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The Permanent Magnet Synchronous Motor (PMSM) stands as a pivotal component in 

various applications, yet it remains susceptible to an array of faults within both its rotor and 

stator, there arises an imperative to swiftly and intelligently address these issues. In this 

study, a novel approach was undertaken wherein a PMSM design was conceptualized within 

the Ansys Maxwell program, followed by the deliberate introduction of a fault at the rotor's 

magnetic level. Specifically, three distinct fault scenarios were delineated based on the 

number of broken magnets (BM), namely 2, 3, and 4, localized within specific rotor areas. 

Notably, the magnetic flux density was selected as the focal parameter for this investigation. 

To effectively detect and diagnose faults stemming from BM, an innovative Convolutional 

Neural Network (CNN) architecture was devised. Leveraging images of the PMSM design 

captured during operational phases at various time intervals, the CNN exhibited remarkable 

efficacy in discerning and categorizing fault instances. Upon analysis of the derived 

outcomes, it becomes evident that the CNN exhibited unparalleled accuracy in fault 

detection, achieving a remarkable 100% success rate when juxtaposed with alternative 

methodologies such as Support Vector Machines (SVM) and K-Nearest Neighbors (KNN), 

which yielded accuracy rates of 97%. 
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I. INTRODUCTION 

The industrial sector's reliance on electric motors stems 

from their versatility and widespread applications across various 

domains, serving as the linchpin of development in critical areas 

such as aircraft, electric cars, and ships [1-3]. Despite their proven 

efficiency, electric motors are subject to degradation over time, 

succumbing to various faults across different components. Hence, 

there exists a pressing need to explore methodologies facilitating 

the rapid detection, diagnosis, and mitigation of these faults. 

The PMSM stands as a cornerstone of the industrial sector, 

yet it is susceptible to a myriad of faults, particularly at the rotor 

and stator levels, which can significantly impact operational 

quality [4],[5]. In response to this challenge, artificial intelligence 

emerges as a potent and expedient tool for fault detection. 

The design and analysis of electric motors, alongside the 

study of operational phenomena, are typically conducted using 

specialized software platforms such as Ansys Maxwell [6],[7]. 

These programs offer standardized templates tailored for 

diverse machinery, facilitating the study of magnetic phenomena 
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distribution and enabling fault simulations to evaluate their impact 

on machine performance. 

Recent research endeavors have focused on employing 

advanced techniques such as the finite element method to design 

induction motors and investigate fault scenarios, including broken 

bars [8], [9], Bearing Fault, where Line Currents were relied upon 

to detect the fault in the induction motor [10]. Additionally, 

machine learning methodologies have proven instrumental in fault 

detection and diagnosis across various motor types [11]. Interest in 

diagnosing the Broken Rotor Bar using Adaptive Neuro-Fuzzy 

Inference in the induction motor [12], Convolutional Neural 

Network was used in diagnosing the Broken Rotor Bar [13]. 

In the realm of PMSM, common mechanical and electrical 

faults include Bearing Fault, Demagnetization, and Eccentricity 

[14],[15], The demagnetization fault was detected in PMSM [16], 

while the Neural Network was used to detect the Rolling Bearing 

Fault in PMSM [17], Efforts have been directed towards the 

detection and mitigation of these faults using machine learning 

approaches.  

Techniques such as Convolutional Neural Networks (CNN) 

and Support Vector Machines (SVM) have been employed to 

discern faults, including broken magnets, with a focus on 

monitoring magnetic flux density and analyzing images captured 

during specific operational intervals [18],[19] In summary, this 

study proposes the integration of CNN and SVM algorithms for the 

detection of broken magnets in PMSM [20]. Leveraging the design 

capabilities of Ansys Maxwell, simulations encompassing various 

fault scenarios were conducted. Magnetic flux density serves as a 

crucial parameter for monitoring machine performance, with 

images extracted at specific intervals to facilitate a comparative 

analysis between healthy and fault states, thereby contributing to 

the advancement of fault detection methodologies in electric 

motors. 

II. DESIGN PMSM AND BROKEN MAGNETS 

Designing a PMSM and simulating a broken magnet 

scenario involves several steps and considerations. Here is a 

general description of this process consisting of the following 

steps: 

• Motor Design: Firstly, the specifications of the PMSM are 

defined. These specifications include parameters such as 

rated power, voltage, current, speed, torque, and physical 

dimensions. The motor model is created using design 

software such as Ansys Maxwell. Details like the number 

of poles, slot geometry, winding configuration, and 

magnet material are specified. 

• Magnet Arrangement: The arrangement of magnets 

within the motor structure is determined. Permanent 

magnets are typically mounted on the rotor surface and 

interact with stator windings to produce torque. 

• Finite Element Method (FEM): FEM techniques are used 

to analyze the electromagnetic performance of the motor 

design. This involves solving Maxwell's equations to 

calculate magnetic flux distribution, induced currents, and 

electromagnetic forces within the motor. 

• Fault Definition: Adjustments are made within the PMSM 

model to simulate the broken magnet scenario. Changes 

are made to the shape, size, or magnetic properties of one 

or more magnets to simulate them being partially or fully 

damaged. 

• Stress Analysis: Stress analysis is conducted to evaluate 

the mechanical effects of the broken magnet within the 

motor structure. Mechanical stress, deformation, and 

vibration are considered to assess the structural integrity 

of the motor under fault conditions. 

• Performance Evaluation: The performance of the PMSM 

under normal and fault conditions is assessed. Parameters 

such as torque-speed characteristics, efficiency, power 

factor, and electromagnetic noise are measured to 

evaluate the impact of the broken magnet on motor 

operation. 

• Fault Detection Algorithm: A fault detection algorithm is 

developed and implemented using machine learning 

techniques. By training the algorithm with data based on 

motor performance indicators, such as Convolutional 

Neural Networks (CNN) or Support Vector Machines 

(SVM), the presence of a broken magnet is accurately 

detected. 

• Testing and Validation: The motor design and fault 

detection algorithm are validated through experimental 

testing.  

By comparing simulation results with experimental data, the 

accuracy and effectiveness of the proposed design and detection 

method are verified. 

Ansys Maxwell plays a pivotal role in both designing and 

analyzing PMSM, offering a comprehensive platform where 

machine characteristics can be meticulously defined and 

parameters seamlessly incorporated. This software not only 

furnishes a detailed depiction of the studied machine's 

specifications, as delineated in Table 1, but also facilitates the 

visual representation of the PMSM design, as illustrated in Figure 

1. Moreover, Ansys Maxwell empowers engineers to specify the 

materials used in magnet formation and simulate faults within the 

rotor assembly.  

The extent of rotor damage, quantified by the number of 

broken magnets, is meticulously determined for each case, as 

elucidated in Figure 2. Through these capabilities, Ansys Maxwell 

serves as an indispensable tool in the meticulous design and fault 

analysis of PMSMs, providing engineers with the insights needed 

to optimize motor performance and reliability. 

 

 
Figure 1: PMSM design. 

Source: Authors, (2024). 
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Table 1: Design parameters. 

Component Value 

Diameter stator outer / inner                  300 mm / 211mm 

Diameter rotor outer / inner                   210 mm / 145mm 

Rotor and stator material                        steel M27_29G 

Magnet material                                      Br=0.39T, Mu=1.1 

Stator slots                                              30 

Number of poles                                     10 

Source: Authors, (2024). 

 
 (a) (b) (c) 

Figure 2: Broken magnets fault: (a) 2 BM, (b) 3BM, (c) 4BM. 

Source: Authors, (2024). 

 

III. SUGGESTED ALGORITHMS 

III.1 SUPPORT VECTOR MACHINE 

Support Vector Machine (SVM) is a powerful supervised 

learning algorithm used for classification and regression tasks. It is 

particularly effective in scenarios where the data is complex and 

not linearly separable. SVM works by finding the optimal 

hyperplane that best separates the data points into different classes 

while maximizing the margin, which is the distance between the 

hyperplane and the nearest data points of each class. 

The key idea behind SVM is to transform the input data into 

a higher-dimensional space using a kernel function. In this higher-

dimensional space, the data points become more separable, 

allowing for the construction of a hyperplane that effectively 

separates different classes. One of the main advantages of SVM is 

its ability to handle high-dimensional data and effectively deal with 

overfitting. Additionally, SVM has been shown to perform well 

even with relatively small training datasets.  

SVM can be used for both classification and regression 

tasks. In classification, the goal is to predict the class label of new 

data points, while in regression, the goal is to predict a continuous 

value. Overall, SVM is a versatile and powerful machine learning 

algorithm that has been successfully applied in various domains, 

including image recognition, text classification, and 

bioinformatics. 

SVM is a model for classifying data that relies on separating 

classes with equal limits through a dividing line between the 

support vectors of the data and the hyperplane [21], [22], which is 

the resolution, as Figure 3 shows. 

 

 

 
Figure 3: Support Vector Machine principles. 

Source: [21]. 
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III.2 K-NEAREST NEIGHBORS 

The k-Nearest Neighbors (k-NN) algorithm is a simple yet 

effective supervised learning method used for classification and 

regression tasks. It is a non-parametric algorithm, meaning it does 

not make any assumptions about the underlying data distribution. 

In k-NN classification, the algorithm works by finding the 

k nearest data points (neighbors) to a given query point based on a 

distance metric, typically Euclidean distance. The class label of the 

query point is then determined by a majority vote among its k 

nearest neighbors. For example, if k=3 and two neighbors belong 

to class A and one neighbor belongs to class B, the query point will 

be classified as class A.  

In k-NN regression, the algorithm predicts the output value 

for a given query point by averaging the output values of its k 

nearest neighbors. This can be useful for predicting continuous 

variables. One of the main advantages of the k-NN algorithm is its 

simplicity and ease of implementation. It does not require training 

a model in the traditional sense, making it suitable for online 

learning scenarios where new data points are continuously added 

to the dataset. 

However, k-NN has some limitations, such as being 

computationally expensive for large datasets since it requires 

calculating distances between the query point and all other data 

points. Additionally, the choice of the parameter k can significantly 

impact the performance of the algorithm, and it may not perform 

well in high-dimensional spaces. Overall, k-NN is a versatile 

algorithm that can be used for both classification and regression 

tasks, especially in scenarios where the dataset is small or the 

underlying data distribution is unknown.  

KNN is a machine learning algorithm used to classify data 

and extract features based on the number K of neighbors. The 

distance between the unclassified sample and the rest of the 

samples is calculated, and the classification class is determined by 

determining the smallest distance to the largest number of 

neighbors [23],[24]. 

III.3 CONVOLUTIONAL NEURAL NETWORK 

A Convolutional Neural Network (CNN) is a type of deep 

learning algorithm commonly used for analyzing visual imagery. It 

is particularly well-suited for tasks such as image classification, 

object detection, and image segmentation. CNNs are inspired by 

the organization of the visual cortex in animals, where neurons in 

the brain respond to specific stimuli located in a small region of the 

visual field, known as the receptive field. Similarly, CNNs consist 

of layers of interconnected neurons organized in a hierarchical 

manner, each layer processing increasingly complex features of the 

input image. The key components of a CNN include [25],[26]: 

• Convolutional Layers: These layers apply a set of 

learnable filters (also known as kernels) to the input image 

to extract various features, such as edges, textures, and 

shapes. Each filter slides across the input image, 

performing element-wise multiplication and summing the 

results to produce a feature map. 

• Pooling Layers: Pooling layers downsample the feature 

maps produced by the convolutional layers, reducing the 

spatial dimensions of the input. This helps to make the 

network more robust to variations in input images and 

reduces the computational cost. 

• Activation Functions: Non-linear activation functions, 

such as ReLU (Rectified Linear Unit), are applied to the 

feature maps to introduce non-linearity into the network 

and enable it to learn complex patterns and relationships 

in the data. 

• Fully Connected Layers: These layers connect every 

neuron in one layer to every neuron in the next layer, 

allowing the network to learn high-level representations 

of the input features and make predictions. 

• Loss Function: The loss function measures the difference 

between the predicted output of the network and the true 

labels. It serves as a feedback signal to update the 

network's parameters during the training process. 

CNNs are trained using large datasets of labeled images 

through a process called backpropagation, where the network 

learns to adjust its parameters to minimize the loss function. Once 

trained, CNNs can accurately classify and analyze images, making 

them widely used in various applications, including computer 

vision, medical imaging, and autonomous driving [27],[28]. The 

working principle of CNN is shown in Figure 4. 

 

 

 

 

 

Figure 4: Architecture of a CNN. 

Source: Authors, (2024). 
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IV. RESULTS AND DISCUSSIONS 

During the operation of the machine, spanning from 0 

seconds to 0.2 seconds, a meticulous examination of the magnetic 

flux density across different regions of the apparatus was 

conducted. Notably, as time progressed, discernible variations in 

the distribution of magnetic flux density emerged, delineated in 

detail in Figure 5. 

To further scrutinize the performance of the machine, a 

deliberate fault was induced at the magnet level, warranting an in-

depth analysis of the magnetic flux density in each distinct 

scenario. This meticulous study enabled the collection of pertinent 

images crucial for the subsequent detection and diagnosis of 

magnet breakage, employing the robust capabilities of 

Convolutional Neural Networks (CNN). 

Figures 6, 7 and 8 offer comprehensive visualizations of 

magnet breakage instances, showcasing the distinct magnetic flux 

density distributions observed in each case. Leveraging the power 

of CNN, these images serve as invaluable inputs for the 

classification process. 

The convolutional process, pivotal in CNN's functionality, 

is adeptly employed utilizing a filter mechanism to extract 

fundamental features inherent in the collected images. 

Subsequently, based on the extracted features, classification into 

either a healthy state or a fault state is determined, as succinctly 

illustrated in Figure 9. 

Through this meticulous process, CNN effectively discerns 

and categorizes the state of the machine, facilitating prompt 

diagnosis and remediation of potential faults. 

Table 2 shows the structure and parameters used in the CNN 

algorithm

 

  .....      
(a)                                          (b)                                                (c) 

Figure 5: healthy case: (a) t=0s, (b) t=0.13s, (c) t=0.2s. 

Source: Authors, (2024). 

  .....      
(b)                                          (b)                                                (c) 

Figure 6: 2MB fault case: (a) t=0s, (b) t=0.13s, (c) t=0.2s. 

Source: Authors, (2024). 

  .....      
(c)                                          (b)                                                (c) 

Figure 7: 3MB fault case: (a) t=0s, (b) t=0.13s, (c) t=0.2s. 

Source: Authors, (2024). 
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  .....      
(d)                                          (b)                                                (c) 

Figure 8: 4MB fault case: (a) t=0s, (b) t=0.13s, (c) t=0.2s. 

Source: Authors, (2024). 

 
Figure 9: Health or fault status from images using CNN. 

Source: Authors, (2024). 

 

Table 2: CNN parameters. 

Layer Output Shape Parameter 

Conv2d (Conv2D)                              

max_pooling2d 

(MaxPooling2D)      

(None,438,438,16) 

(None,219,219,16)                        

                       

4480 

Conv2d (Conv2D)                              

max_pooling2d 

(MaxPooling2D)      

(None,217,217,32) 

(None,108,108,32)                                            
46400 

Conv2d (Conv2D) 

max_pooling2d 

(MaxPooling2D)      

(None,106,106,64) 

(None,53,53,64)                                               
184960 

flatten (Flatten)                             (None,179776)                             0 

dense (Dense) 

dense_1 (Dense)                         

(None,64) 

(None,1)                                                                  
1150572865 

Source: Authors, (2024). 

Three distinct cases were meticulously delineated to 

evaluate the performance metrics of accuracy and loss across 

varying epochs. Through rigorous experimentation, it was 

discerned that the third case yielded superior results, showcasing 

enhanced accuracy and minimized loss, as visually depicted in 

Figures 10 and 11. By systematically varying the epochs, the CNN 

model was rigorously trained and fine-tuned to optimize its 

performance across different scenarios. The evolution of accuracy 

and loss metrics over successive epochs provides invaluable 

insights into the model's learning dynamics and convergence 

behavior.  

These figures serve as comprehensive visual aids, 

succinctly summarizing the observed trends in accuracy and loss 

across the three identified cases. Notably, the superior performance 

exhibited by the third case underscores the efficacy of the training 

strategy employed, signifying a successful convergence towards an 

optimal solution. These findings underscore the importance of 

meticulous experimentation and parameter tuning in achieving 

robust performance outcomes in machine learning tasks. Through 

iterative refinement and evaluation, researchers can ascertain the 

most effective strategies for training CNN models to achieve 

desired performance objectives. 

In Table 3, the accuracy of CNN is 100% compared to the 

rest of the techniques. 

 

 
Figure 10: accuracy with epoch number. 

Source: Authors, (2024). 
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Figure 11: Loss by epoch number. 

Source: Authors, (2024). 

Table 3: accuracy. 

Methods Accuracy( %) 

SVM 97 

KNN 97 

CNN 100 

Source: Authors, (2024). 
 

V. CONCLUSION 

In the scope of this research endeavor, a novel approach 

utilizing both Convolutional Neural Network (CNN) and Support 

Vector Machine (SVM) algorithms was introduced to detect faults 

stemming from magnet breakage within the rotor assembly. The 

study encompassed three distinct cases categorized by the number 

of broken magnets: 2, 3, and 4, each representing varying degrees 

of fault severity. Leveraging sophisticated image processing 

techniques, these algorithms were adeptly deployed for fault 

classification based on meticulously selected features. Notably, 

magnetic flux density emerged as the focal parameter for this 

investigation, chosen for its efficacy in capturing subtle variations 

indicative of magnet breakage. The resultant findings, extracted 

through rigorous experimentation and analysis, underscore the 

remarkable capability of CNN in discerning and diagnosing faults 

within the rotor assembly. Through comprehensive evaluation, 

CNN demonstrated notable proficiency in accurately detecting and 

classifying fault instances, thereby showcasing its potential as a 

reliable tool for fault diagnosis in complex machinery such as 

PMSMs. 
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