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The “El Niño” phenomenon brings periods of drought to northern South America that 

negatively impact the level of hydroelectric plant reservoirs, which could reduce their 

energy production. In order to avoid reaching the minimum operating level before the end 

of the drought period, this research proposes a methodology based on data science for the 

target forecast of the level of hydroelectric plant reservoirs in low flow conditions. The goal 

is that the minimum operating level of the reservoir be reached on the estimated end date of 

the drought period, that is, March 31, 2024. It is applied to the data of the reservoir of a 

hydroelectric plant located in the northwest of South America, for which three sequential 

forecast horizons are used, allowing the models to be evaluated as these periods pass, using 

the metrics: MAPE, RMSE, and MAE. To meet the goal, the predictive sampling method of 

the Prophet forecasting technique is used. The results indicate that the technique is a useful 

additional tool for the plant dispatcher, with values for the performance metrics during the 

third forecast horizon of 0.045%, 48 cm, and 62 cm, for the MAPE, the MAE, and the 

RMSE, respectively.  
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I. INTRODUCTION 

The “El Niño” phenomenon brings with it diverse climatic 

conditions for Latin America. According to the UN World Food 

Program [1], the countries of the Central American Dry Corridor 

(Nicaragua, El Salvador, Guatemala and Honduras) and northern 

South America experience drier conditions than usual in the 

presence of this phenomenon, with a probable reduction in 

precipitation. Thus, since mid-2023, Venezuela has been 

experiencing a drought due to this phenomenon that was enhanced 

by climate change [2]. These conditions imply a period of drought 

that can extend longer than normal, usually ending in the month of 

April, to ending approximately at the end of May, making it 

necessary to administer the reservoirs in general, in a restrictive 

manner. In the case of hydroelectric generation plants, this involves 

a decrease in energy production for the population, and therefore a 

possible increase in electricity rationing. Consequently, in periods 

in which low or no precipitation is expected, and consequently, low 

or no inflow to the hydroelectric plant reservoirs, a point in time 

must be estimated at which conditions are likely to change in a 

favorable manner, and dispatch these hydroelectric plants in such a 

way as not to reach the minimum operating level in the period with 

low or no inflow flow.  

Due to the above, it is necessary to make a forecast of the 

level of the reservoirs with a goal to be achieved at the end of the 

critical drought period. In this sense, the objective of this research 

is to present a methodology based on data science to develop target 

forecasting of hydroelectric plant reservoirs under conditions of 

low or no inflow. The Prophet forecasting tool is applied through 

the use of the Python programming language. 

Previous research related to the topic of study of this work 

was reviewed, finding that none of them have a forecasting 
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approach with a goal in conditions of low inflow. For example, Li 

et al. [3] investigate the performance of four different deep learning 

models in predicting the water level in the dam area of the “Three 

Gorges” reservoir of the hydropower plant located in China. The 

models considered were: Long Short-Term Memory (LSTM) 

network, bidirectional LSTM network, convolution LSTM 

network, and the attention and convolution LSTM network. The 

performance metrics used were: determination coefficient (R2), 

mean absolute error (MAE), the square root of the mean square 

error (RMSE), and the mean absolute percentage error (MAPE). 

They found that the attention-convolution LSTM network 

performed the best, with an R2 of 0.994, a MAPE of 0.0032, a MAE 

of 0.5296, and an RMSE of 0.6748. Likewise, Sapitang et al. [4] 

carry out the forecast of the level change in a reservoir located in 

Malaysia, considering forecast horizons from one day to seven 

days, and two scenarios. They evaluate the performance of four 

models: decision tree regression, random forest regression, 

Bayesian linear regression, and artificial neural network 

regression. The metrics used to evaluate the models were: R2, 

MAE, RMSE, RAE, and relative squared error (RSE). They 

conclude that the Bayesian linear regression model outperforms the 

other models, with an R2 between 0.998952 and 0.99992. 

Similarly, Tsao et al. [5] present a methodology for forecasting the 

water level of a reservoir with a horizon of 48 hours, and using 

fuzzy neural networks in a multi-stage architecture. They apply the 

methodology in the Techi hydroelectric plant located in Taiwan. 

They conclude that with this methodology the energy efficiency of 

the system is improved, in addition to improving the effectiveness 

of the plant. 

On the other hand, Tucci [6] develops and applies a 

methodology for hourly forecasting of the water level of the 

reservoir of a hydroelectric plant located in the Pontecosi basin in 

Italy. First, it applies spatial interpolation methods to data from 

meteorological stations near the reservoir to determine the values 

of: air temperature, air humidity, precipitation, and wind speed. 

These variables are then used as input to a neural network to predict 

soil moisture concentration. Then, a nonlinear automatic 

exogenous input model was trained to estimate the reservoir level 

with different prediction horizons, using the data from the previous 

modules, and historical data on water level, discharge flow, and 

turbine flow. Estimates of the water level were generated with a 

horizon between 1 and 6 hours, with MAE values between 2 cm 

and cm, respectively. For their part, Yang et al. [7] propose a time 

series analysis model, based on imputation and the variable 

selection method, for the forecast of water levels in a reservoir 

located in Taiwan. They use the random forest technique, whose 

performance they compare with other techniques, using the 

metrics: correlation coefficient, RMSE, MAE, relative absolute 

error (RAE), and root relative squared error (RRSE). They 

conclude that the closest point imputation method had the best 

performance, as did the proposed forecasting technique. Similarly, 

Nguyen et al. [8] present a novel deep learning model for the 

prediction of water level and discharge flow of water reservoirs. To 

address data scarcity and improve prediction accuracy, they use an 

ensemble learning architecture that takes the advantages of 

multiple deep learning techniques. They use singular spectrum 

analysis to treat atypical data, and genetic algorithms to obtain the 

optimal values of the model's hyperparameters. They conclude that 

their methodology is better than current techniques according to the 

Nash-Sutcliffe Efficiency (NSE), mean squared error (MSE), 

MAE, and MAPE metrics. Specifically, they consider that NSE 

improves by at least 2%, and with spectral analysis this metric 

improves an additional 5%. Likewise, Mohammed et al.  [9] 

propose a model based on artificial neural networks (ANN) and the 

marine predator algorithm to model the water levels of the Tigris 

River in Al-Kut, Iraq. Historical climate and water level data from 

the period 2011-2020 are used to build and evaluate the model, 

whose performance is compared with the recent particle swarm 

optimization based on constriction coefficients and the chaotic 

gravitational search algorithm (CPSOCGSA-ANN), and with the 

slime mold algorithm (SMA-ANN). The results show that the 

proposed model is the best performing one with a dispersion index 

of 0.0009 and a determination coefficient R2 of 0.98. Finally, 

Ibañez et al. [10] study the performance of different short- and 

long-term forecasting, statistical and machine learning techniques 

for predicting the water level of the Angat Dam located in the 

Philippines. The six techniques compared are: naive/persistence, 

seasonal mean, autoregressive integrated moving average 

(ARIMA), gradient boosting machines, and two deep learning 

networks. As exogenous variables they use historical data on water 

levels, meteorological data, and irrigation data. The univariate 

neural network resulted in the best performance for the one-day 

horizon with a MAE and RMSE of 20 cm. For the horizons of 30 

days, 90 days and 180 days, the multivariate neural network 

resulted in the best performance with a MAE(RMSE) of 2.9(3.3), 

5.1(6.0), and 6. 7(8.1) m, respectively. 

The rest of the article is distributed as follows. Section 2 

presents the methodology used in the research. Then, in section 3 

the results obtained are analyzed and discussed. Next, there are the 

conclusions derived from the research carried out. Finally, 

bibliographic references are presented. 

II. THEORETICAL BACKGROUND 

II.1 PROPHET FORECASTING TECHNIQUE 

The Prophet technique developed by Facebook's data 

science team during 2017 is used. It was developed specifically for 

time series forecasting, based on an additive model where non-

linear trends are easily adjusted to different types of seasonality, 

such as: annual, weekly, and daily, in addition to incorporating the 

effect of vacations and holidays. According to the team, the 

technique works best with time series that have strong seasonal 

effects and multiple seasons of historical data. It is robust with 

respect to missing data and changes in trend and generally handles 

outliers well [11]. 

As proposed by Taylor & Letham [12], the technique is 

based on a time series model composed of an element that 

represents the trend, another that represents regular changes, that 

is, seasonalities, another component that represents the effect of 

non-working days, and finally the error term. The model is then 

given by Equation (1): 

    𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜖𝑡                    (1) 

In (1), 𝑦(𝑡) is the time series, 𝑔(𝑡) is the trend component, 

𝑠(𝑡) represents the periodic changes in the series, ℎ(𝑡) represents 

the effect of holidays and vacations, and 𝜖𝑡 is the error term that 

represents changes that do not fit within the other components. 

 

With respect to the trend component, the technique 

implements two types: growth saturation model, and a piecewise 

linear model. As for seasonality, it is modeled with periodic time 

functions, specifically with standard Fourier series, such as the one 

presented in Equation (2). 
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𝑠(𝑡) = ∑ (𝑎𝑛 ∙ 𝑐𝑜𝑠 (
2𝜋𝑛𝑡

𝑃
) + 𝑏𝑛 ∙ 𝑠𝑒𝑛 (

2𝜋𝑛𝑡

𝑃
))

𝑁

𝑛=1

      (2) 

In this case, 𝑃 is period of the series, which will depend on 

the type of seasonality, and 𝑁 is the number of terms in the series. 

Taylor & Letham indicate that 𝑃 is the regular period that 

they expect the time series to have, being equal to 7 for data with 

weekly seasonality and 365.25 for data with annual seasonality. 

From the above it is deduced that the technique works by default 

with data with daily resolution. Likewise, they propose that higher 

values of 𝑁 apply to seasonal patterns that change more rapidly, 

and in their studies, they have found that a value of 10 is useful for 

annual seasonalities, and 3 for monthly seasonalities. According to 

Peixeiro [13], the technique defines by default an additive 

seasonality, but there is also the option of establishing a 

multiplicative seasonality. 

One of the characteristics that differentiates this technique 

from some other time series analysis techniques is the management 

of non-working days, allowing the inclusion in the model of a list 

with holidays and vacations that are within the historical data 

period, but also within the forecast horizon. It has been used in 

multiple applications, for example, Sharma et al. [14] use it for the 

prediction of stock values in the Indian stock market, Žunić et al. 

[15] apply this technique to forecast successful sales, Oo and Phyu 

[16] use the technique to develop temperature forecasting, among 

other applications. 

II.2 FORECAST MODEL PERFORMANCE METRICS 

In order to evaluate the performance of forecasting models 

and make comparisons between them, a series of metrics are used. 

Among the standard statistical measures to evaluate models are: 

MAE, RMSE, and MAPE. The error being the difference between 

the real value and the predicted value [17]. The first two metrics 

considered give results in physical units, while the third of them 

(MAPE) is given as a percentage with respect to the real value of 

the predicted variable. When comparing RMSE and MAE metrics, 

it should be noted that the former is convenient when errors are 

normally distributed, while the latter is recommended for use with 

Laplacian errors [18]. Likewise, Naser [19] states that MAPE is 

negatively affected when a predicted value (or several) is much 

larger or much smaller than the corresponding real value. Next, the 

mathematical equations used to calculate these metrics are 

presented. 

 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑌𝑖 − 𝐹𝑖|

𝑛

𝑖=1

                                (3) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖 − 𝐹𝑖)2

𝑛

𝑖=1

                            (4) 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |(

𝑌𝑖 − 𝐹𝑖

𝑌𝑖
) × 100|

𝑛

𝑖=1

                         (5) 

 
It is true that 𝑌𝑖 is the ith real value of the variable to be 

forecast, 𝐹𝑖 is the ith predicted value, and 𝑛 is the number of records 

or historical data available. 

 

III. MATERIALS AND METHODS 

With the purpose of achieve the stated objective, a 

methodology was used based on the stages of a data science 

project, which include: establishing objectives, obtaining data, pre-

processing of data, exploratory analysis of data, modeling of the 

data, and finally, the decision-making stage [20]. An outline of the 

applied methodology is presented in Figure 1. 

The objective would then be to develop the forecast of the 

level of the reservoir of a hydroelectric plant, subject to conditions 

of low inflow due to climatic phenomena, with the goal of avoiding 

reaching the minimum operating level of the reservoir. The data 

used corresponds to the historical values of the reservoir level, and 

the energy produced, during the period 2015-2023. It is important 

to mention that the climatic phenomenon considered was “El 

Niño”, which has been present since the fourth quarter of 2023, and 

has accentuated the drought period in countries with a coast on the 

Caribbean Sea. This phenomenon was previously present during 

2016. The preprocessing of the data consisted of the application of 

the techniques present in [21]. Specifically, the possible existence 

of missing and/or atypical data was verified, imputing with 

appropriate techniques when necessary. Likewise, the possible 

existence of duplicate data was verified, and new data columns 

were generated from the existing ones. In the next stage, an 

exploratory analysis of the data was carried out, using statistical 

and/or graphic techniques. Subsequently, the data was modeled by 

applying supervised machine learning algorithms, specifically, 

forecasting techniques. With the results obtained from the 

exploratory analysis and data modeling, we proceeded to the 

decision-making stage. 
 

 
Figure 1: Outline of the applied methodology. 

Source: Authors, (2024). 

In the data modeling stage, the Prophet technique is applied 

using the Python programming language, setting the goal that by 

03/31/2024 the reservoir under study does not reach its minimum 

level, in accordance with the forecast obtained. To achieve this, the 

predictive sampling method of the forecasting technique is used, 

and the sample that meets the programmed goal is selected. There 

is a first forecast horizon of 91 days between 01/01/2024 and 

03/31/2024. After the month of January had passed, the actual data 

for that month were incorporated into the historical data, and the 

technique was applied again with a forecast horizon of 60 days 

between 02/01/2024 and 03/31/2024. Similarly, after the month of 
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February had passed, the historical data were readjusted, and the 

technique was used again, but this time with a horizon of 31 days 

between 03/01/2024 and 03/31/2024. For each of these forecast 

horizons, performance metrics were calculated by comparing the 

forecast obtained with the actual values of the elevations.  

III.1 DATA PREPROCESSING 

The data correspond to the daily values in meters, for the 

period 2015-2023, of the water level of a reservoir whose contents 

are used for the production of energy through a hydroelectric plant 

located in the northwest of South America. Likewise, the data set 

has the daily energy values, in Gigawatt-hours (GWh), produced 

by the plant. The data set was checked to ensure the absence of 

missing data and duplicate data. Likewise, it was verified that there 

is no presence of atypical data in both the water level and energy 

data. Next, the data from the water level column were used to 

generate the values of the variation in centimeters of water level. 

 

IV. RESULTS AND DISCUSSIONS 

IV.1 EXPLORATORY DATA ANALYSIS 

 

Firstly, the temporal graph of the daily water level is created 

for the period 2015-2023, in order to observe the behavior that this 

variable has had. This graph is presented in Figure 2, from which 

it is observed that the level reached its maximum values during the 

years 2021 and 2022, and presents an annual seasonality. Likewise, 

it is also noted that the minimum value was reached during the first 

half of 2020. 

 

 
Figure 2: Daily level of the reservoir. 

Source: Authors, (2024). 

Additionally, it is noted that, at the beginning of the year 

2016, in which the El Niño phenomenon was also present, the 

elevation was around 1094 m, while, at the beginning of the year 

2024, this was slightly higher than 1076 m. A downward trend can 

be seen in the curve starting in 2020. 

On the other hand, Table 1 presents the descriptive 

statistical indicators of the level, the variation of the level, and the 

electrical energy produced by the plant. It can be seen that there are 

a total of 3287 records, corresponding to each of the days in the 

period 2015-2023. 
 

Table 1: Descriptive analysis of the data. 

Indicator Level (m) Variation (cm) Energy (GWh) 

Records 3287 3287 3287 

Mean 1082,05 -0,25 2,88 

Std Dev 9,38 21,11 1,15 

Min 1062,36 -131,00 0,00 

P25 1074,31 -12,00 2,20 

Median 1081,44 -3,00 2,97 

P75 1089,45 8,00 3,60 

Max 1099,28 132,00 6,77 

Source: Authors, (2024). 

 

It can be seen that the level varied from a minimum of 

1062.36 m to a maximum of 1099.28 m. Regarding the energy 

produced, it varied from 0 to 6.77 GWh. The level had a minimum 

variation of -131 cm, that is, a maximum drop of 131 cm, and a 

maximum variation of 132 cm, that is, a maximum rise of 132 cm. 

Likewise, Figure 3 presents a graph with the average value 

in centimeters of the variation in the reservoir level for the period 

2015-2023. It can be seen that the fall in the level of the reservoir 

occurs between the month of November and the month of May, 

coinciding with the historical period of drought in the area where 

the reservoir is located, with its greatest average fall during the 

month of March and the minimum fall during the month of May, 

the month in which the rainy period historically begins.  

 

 
Figure 3: Average monthly level variation 2015-2023. 

Source: Authors, (2024). 

 

It can also be seen that, in the period between the month of 

June and the month of October, the level has its greatest increases, 

coinciding with the rainy period, with a maximum value for the 

month of July, and a minimum value for the month of July. month 

of October.  

IV.2 DATA MODELING 

To estimate the water level using the Prophet technique, 

daily data for the period 2021-2023 was used. This amount of data 

is sufficient since all seasonalities that the data could have are 

covered. As a goal of the forecast, it was established that the 

minimum level of the reservoir, which is 1066 meters, would not 

be reached until March 31, 2024, the date on which the recovery of 

the reservoirs was expected to begin, and also put other electricity 

generation plants were in operation, thus allowing the reservoir to 

recover its optimal level. Three start dates were considered for the 

forecast horizon: 01/01/2024, 02/01/2024, and 03/01/2024, 

allowing values to be added to the historical data as the deadline 

approached. 

To generate the forecast model, a file was considered with 

the non-working days associated with the historical period of the 

data, and the period of the forecast horizon. Regarding the 

seasonality of the data, we worked with the default values of the 

technique, that is, considering the existence of annual and weekly 

seasonalities. The technique's m.predictive_samples(future) 
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method was used, which allows obtaining up to 1000 water level 

forecast samples for the given forecast horizon. To select the 

sample that represents the forecast, a series of filters are applied: 

that the elevation is not lower than the minimum value before the 

deadline, and that the elevation for the deadline is the closest to 

1066. 

First forecast horizon goes from 01/01/2024 to 03/31/2024, 

with a water level at the beginning of the period of 1076.21 m. 

After applying the Prophet technique, there are 1000 forecast 

samples. After applying the filters, the required forecast is 

obtained, for which the water level for March 31 is 1066.84 m. At 

the end of the forecast horizon, the real values of the elevation are 

available, so the MAPE, MAE, and RMSE metrics were calculated, 

in order to evaluate the performance of the forecast. The results of 

the metrics are presented in Table 2. In the research by Ibañez et 

al. (2021) also works with a horizon of around 90 days, obtaining 

an RMSE of 6.0 meters and a MAE of 5.1 meters. 

After the month of January had passed, the water level 

forecast was repeated, now with a forecast horizon from 

02/01/2024 to 03/31/2024, with a elevation at the beginning of the 

period of 1072.84 m, That is, during the month of January the level 

fell 3.37 m. Again, when applying the technique, 1000 samples are 

obtained. After applying the filters, the required forecast is 

obtained, for which the level for deadline is 1066.94 m. The results 

of the calculated metrics are presented in Table 2. 

After the month of February had passed, the water level 

forecast was repeated, now with a forecast horizon from 

03/01/2024 to 03/31/2024, with a water level at the beginning of 

the period of 1069.70 m, from which it is deduced that the level fell 

3.14 m. Again, when applying the technique, 1000 samples are 

obtained. After applying the filters, the required forecast is 

obtained, for which the level for March 31 is 1066.30 m. The 

results of the calculated metrics are presented in Table 2. For the 

case of the 30-day horizon, in Ibañez et al. (2021) obtained an 

RMSE of 3.3 meters and a MAE of 2.9 meters. 

 

Table 2: Model performance metrics. 

Horizons MAPE (%) MAE (cm) RMSE (cm) 

First 0,083 88 101 

Second 0,078 83 95 

Third 0,045 48 62 

Source: Authors, (2024). 

 

Figure 4 presents the results obtained along with the real 

values of the reservoir level for the study period. It can be seen that 

the forecast of the third horizon was the closest to the real values 

of the reservoir level, which at the end of said period was slightly 

below the goal. 

 

 
Figure 4: Forecasts achieved. 

Source: Authors, (2024). 

V. CONCLUSIONS 

A forecasting methodology was developed with a goal for 

estimating the level of a reservoir with low inflow, providing the 

dispatcher with an additional tool for the operation of the 

hydroelectric plant, preventing the minimum operating level from 

being reached. The methodology was applied to data from a 

reservoir located in northwest South America. From the historical 

values of the water level, it was determined that the average fall for 

the month of January was 12 meters, as for the month of February, 

while for the month of March the average fall was 16 meters. These 

values contrast with those corresponding to the first quarter of 

2024, with a drop of 3.37 meters for the month of January, for the 

month of February it was 3.14 meters, and for the month of March 

it was 4.13 meters. The shortest forecast horizon was the one with 

the lowest values of the performance metrics, with a MAPE of 

0.045%, a MAE of 48 cm, and an RMSE of 62 cm. Likewise, the 

longest forecast horizon presented the highest values of the metrics 

with a MAPE of 0.083%, a MAE of 88 cm, and an RMSE of 101 

cm. The values corresponding to the intermediate horizon were 

similar to those of the complete horizon. The values of the MAPE 

metric are significantly low as they are less than 1%, which is due 

to the fact that the elevations are in the order of thousands of 

meters, while the variations for the studied reservoir are in the order 

of centimeters. 
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