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In this work, Machine Learning (ML) is applied to predict atmospheric corrosion in the Metropolitan 

Zone of Mexico City. For this purpose, mass loss is measured as a dependent variable associated 

with the independent variables relative humidity, wetting time, temperature and sulfur dioxide 

deposition time in 12 stations of the study site and with the generated database. ML models are used 

with some supervised learning tools, such as: Neural Networks (NN), Regression Trees (RT), 

Optimized Regression Tree (ORT), Regression Ensemble (RE), Support Vector Machine (SVM) and 

Linear Regression (LR). For this problem, Neural Networks (NN) have the best results, with a 

Correlation Coefficient R2 = 0.9814 and a Mean Square Error MSE = 37.9. The main results allow 

us to determine that the proposed framework can be extended to predict the behavior of other 

complex problems. 
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I. INTRODUCTION 

Corrosion is a process of loss of metallic materials by the 

action of aggressive agents through chemical or electrochemical 

reactions [1-2].  

By its nature, the phenomenon of atmospheric corrosion is 

of the electrochemical type because the electrons of the atoms on 

the metal surface are transferred to an electron acceptor or 

depolarizer, which requires water to be the medium for ion 

transport. According to the International Organization for 

Standardization (ISO) standards, the corrosivity of steel ranges 

from very low to high depending on the environmental conditions 

of the area [3-5]. 

Atmospheric Corrosion is a complex multivariate and 

multidimensional phenomenon that affects many structures, 

equipment, and sectors [6]. The annual costs of corrosion in 

Mexico are estimated to range from 3.5 to 4% of the Gross 

Domestic Product, causing not only large economic losses, but 

also harmful effects on human health that can lead to death and 

negative environmental impacts [7].  

There are many processes where data are 

multidimensional, multivariable. large and noisy, making  

Machine Learning (ML) an adequate tool to analyze such 

processes. ML has gained popularity, and its algorithms are used 

in fields such as object detection, pattern recognition, text 

interpretation, segmentation, fraud detection, and marketing, 

among others [8].  Recently, ML has also been applied to 

complex phenomena given sufficient and appropriate data, giving 

potential solutions for the prediction of corrosion [9-10]. 

ML has proven useful in the development of predictive 

models to estimate corrosion loss [11]. For example, the 

atmospheric corrosion of carbon steel is predicted using 
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techniques such as Random Forest (RF), Artificial Neural 

Network (ANN) and Support Vector Regression (SVR). The RF 

model demonstrates higher accuracy than the others; however, the 

accuracy could be improved adjusting for the effect of rust 

formation on the sensor [12]. 

Therefore, the objective of this research is to evaluate the 

performance of ML algorithms in the prediction of atmospheric 

corrosion in the Metropolitan Zone of Mexico City. This will help 

to avoid and/or reduce human, economic, and environmental 

losses. 

For which the following research question is formulated: 

Which of the ML algorithms predict atmospheric corrosion with 

high level of performance measures by the Correlation 

Coefficient and Mean Square Error (MSE)? 

The hypothesis to be demonstrated lies in the following 

statement: ML algorithms for atmospheric corrosion prediction 

have high performance.  

It is important to note that in Mexico there are no 

precedents for the use of ML methods for the prediction of 

atmospheric corrosion, which is a milestone in the country that 

will allow the development of these computational tools for these 

purposes, as well as the comparison of their use with the applied 

traditional methods. 

On the basis of the above, this work evaluates ML models, 

with prediction capabilities, in order to forecast atmospheric 

corrosion. 

II. THEORETICAL REFERENCE 

II.1 CORROSION 

Corrosion can also be classified according to the natural 

environment where the process takes place, such as air, water or 

soil. Hence, atmospheric corrosion arises, which has its 

electrochemical basis [13]. 

Atmospheric corrosion in turn is classified under the 

category of dry, humid or wet, which emphasizes the different 

attack mechanisms with increasing humidity or dew. 

Dry corrosion: In the absence of moisture, many metals 

corrode slowly at room temperature, but accelerate at high 

temperatures. 

Humid corrosion: Requires moisture in the atmosphere and 

increases in aggressiveness with moisture content. When the 

humidity exceeds a critical value, which is around 70% relative 

humidity, an invisible thin film of moisture will form on the 

surface of the metal, facilitating the presence of an electrolyte to 

transfer current. The critical value depends on the surface 

conditions, such as: cleanliness, corrosion products formed or the 

presence of salts or other contaminants that are hydroscopic and 

can absorb water at very low relative humidities. 

Wet corrosion: Occurs when water droplets or visible 

water films are formed on the metal surface due to sea breeze, 

rain, or dew fall [14]. 

There are several climatic factors that affect corrosion, 

among which are relative humidity, average ambient temperature, 

and wetting time, among others. On the other hand, it has also 

been reported in the specialized literature that there are chemical 

factors that increase the corrosion rate of steel, among the most 

significant are sulfur dioxide and sodium chloride [15]. 

Regarding the classification of atmospheric corrosivity, 

ISO 9223 establishes five categories, see Table 1 [16].  

Table 1: Atmospheric aggressiveness categories. 

Aggression 

Category 

Steel Mass Loss 

(µm/year) 
Corrosivity 

C1 ≤ 1.3 Very low 

C2 > 1.3 ≤ 25 Low 

C3 > 25 ≤ 50 Medium 

C4 > 50 ≤ 80 High 

C5 > 80 ≤ 200 Very high 

Source: (ISO, 1989). 

The corrosion rate [17], measured by mass loss is 

expressed as shown in equation 1:  

 

                                                                  (1) 

Where:  

 

 

  

 

 

 

 

 
 

 

II.2 MACHINE LEARNING 

ML offers the ability of machines to learn from data 

through computational methods without a predetermined equation 

as a model [18].  

ML is classified mainly into three categories such as 

unsupervised learning, supervised learning, and reinforcement 

learning. Unsupervised learning assumes that the data is 

unlabeled. The data model is useful as a representation of 

clustering of data. Supervised learning considers the training of a 

model on known input and output data. Supervised learning uses 

classification and regression techniques to develop a predictive 

model. Unlike supervised and unsupervised ML, Reinforcement 

Learning does not require a static data set, but instead operates in 

a dynamic environment and learns from the collected experiences 

[19]. 

For the case of atmospheric corrosion prediction, 

regression ML algorithms are used because it is necessary to 

predict a continuous response such as mass loss. In this research, 

the most common algorithms that we evaluate are the following. 

Neural Networks (NN), Regression Trees (RT), Optimized 

Regression Tree (ORT), Regression Ensemble (RE), Support 

Vector Machine (SVM) and Linear Regression (LR). These 

algorithms and their parametric settings are explained in detail in 

the Materials and Methods section. 

 

III. MATERIALS AND METHODS 

III.1 MACHINE LEARNING FRAMEWORK 

The generic machine learning framework for the prediction 

of atmospheric corrosion in this work is shown in Figure 1, [20]. 

There are two main stages of training and testing. Randomly 80% 

of the data were used in the training phase and the other 20% 

were used to test the trained models. 

 

 Corrosion rate, μm/year 

: Mass loss, g 

: Steel Density AISI 1019 

: Sample Area,  

: Exposure Time, year 
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Figure 1: ML framework for atmospheric corrosion prediction. 

Source: [20]. 

 

The first stage in any ML system is data acquisition, 

although in some cases, as in this work, it is assumed that the data 

are available in a database. In this case, the atmospheric corrosion 

data acquisition stage was reported in a previous work [21].  

The experimentally measured data for the independent 

variables that are used as attributes are the following: Relative 

humidity (%), wetting time (year), temperature (0C) and sulfur 

dioxide deposition time (mg/m2-day) at 12 stations at the study 

site detailed in the following: 

1. Acatlán 

2. Cerro de la Estrella 

3. Coacalco 

4. Hangares 

5. Merced 

6. Pedregal 

7. Plateros 

8. San Agustín 

9. Tacuba 

10. Tlalnepantla 

11. Xalostoc 

12. UNAM 

These stations have been considered, taking into account 

previous studies of this phenomenon reported in [7]. In the same 

way, we proceeded to the measurement of the dependent variable 

(mass loss) expressed in g, which the output response in the 

supervised learning approach.  

After data acquisition, the next step in framework is data 

access and exploration, some examples are inspected through 

graphs when possible. The raw data contains 360 examples 

corresponding to the annual measures, 30 peer stations. 

Preprocessing data tasks such as cleaning, integration, reduction, 

and transformation are required to solve data missing, noise, 

inconsistency, multiple sources, and redundancy problems [22]. 

In this case, this phase was not required.  

ML models use feature extraction and selection as a data 

dimensionality reduction. Feature extraction transforms the raw 

dataset into a reduced number of features, preserving the relevant 

information. In feature selection, the element that gives us the 

most relevant information about the problem is found. The 

performance of a machine learning model is related to the number 

of input variables [23]. In this work, we directly use the values of 

the dependent and independent variables. In Table 2 an example 

of raw data is presented. 
 

Table 2: Example of input data for the atmosferic corrosion 

prediction model. 

Relative 

Humidity 

(RH) 

 Wetting 

Time (WT) 

Temperature 

(T) 

Depositation 

(SO2) 

Loss 

Mass 

(LM) 

 

39.4 110 16.7 42.7 1.5 

Source: Authors, (2024). 

 

Finally, the last step of the first stage is to train the ML 

model with the training data. There is no best model that 

generalizes to any problem, so it is necessary to train and test the 

available models with existing data. In the following, we describe 

the algorithms and its parameters used in this work. 

 

Neural Network (NN) 

 

Neural network models are structured as a series of layers 

to mimic the way the brain processes information. We use a fully 

connected feedforward NN. The first layer of the NN has a 

connection from the network input (predictor data), and each 

subsequent layer has a connection from the previous layer. The 

final fully connected layer produces the output of the network, 

that is, the predicted response values [24]. 

 

Regression Trees (RT) and Optimized Regression Trees (RT) 

 

Regression trees are decision trees to predict continuous 

values instead of class levels in leaves. RT are used to determine 

relationships between data set variables. The binary decision tree 

for regression used for this work is too complex. For this reason, 

we used an optimized RT. This method finds hyperparameters 

that minimize loss by using automatic hyperparameter 

optimization. We comment on the advantages of RT vs. ORT in 

the results analysis and discussion. Figure 2 shows the optimized 

regression tree diagram with a pruning level of 12.
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Figure 2: Optimized regression tree with pruning level = 12. 

Source: Authors, (2024). 

 

Regression Ensemble (RE) 

Regression Ensemble combines several models to improve 

the prediction accuracy in learning problems with a continuous 

output variable. We used an RE model that contains the results of 

boosting 100 regression trees using the least squares boost 

algorithm (LSBoost) and the predictor and response data. For 

LSBoost fits RE, at every step, the ensemble fits a new learner to 

the difference between the observed response and the aggregated 

prediction of all learners grown previously. The fits of the 

ensemble are to minimize MSE [25]. 

 

Support Vector Machines (SVM) 

Support Vector Machines is a supervised learning 

algorithm that is based on finding a hyperplane that best separates 

different classes of data points. We use a trained SVM regression 

model due to the low dimensional predictor dataset. 

 

Linear Regression (LR) 

Linear Regression analysis is used to predict the value of a 

variable based on the value of another variable. The variable you 

want to predict is called the dependent variable, and the variable 

you are using to predict the other variable's value is called the 

independent variable. LR models have predictors that are linear in 

the model parameters, are easy to interpret, and are fast to make 

predictions. However, the highly constrained form of these 

models means that they often have low predictive accuracy and 

flexibility. 

 

IV. RESULTS AND DISCUSSIONS 

Due to the data observed in the 12 stations, a learning 

model is generated that predicts the behavior of the studied 

phenomenon. Moreover, as the number of data observations 

increases, the performance of the models improves. 

 Table 3 presents the results obtained for the Correlation 

Coefficient and the MSE for each of the ML algorithms on the 

test data. 
 

Table 3: Correlation Coefficient and MSE results for each of the 

ML algorithms. 

Algorithms 
Correlation 

Coefficient  
Mean Square 

Error (MSE)  

NN 0.9814         37.9     

RT 0.9734     52 

 ORT 0.9792     41.2     

 RE 0.9789     40.6     

SVM  0.8923     205.5     

LR 0.3827 1,068 

Source: Authors, (2024). 

In terms of the correlation coefficient between the 

estimated values and the observed values, the best performing 

algorithm is NN, which represents a high correspondence for the 

regression model generated based on the data. Meanwhile, the 

worst performing model is LR with 0.3827.   

Furthermore, the lowest MSE is for the NN algorithm at 

37.9, which constitutes a high linearity of the estimated model. 

On the other hand, there is an improvement of the ORT model 

with respect to the RT, which means that the optimized values of 

the RT allow a better prediction performance.  
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Figure 3 shows the trends of the mass loss values with 

respect to the 12 station samples for each of the six ML 

algorithms

 

 
Figure 3: Behavior of mass loss values vs. samples of the 12 stations for the six ML algorithms applied. Blue (true) and red 

(predicted). 

Source: Authors, (2024). 

 

The results obtained show that the ML algorithms used are 

a reliable tool to predict the behavior of atmospheric corrosion at 

the 12 study stations. It is shown that the NN, RT, ORT, RE and 

SVM algorithms present good performance, but not the LR, 

which presents a very high MSE reaching 1,068. 

Figure 4 shows the predictive performance of the mass 

loss of the six regression models, with respect to the real values of 

the mass loss. In this case, the test data that randomly correspond 

to 20% of the data set are used.  

  

 
Figure 4: Predicted values vs true values of the loss mass. 

Source: Authors, (2024). 
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For mass loss prediction, the ideal situation is where the 

predicted vs. true values lie on the diagonal line. The results 

obtained corroborate the above and allow affirming that the NN, 

RT, ORT, RE and SVM algorithms can be used to predict the 

behavior of atmospheric corrosion in the 12 stations of the area 

under study in the research due to their good performances 

shown. 

For the case of knowing the behavior of atmospheric 

aggressiveness in each of the 12 stations of the Mexico City 

Metropolitan Zone, the loss of mass is considered directly 

proportional to the corrosion rate because the other terms 

involved in the calculation of the corrosion rate remain constant, 

among them the density of the steel, the average air temperature 

in the study area, the area of the samples, and the exposure time 

considered 1 year. The most common steel used in the 

Metropolitan Zone of Mexico City is the AISI 1019 steel, as it is 

the most versatile steel used in metallic structures. 

The results when comparing the average corrosion rate for 

each station and what is established in the standard (ISO, 1989) 

[16], show that the corrosivity of the steel ranges from very low 

to high depending on the environmental conditions of the station. 

For example, for the Acatlán, Pedregal, San Agustín and 

Tlalnepantla stations the corrosivity is very low, while for the 

Coacalco, Merced, Tacuba and Xalostoc stations the corrosivity is 

high. 

 

V. CONCLUSIONS 

 The main contribution of this research is the evaluation of 

ML algorithms for the prediction of atmospheric corrosion, which 

is useful to generate alerts or make decisions in this area. For this 

work, the best model based on the Correlation Coefficient R2 and 

the Mean Square Error (MSE) is NN, with 0.9814 and 37.9, 

respectively. The worst performance was obtained for the Simple 

LR model with =0.3827 and . 

The framework proposed in this research can be adopted in 

such a way that it predicts the behavior of another complex 

problem in an analogous manner. 

The values predicted by ML algorithms are reliable and 

accurate, in fact, the more data these performances increase. 

Therefore, automating this prediction and analysis process helps 

reduce the costs associated with corrosion. Similarly, the use of a 

trained automatic system avoids the limitations of manual data 

analysis, enabling continuous and real-time monitoring, as well as 

sensor fusion. 

Finally, because experimentation is expensive and requires 

long-term development, as a future work, we propose the use of 

an architecture for data acquisition and processing based on 

Internet of Things (IoT) and sensor networks.  
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