distribution responds to the fact that the 

macroscopic observation tends to its most probable value, and that 

the fluctuations correspond to localized events, close to that value, 

and have very small magnitudes and times, with random 

occurrence. 

These conditions are fulfilled by the so-called Markov 

Process, in which the "memory" of the successive transitions is 

lost, except for the last one. This probabilistic process, although 

totally random, shows an evolution in only one temporal direction. 

Since the actual processes in the "linear" region of irreversible 

thermodynamics are dissipative and if they correspond to a 

Markovian process, it must be compatible with the increase of 

entropy to the stationary value, in Figure 5 [21],[22].  In this case, 

if the entropy reaches a relative maximum peak, dS≈0, then diS≈-

deS, and the system transfers entropy to the outside. 

If we now reinterpret Figure 3, which shows the evolution 

of an open system (the turbulent flow) towards the "steady state",  

allowed by the thermodynamic (energy and substance) bonds with 

the outside, we can draw the following, showing how the statistical 

evolution of the dynamics is applied to the turbulent flow in Figure 

8. 

Figure 8: Nature of evolution toward “Steady state” in a turbulent 

flow. 

Source: Authors, (2024). 

III.2 ERGODIC NATURE OF THE MARKOVIAN 

DISTRIBUTION IN FLOW. 

If we consider that a Markovian process is basically a 

Gaussian one, essentially linked to the theorem of the Central 

Limit, and that this process is prevalent in many fields of physics, 

important theorems of linear transformation have been defined 

[23]. One of which is the Ergodic theorem, in which the time 

function linked to evolution has, for long times, the same spatio-

temporal statistical characteristic for various "samples" 

(measurements) that are taken.    

Figure 9 shows an ergodic "band" in which the 

measurements will have a similar value, in “Steady state” 

condition. The definition of this band depends on the 

"mathematical expectation" of the stationary random function 

remaining constant for different measurements in that band, which 

occurs for sufficiently long times in which the randomness of the 

distribution is manifested [24]. 

An example of this situation is Prandtl's lateral velocity 

distribution, which is almost flat, along the width of the river [25]. 
 

Figure 9: Ergodic zone with similar value of measurements. 

Source: Authors, (2024). 

III.3 ANALISIS DE FUNCIONES DE ESTADO COMO UNA 

POSIBLE SOLUCION 

State functions are mathematical entities that connect 

states of a system by varying their state parameters, which are 

variables that depend only on their "internal physical condition" in 

relation to the process, defining it univocally, and that does not 

depend on any concept of microscopic structure [26],[27]. Its 

mathematical definition, in a flow for example, Φ(U,E,t) is based 

on the fact that if an open system that evolves in a turbulent flow 

has as state parameters: U, E, and also evolves over time, a total 

differential is configured, as follows: 
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 𝑈 = 𝑔(𝛷),   𝐸 = 𝑤(𝛷)  𝑎𝑛𝑑  𝑡 = ℎ(𝛷)                 (7) 

and: 

𝑑𝛷 = ቀ
𝜕𝛷

𝜕𝑈
ቁ 𝑑𝑈 + ቀ

𝜕𝛷

𝜕𝐸
ቁ 𝑑𝐸 + ቀ

𝜕𝛷

𝜕𝑡
ቁ 𝑑𝑡                     (8) 

This expression indicates that the state function, Φ(U,E,t), 

depends only on the start and end points, i.e. it is a "point" function, 

not a "process" function, which depends on the path followed, 

according to the Schwartz condition [28]. 

 ∮ 𝑑𝛷 = 0                                       (9) 

Now, the fact that state functions depend only on start 

(ΦA) and end points (ΦB) excludes the problem of collapsing 

trajectories, which are "process" events, essentially in Figure 10. 

 
Figure 10. The state function excludes collapsed paths (process 

events). 

Source: Authors, (2024). 

On the other hand, this state function is associated as an 

average value with the Markovian distribution in Figure 8 and 

respects the basic fact that it is time oriented. 

IV. A STATE FUNCTION THAT GUIDES THE 

EVOLUTION OF THE FLOW IN TURBULENCE. 

It will be shown in this section that although tracers are 

used as marker substances to measure movement with instruments, 

in reality the state function that will be defined will describe in its 

final segment the evolution of turbulence itself. 

IV.1 THE EVOLUTION OF STATE FUNCTION: HOW TO 

DEFINE AND APPLY IT 

 The authors have presented an equation for the average flow 

velocity, based on dispersive forces of an electrical nature (Van der 

Waals), with a structure similar to the classical Chezy-Manning 

equation, based on mechanical interactions. [29]. 

 

 𝑈 ≈
1

𝛷
√

2∗𝐸

𝜏
                                (10) 

 

and: 

 𝑈 ≈
𝑅

2
3

𝑛
√𝑆                                      (11) 

 

 In the unidirectional equation (10), E is the longitudinal 

coefficient of dispersion, and "τ" is a characteristic time of the self-

replicating process, and is worth: 

´ 

 
𝑡

𝜏
≈ 𝛿 ≈ 4.6692                                  (12) 

 

 Here "δ" is the chaotic period doubling, and it is actually the 

hallmark of the Gaussian nature of the process, since this 

remarkable number, initially discovered by [30], derives from the 

mean value of Brownian dynamics, studied at the beginning of the 

20th century by [31] but placed within a unimodal scheme of the 

natural growth model (logistic curve). Svedberg found that the 

mean value of the distribution of colloidal particles in fluid media 

(ultracentrifuge) was described by the Poisson model, with an 

average concentration value <C(t)>≈1.54. Therefore, the growth 

rate in the logistics curve, for Brownian distribution, is: 

 

 𝑟(𝑡) ≈ 𝑒
1
𝑇∗∫ 𝐶(𝑡)𝑑𝑡

𝑇
0 ≈ 𝑒1.54 ≈ 4.6692                (13) 

 

 Since this logistic curve is a universal model of growth, it of 

course applies to the self-similarity conformation of Brownian 

motion and is thus the basis of equation (12). 
 

 𝑟(𝑡) ≈
𝑡

𝜏
≈ 4.6692                             (14) 

 

 Ahora, volviendo a la descripción de la aplicación de la función 

de estado al caso fluvial, for classical equation (11), "R" is the 

hydraulic radius, "n" is the Roughness coefficient, and "S" is the 

Slope of the flow. If we equate the two definitions of speed, we 

have that: 
 

 𝛷 ≈
𝑛

𝑅
2
3

√
2𝐸

𝑆
                                        (15) 

 

 In this way, the geometric and geomorphological parameters 

can be set as a function of the State Function, i.e., we have a 

complete fluvial description from Φ(U,E,t). 

The state function can be approximately defined at tp (peak time) 

as: [32].  

 

 𝛷 ≈
𝑀

𝑄∗𝛾∗1.16
∗

1

√𝑡𝑝3                             (16) 

 

Here, M is the mass of tracer injected, tp is the peak time 

of tracer curve, and γ is a characteristic parameter of each solute 

used, and which must be calculated experimentally, with “Cp” as 

peak concentration of tracer in measurement point.: 

 

 𝛾 ≈
𝐶𝑝(𝑡𝑝)

𝑡𝑝
−

2
3

                                       (17) 

 

Table 1 shows below approximate typical values of "γ" for different types of tracers and different streams. 

 

Table 1: Typical (approx.) values of γ for diverse kind of tracers and streams. Source: Authors. 
Tracer  Condition of stream “γ” Approx. Mean value 

‘Radioactive (Cl3Au-198) Q≈8.2 m3/s, L≈1.7 Km <9351> 

Fluorescein Q≈ 97 L/s, L≈43 m <123> 

RWT Small Creek, Q≈40 L/s., L≈23 m <2162> 

Saline (NaCl) Small Creek, Q≈40 L/s., L≈23 m <1301> 

Source: Authors, (2024).
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IV.2 THE NATURE OF STATE FUNCTION: ITS 

RELATIONSHIP WITH THE PHYSICO-CHEMICAL 

PROCESSES THAT OCCUR TO THE SOLUTE IN THE 

FLOW 

Once the solute is suddenly injected into the flow there is 

an interaction between the water (dipoles) and the ions of the 

compound, then the solute diffuses and there is an interaction 

between the ions of the latter, this occurs until it can be considered 

a gas, which is considered very rarefied, which occurs when 

Φ≈0.38, the point at which all the mass is homogeneously 

"available" in the cross-section of the tracer flow tube.  

At this point, the tracer is considered to have all but lost 

its identity, and the instrument's measurements actually capture the 

turbulent motion of the water. The dispersion (diffusion) being 

measured, which originally corresponded to the tracer, in this last 

phase now corresponds to the mixing movements (self-diffusion) 

of the water in turbulence [33] in Figure 11. 

 

 
Figure 11: State function measuring turbulence, with or without 

tracer particles. 

Source: Authors, (2024). 

Then, it can be established that Φ(t) evolves as shown in Figure 

11. 

 

 
Figure 12: Evolution of State function Φ(t). 

Source: Authors, (2024). 

The steep segment of curve (up to Φ≈ 2.16) corresponds 

to the “solvation” process of the solute. The smooth decaying 

segment corresponds to the evolution of the ions, which diffuse 

until at Φ≈ 0.38, almost all of them are in the gas phase, and Φ(t) 

is considered to describe the turbulent evolution of the flow itself 

in Figure 13. 

 
Figure 13: urbulence described by a State functionΦ(t). 

Source: Authors, (2024). 

This aspects is of great importance for fluvial engineering, 

because with this method it is possible to estimate values of state 

parameters at distant sites in the flow, without having to inject large 

amounts of tracer with a serious threat to the environment of the 

ecosystem. Figure 14. 

 

 
Figure 14. Saturation of tracer in state-of-the art methods. 

Source: Authors, (2024). 

 

IV.3 PLANNING FLUVIAL EXPERIMENTS USING THE 

STATE FUNCTION METHOD 

 The application of the State Function method to fluvial research 

allows not only to obtain information with greater scientific 

content, but also allows the experimenter to simplify monitoring 

tasks as he must use much less tracer mass, with the consequent 

environmental preservation. Monitoring is primarily based on 

selecting a representative section of the channel and, once the 

conservative solute has been injected, making measurements at two 

sequential sites separated by a distance proportional to the width of 

the flow. With these two fluorescent tracer curves (Fluorescein or 

Rhodamine WT) the two values of Φ(t) are established and the 

projection can then be made at much greater distances, if we start 

from the assumption that this section of the flow is at "Dynamic 

equilibrium”. This condition is approximately verified by the 

observations of flow and slope constancy.  Here "Pi" is the point of 

injection of the solute, "E1" and "E2" are the two points of the 

experimental measurement with fluorometers, and “Pm” is the 

point of projection of the value of Φm(t), based on the two values 

of this function in the previous points. Based on this data, it is 

possible to obtain all the information of interest for hydrometry or 

modelling in Figure 15. 
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Figure 15: Two tracer measurements to obtain a sequence of State 

function Φ(t). 

Source: Authors, (2024). 

 It should be noted that it is not necessary to make "injections at 

the center", as is the optimal requirement in classical 

methodologies, since the State Function reflects the objective 

conditions of the injection, including longitudinal and cross-

sectional variables [34]. 

V. CONCLUSIONS 

1.- The basic characteristics of natural channels are 

established, as open systems, evolving in the condition of 

"Dynamic Equilibrium". This condition is established as resulting 

from fluctuations and a mean value, which have statistical 

characteristics compatible with the Gaussian nature and the 

principle of temporal symmetry breaking. (Markovian 

distribution).  

2.-The description of phenomena as complex as turbulent 

flow requires the concurrence of multiple concepts, in such a way 

that the description is as complete as possible. The current level of 

knowledge of hydrodynamics is limited by the fact that its 

theoretical approach is usually limited to the representation of the 

evolution of phenomena by means of non-linear differential 

equations, which give only "local" information, which is difficult 

to interpret and handle analytically, because it is a very difficult to 

interpret and manipulate analytically, because it is a "reductionist" 

theory, limited only to the most basic levels of reality. 

3.- Opposing, "emerging" models, which draw attention 

to the impossibility of solving problems of interpretation at various 

scales, must be based on "non-local" mechanisms, which include 

different but congruent parts of reality, as A.N. Whitehead 

demands.  

4.- The description of the evolution of hydrodynamics is 

traditionally done by means of a "reductionist" theory of the 

"Navier-Stokes" type, which shares the limitations and difficulties 

of this type of model. A model that solves these problems must be 

a "non-local" one, which also involves the developments of 

irreversible thermodynamics, close to equilibrium. 

5.- The authors present here an "emergent" model of the 

"State Function" type, which eliminates the problems identified in 

the resolution of hydrodynamic designs with existing theories. 

VI. AUTHOR’S CONTRIBUTION 

Conceptualization: Alfredo Constain A and Julian Ramos S. 

Methodology: Alfredo Constain A and Julian Ramos S. 

Investigation: Alfredo Constain A and Julian Ramos S. 

Discussion of results: Alfredo Constain A and Julian Ramos S. 

Writing – Original Draft: Alfredo Constain A and Julian Ramos 

S. 

Writing – Review and Editing: Alfredo Constain A and Julian 

Ramos S. 

Resources: Alfredo Constain A and Julian Ramos S. 

Supervision: Alfredo Constain A and Julian Ramos S. 

Approval of the final text: Alfredo Constain A and Julian Ramos 

S. 

 

VII. REFERENCES 

 
[1] Stewart I. “¿Juega Dios a los dados?”. Grijalbo-Mondadori. Barcelona, 1996. 

 
[2] Stewart I. “17 ecuaciones que cambiaron el mundo”. Critica, Barcelona. 2013. 

 

[3] Stewart I. Ibid, 1996. 
 

[4] Annila A. & Makela T. Natural patterns of energy dispersal. Physics of life rev. 
7PP 477-498. 2010. 

 

[5]-Annila A.& Ketto J.  The capricious character of nature. Life  ,ISSN 2075. 2012. 
 

[6] Prigogine I. ¿Tan solo una ilusión?, Matema- Tusquets, Barcelona. 1997. 

 
[7] Kondepudi D.& Prigogine I. Modern thermodynamics. From heat engines to 

dissipative structures. Wiley. New York., 1999. 

 
[8] Prigogine I. El fin de las certidumbres. Aguilar. Bogotá. 2001. 

 

[9] Prigogine I. Las leyes del caos. Critica, Barcelona. 1999. 
 

[10] Nicolis G. & Prigogine I. La estructura de lo complejo. Alianza. Editorial. 

Madrid. 1997. 
 

[11] Prigogine I. Ibid. 2001. 

 
[12] Miller J. H. A crude look at the whole. Basic Books, New York, 2015. 

 

[13] Anderson P.W. Moore is different. Science. Vol. 117. 1972. 
 

[14] Anderson P.W. Basic notions of condensed matter physics. Amazon. Finley 

Editor, Princeton. 2018. 
 

[15] Langbein W.B. The hydraulic geometry of shallow estuary. Hyd. Sci. JOU. 8: 

3, pp 84-94. 2009. 
 

[16] Langbein W. & Leopold L. Quasi-equilibrium states in channel morphology. 

USGS. Vol 262. P782-794. 1964. 
 

[17] Kondepudi D.& Prigogine I. Ibid. 1999. 

 
 

[18] Prigogine I. Ibid. 1997. 

 

[19] Constain A. The svedberg number 1.54, as the basis of a State function 

describing the evolution of turbulence and dispersion. Intech Open, chapter of book. 

London. 2024.. 
 

[20] Constain A. Ibid. 2024. 

 
[21] Nicolis G. & Prigogine I. Ibid. 1997. 

 

[22] Pugachev. V.S. Introducción a la teoría de las probabilidades. Editorial Mir. 
Moscú, 1973. 

 

[23] Nicolis G. & Prigogine I. Ibid. 1997. 
 

[24] Pugachev. V.S. Ibid. 1973. 
 

[25] Nekrasov. B. Hidraulica. Editorial Mir, Moscú, 1968. 

 
[26] Planck M. Treatise on thermodynamics. Dover. 1955. 

 

[27] Kirillin V.A., Sichev V.V. & Sheindlin A. Termodinámica técnica., Editorial 
Mir, Moscú. 1986. 

‘ 

[28] Morowitz. H. Entropia para biólogos. Blume, Madrid. 1975. 
 

Page 34



 
 
 

 

One, Two and Three, ITEGAM-JETIA, Manaus, v.10 n.48 p. 28-35, July/August., 2024. 

 

[29] Constain A. Definición y análisis de una función de evolución de solutos 

dispersivos en flujos naturales. Dyna. No. 175. Medellín, 2012. 

 

[30] Gleick J. Caos: La creación de una ciencia. Critica. Barcelona. 2012. 

 

[31] Constain A. Ibid. 2024. 
 

[32] Constain A. Ibid. 2024. 

 
[33] Frenkel J. Kinetic theory of liquids. Dover. 1955. 

 

[34] Constain A. Ibid. 2024. 
 

Page 35


