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The waveform derived from averaging multiple EEG signal recordings during stimulation 

represents an Event-Related Potential (ERP). When sensory stimuli are employed, the 

resulting potentials are termed Evoked Potentials (EPs). EPs find applications across diverse 

domains of research and clinical settings, serving as a valuable tool in neuroscience and 

medicine due to their versatility in offering objective insights into brain function. However, 

the conventional signal averaging method used to extract EPs has inherent limitations, such 

as the necessity for numerous trials to ensure reliability and maximize Signal-to-Noise Ratio 

(SNR). This demands additional time for data recording and processing. Moreover, the 

reliability of recorded responses may be compromised due to the subject's habituation to the 

stimulus. To address these challenges, this study aims to enhance SNR in EP extraction by 

employing data augmentation, thereby reducing the number of records needed for averaging. 

The proposed method demonstrates a notable improvement of approximately 9.77 ± 2.65 

dB compared to traditional signal averaging with the same number of records. This study 

concludes that judicious data augmentation enables enhanced SNR estimates without the 

requirement for extensive new recordings. 
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I. INTRODUCTION 

Event-Related Potential (ERP) is a physiological 

phenomenon that refers to the electrical and/or magnetic 

responses generated in the nervous system due to a sensory, 

cognitive or motor stimulus. These responses are recorded using 

electroencephalography (EEG), magnetoencephalography (MEG) 

or other functional neuroimaging techniques [1]. Evoked 

Potentials (EP) are a subset of event-related potentials that are 

elicited by a specific sensory event, such as acoustic, visual or 

somatosensory stimuli [1]-[4]. Abnormalities have been found in 

the components that make up evoked responses in neurological 

conditions such as dementia, Parkinson's disease, multiple 

sclerosis, traumatic brain injury, stroke, obsessive-compulsive 

disorder, attention deficit hyperactivity disorder, and others. 

These findings are based on clinical research. It is important to 

note that this information is objective and does not include any 

subjective evaluations. Evoked Potentials have low amplitudes, 

ranging from 0.1 µV to 10 µV, and are embedded in the 

background EEG activity, which has amplitudes ranging from 10 

µV to 100 µV, making it the main source of noise. Additionally, 

recording EEG signals can be accompanied by various artifacts 

and interferences that affect the accurate estimation of the 

potential waveform. The presence of noises and interferences can 

result in a very low Signal to Noise Ratio (SNR), which can be as 

low as -30 dB for certain types of evoked potentials, making 

waveform estimation challenging. To obtain the Evoked Potential 

signal embedded in the background noise [5]–[13] and increase 
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the SNR, the traditional technique used is Signal averaging. This 

technique involves averaging the matrix formed with the 

individual records of the responses to each stimulus, also known 

as Ensemble Average. 

 

I.1 ENSEMBLE AVERAGE AND SIGNAL TO NOISE 

RATIO 

The Ensemble Average using the arithmetic mean 

transforms the observed signal into a set of M epochs (ensemble 

matrix). Each epoch contains the response to the stimulus plus 

noise, as shown in Figure 1. The upper part of Figure 1 

corresponds to the complete signal, which is a simulated, non-

realistic signal with a low noise level, used to illustrate the 

classical procedure. 

 

 
Figure 1: Ensemble average  

Source: authors, (2024). 

Each epoch, 𝑝𝑖 , is considered to be the sum of the 

deterministic component of the signal or evoked response, s, 

which is assumed to be invariant in each epoch, and a random 

noise, 𝑟𝑖, which is asynchronous with the stimulus, as described in 

equation 1. 

 

( ) )()( nrnsnp iii +=
 

(1) 

 

Each epoch 𝑝𝑖(𝑛) consists of N samples (see equation 2) 

[14]-[21]. 
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Equation 3 shows that the estimated signal 𝑠 can be 

modelled as the sum of the deterministic component and the 

average noise of all segments. 
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To improve the signal-to-noise ratio (SNR) by a factor of 

√𝑀, as expressed in equation 4 [22], it is necessary to obtain 

adequate noise reduction and increase the number of epochs 

forming the ensemble matrix [23]. Equation 4 refers to the initial 

signal-to-noise ratio as SNRi and SNRe to that estimated after 

averaging. 

 

MSNRSNR ie =
 

(4) 

 

The SNR value of the evoked potential can be estimated 

from equation 5. 
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where N is the total number of samples of the segment to 

be evaluated, θ is the remaining noise in the signal (signal obtained 

after attenuation of the noise minus the ideal signal). The subscript 

j refers to the j-th sample of the parameter in question and s to the 

pure ideal signal. 

Most EPs have a much smaller amplitude than the EEG 

signal in which they are embedded, in the range of up to -30 dB 

[6]. To achieve adequate noise reduction using ensemble 

averaging in this case, approximately 1,000 epochs are required to 

equate the signal power to the noise power, a ratio of 1:1, the 

minimum required to indicate a response [24]. The need for such 

a large number of epochs is one of the main limitations of 

averaging as a noise reduction technique in the context of PE 

waveform estimation [7], [25]-[28]. 

II DATA AUGMENTATION 

Data augmentation has found its application in various 

classification and machine learning tasks, where data is typically 

scarce and difficult to obtain [29]-[33]. For 

electroencephalographic data, the lack of sufficient data remains 

a major problem. Data augmentation in EEG signals is performed 

by temporal, spatial/rotational transformations of the original data. 

Based on the characteristics of evoked potentials, if it is 

considered that these are signals that contain a certain periodicity 

(quasi-periodic) and this is associated with the synchronisation 

they have with the stimulus that causes them, the responses to the 

stimuli are practically the same. The data can be augmented by 

temporal transformations of the original recordings, including 

variations in both the latency (jitter) and the amplitude and width 

of the components of the evoked responses. It is then possible to 

obtain new recordings from the originals, including these 

variations. In this case, data augmentation is used to increase the 

size of the ensemble matrix and replace the need to record new 

epochs. 

III. MATERIALS AND METHODS 

III.1 DATA AUGMENTATION 

To reduce the number of records to be averaged, data 

augmentation involves including temporary transformations in the 

initial records. These transformations advance or delay the records 

to simulate real-world variability in latencies. The original records 

and those obtained from the transformations are combined to 

create a new set matrix, called the augmented set matrix A.  

Equation 6 visualises an example of an augmented matrix with a 

shift of one sample to the right and one to the left. A small space 

has been left between the original matrix and its two versions to 

facilitate understanding of the equation. The augmented matrix 
Page 76
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will have (2d+1)M epochs and the same number of samples as the 

original matrix P, where d is the number of displacements in 

samples made from the original version. If increasing the size of 

the ensemble matrix is known to improve noise reduction, one 

might assume that a large number of shifted versions of the 

original matrix would solve the problem. However, this is not the 

case. 
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(6) 

 

Averaging the new matrix A, shown in equation 6, is 

equivalent to combining a moving average filter with the 

ensemble average, where the signal estimated from the augmented 

matrix A is estimated according to equation 7. 
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The cut-off frequency of a moving average filter depends 

on the number of samples included in the averaging window, in 

the case of equation 6, d=1, the window size is 3. As the size of 

the averaging window increases, the cut-off frequency of the 

moving average filter decreases, which could remove important 

components of the signal of interest. The maximum value of the 

displacements, d, in samples that can be used depends on the 

maximum frequency components of the signal of interest (fm) and 

the sampling frequency (fs) at which the signal is obtained, as 

described in equation 8. The criterion used to determine the 

maximum frequency of the signal is related to the characteristics 

of the bandpass filters in the signal acquisition stage. 
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Figures 2, 3 and 4 correspond to the frequency responses 

of the Moving Average filters at sampling rates of 13,300 

samples/s, 48,000 samples/s and 500 samples/s, respectively, and 

for maximum frequencies of 2,000 Hz, 3,000 Hz and 30 Hz. 3 000 

Hz and 30 Hz respectively. These sample rate and peak rate values 

are taken from real database examples of AERs. In these figures 

you can see how a higher value of d would reduce the width of the 

central lobe of the filter, thereby eliminating important 

components of the signal of interest. Using this criterion, the 

maximum value of d would be approximately 3 samples for the 

first sampling frequency, 7 samples for the second sampling 

frequency and 7 samples for the third sampling frequency. 

 

 
Figure 2: Frequency response of a 3-sample moving average 

filter at fs=13.3 kHz. 

Source: authors, (2024). 

 
Figure 3: Frequency response of a 7-sample moving average 

filter at fs=48 kHz. 

Source: authors, (2024). 

 
Figure 4: Frequency response of a 7-sample moving average 

filter at fs=500 Hz. 

Source: authors, (2024). 

Before averaging the augmented matrix, any elements of 

Am,n that are considered outliers are discarded. Values in each 

column that differ from the column median of the original matrix 

by more than ± 3 standard deviations from the median of the 

standard deviations of the estimated noise (Equation 9) in the 

ensemble matrix are considered outliers. The median noise 

deviation is estimated from equation 10. 
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Then, the signal can be estimated from equation 11. 
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where 𝑤𝑖,𝑛 is the element of the i-th row of the n-th column 

of the weight matrix with the same size as A, and d is the number 

of displaced samples taken into account. The elements of the 

weight matrix w can be 0 or 1, 0 in the case that the sample is 

considered an outlier and 1 otherwise. 

III.2 EXPERIMENT DESCRIPTION 

To analyse the behaviour of the data augmentation and its 

influence on the waveform estimation from a smaller number of 

epochs, a total of 100 data sets of 2000 epochs each were 

generated using the simulator described in [34]. The sampling 

frequency of the simulated signals is 48,000 samples/s and the 

maximum frequency component of the signal is 3000 Hz. From 

each data set, 512 epochs were randomly selected 100 times to 

form a Monte Carlo experiment of 100 runs. In this case, the 

expected waveform is known a priori, so the SNR value was 

estimated in each run, as expressed in equation 5. 

 

IV. RESULTS AND DISCUSSIONS 

Figure 5 shows the average SNR values and their 

dispersion obtained for different values of d. As can be seen in 

Figure 5, there is a tendency for the SNR value to increase as d 

increases until it reaches 8, and then to decrease. This result is 

related to what was explained in the first part of section 2.1, d is 

related to the maximum frequency components of the signal and 

the sampling frequency, for values greater than d ≈ 7, it is not 

guaranteed that the shape of the signal is preserved. The initial 

SNR value obtained on the simulated data sets was approximately 

-26.0398 ± 1.16 dB. The average SNR value obtained using the 

classical Ensemble Average in the experiment was 0.1992 ± 

1.0917 dB. 

 

 
Figure 5: Signal-to-noise ratio obtained using data augmentation 

with different values of d. 

Source: authors, (2024). 

Figure 6 shows the result of the standard deviation of the 

average residual noise obtained for different values of d. 

 
Figure 6: Standard deviation of the residual noise using data 

augmentation with different values of d. 

Source: authors, (2024). 

Currently, according to the protocols for PEATC [24], it is 

recommended that the residual noise level be equal to or less than 

80 nV before concluding that there is no response. Figure 6 shows 

that this requirement is met for values of d ≥ 2. A value of d = 4 

results in an expanded matrix of 4608 epochs, a matrix size 

consistent with real-world studies. When Ensemble Average was 

applied to a matrix of 512 epochs, a residual noise standard 

deviation of 243 nV was obtained. 

V. CONCLUSIONS 

Data augmentation based on the characteristics of the 

signal can be a proposal to improve the SNR in the estimation of 

evoked responses with a smaller number of epochs. The results 

obtained in the experimental phase correspond to the theoretical 

ones proposed in the first part of the methodological section. The 

SNR values obtained in the experiment with data augmentation 

are about 9 dB better than those obtained with the traditional 

Ensemble Average method for the same number of epochs. With 

a value of d equal to 4, in the case of the proposed experiment, 

with 512 initial recordings, a number of recordings of 4608 epochs 

can be obtained, which is similar to the number of epochs required 

to be recorded in a real context. This value means that the time 

needed to estimate the waveform of an evoked potential is reduced 

by a factor of 9. On the basis of the results obtained, it is 

recommended that future work should evaluate the increase in 

data in terms of reduction of latency variability, a problem that 

may be resolved with this technique. 
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