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This paper introduces a cutting-edge approach for crop prediction that harnesses IoT-

enabled soil sensors and machine learning models, specifically targeting cardamom, black 

pepper, and coffee in Idukki District, Kerala, India. The study aims to bridge the gap 

between soil nutrient analysis and precision agriculture by integrating a JXCT 7-in-1 soil 

sensor with Arduino UNO. This sensor provides accurate real-time measurements of soil 

moisture, temperature, pH, electrical conductivity, nitrogen, phosphorus, and potassium 

levels, which are critical for assessing soil health and suitability. The dataset used comprises 

300 soil samples for cardamom, 320 for black pepper, and 300 for coffee, providing a robust 

foundation for analysis. Data from these sensors were processed using XGBoost and 

AdaBoost algorithms. Among the models, XGBoost achieved the highest accuracy of 91.2% 

and an AUC of 0.93, while AdaBoost also demonstrated strong performance with an AUC 

of 0.91. The results confirm the effectiveness of the system in providing precise crop 

suitability predictions and supporting farmers in making informed decisions based on 

comprehensive soil data. This approach not only improves crop yields and promotes 

sustainable farming practices but also shows potential for broader application in different 

regions and crops. Future research could expand the dataset and incorporate additional IoT 

devices to enhance the system’s accuracy and agricultural impact. 
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I. INTRODUCTION 

Agriculture is a cornerstone of the Indian economy, 

contributing significantly to the country’s GDP and employing a 

substantial portion of its population. With over 50% of the 

workforce engaged in agricultural activities, the sector is pivotal 

for the nation’s socio-economic development. Traditional farming 

practices, however, face numerous challenges such as 

unpredictable weather patterns, pest infestations, and soil 

degradation [1]. These issues can lead to reduced crop yields and 

economic instability for farmers, highlighting the need for 

innovative solutions to sustain agricultural productivity. To address 

these issues and enhance productivity, the concept of smart farming 

has emerged. Smart farming leverages advanced technologies like 

the Internet of Things (IoT), data analytics, and machine learning 

to optimize agricultural practices, reduce waste, and increase crop 

yields. IoT devices, such as soil sensors and weather stations, 

provide real-time data on environmental conditions, allowing 

farmers to monitor their fields with precision. Data analytics can 

then interpret this data to offer actionable insights on irrigation 

scheduling, fertilization, and pest control. Machine learning 

models further enhance smart farming by predicting crop 

suitability, detecting disease outbreaks, and forecasting weather 

patterns. By integrating these technologies into agriculture, farmers 

can make informed decisions, leading to sustainable and efficient 

farming methods [2-4].  

Kerala, located in the southwestern part of India, is known 

for its diverse agricultural landscape. The state’s Idukki district, 

particularly the Kumily Panchayat, is renowned for the cultivation 

of high-value crops like cardamom, black pepper (pepper), and 
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coffee. Over 80% of the people living in this area are farmers. 

These crops not only contribute significantly to the local economy 

but also hold an essential place in the global spice market [5]. 

However, the productivity of these crops is highly dependent on 

soil health, which necessitates thorough soil analysis. Soil nutrient 

content, including potassium, phosphorus, and nitrogen, along with 

other parameters like temperature, pH, moisture content, and 

electrical conductivity, play a crucial role in determining crop 

suitability and yield [6]. Therefore, regular and precise soil analysis 

is vital for ensuring the optimal growth and productivity of 

cardamom, pepper, and coffee in this region.  

The advent of IoT-enabled crop prediction systems has 

revolutionized traditional agricultural practices by integrating soil 

analysis with advanced technology [3]. IoT-enabled soil sensors 

provide real-time data on various soil parameters, enabling farmers 

to monitor soil health continuously. In sustainable and smart 

farming continuous monitoring of soil parameters are mandatory. 

This data-driven approach allows for timely interventions, such as 

the application of fertilizers or water, based on the specific needs 

of the soil and crop [7],[8]. The benefits of using IoT in agriculture 

are manifold, including improved resource management, reduced 

environmental impact, and enhanced crop yields. By continuously 

monitoring soil conditions and predicting crop suitability, IoT-

enabled systems help farmers make informed decisions, ultimately 

leading to more sustainable and efficient farming practices. For 

improved crop production and sustainability, soil fertility analysis 

and cultivation based on that analysis are essential.  

Machine learning further enhances the capabilities of smart 

farming systems by analyzing the data collected from IoT-enabled 

sensors to predict crop outcomes. Machine learning models can 

process vast amounts of data to identify patterns and correlations 

that may not be apparent through traditional analysis [2], [8]. In the 

context of agriculture, these models can predict the most suitable 

crops for specific soil conditions, forecast crop yields, and 

recommend optimal farming practices. By leveraging historical 

data and real-time inputs, machine learning models provide 

actionable insights that help farmers optimize their operations. The 

integration of machine learning with IoT-enabled sensors thus 

represents a significant advancement in the field of precision 

agriculture, enabling a more data-driven approach to farming. 

Supervised and unsupervised machine learning algorithms are 

extensively used for smart farming [9-13]. Pudumalar et al. 

developed a precision agriculture model using machine learning 

algorithms to aid farmers on small, open farms in predicting 

suitable crops [14]. Their ensemble recommendation system 

employs decision trees, CHAID (Chi Squared Automatic 

Interaction Detection), K-Nearest Neighbors, and Naive Bayes, 

utilizing a majority voting technique for high accuracy and 

efficiency. Kalimuthu et al. created a machine learning-based IoT 

system for crop prediction based on climatic conditions, helping 

farmers select cost-effective crops [15]. Rao et al. conducted a 

comparative study of KNN, decision tree, and random forest 

models to determine the best-suited crop for specific lands, finding 

the random forest classifier with entropy and gini criteria achieved 

the highest accuracy at 99.3%, while KNN had the lowest at 97% 

[16]. Elbasi et al. used supervised machine learning for smart 

farming, enhancing crop production and minimizing waste with an 

IoT-enabled system providing insights on planting, irrigation, and 

harvesting [12]. Their research evaluated fifteen algorithms and 

introduced a new enhanced algorithm, finding that the Bayes Net 

algorithm had a classification accuracy of 99.59%, while Naïve 

Bayes Classifier and Hoeffding Tree reached 99.4%. 

In this study, we focus on developing a crop prediction 

system for different soil types based on soil nutrient analysis. Using 

IoT-enabled soil sensors, we measured essential soil parameters 

such as potassium, phosphorus, nitrogen content, temperature, pH, 

moisture content, and electrical conductivity. The study focuses on 

cardamom, pepper, and coffee, as these are the major crops 

cultivated in the study area. We utilized machine learning models 

to predict the most suitable crops for the soil under measurement. 

This research aims to demonstrate the potential of combining IoT 

technology with machine learning to enhance agricultural 

productivity and sustainability in the region.  

II. MATERIALS AND METHODS 

In this study, we developed a crop prediction system for different 

soil types based on soil nutrient analysis, focusing on the 

cultivation of cardamom, pepper, and coffee in the Kumily 

Panchayat of Idukki District, Kerala, India. We employed IoT-

enabled soil sensors to collect real-time data on essential soil 

parameters and used machine learning algorithms to predict the 

most suitable crops for the analyzed soil. This section details the 

methodologies used for sample collection, hardware integration, 

and the classification process employing machine learning models. 

II.1 SAMPLE COLLECTION 

The study was conducted in the Kumily Panchayat of Idukki 

District, Kerala, India, a region renowned for its cultivation of 

cardamom, pepper, and coffee. These crops are vital to the local 

economy, and soil health plays a crucial role in determining their 

yield and quality. To gather comprehensive data for nutrient 

analysis and crop prediction, extensive soil sampling was 

undertaken. The crops under study are shown in Figure 1. The 

sampling locations were carefully chosen to represent the diverse 

agricultural zones within the Panchayat, ensuring that the soil 

samples reflected the variability in soil properties across different 

fields. These zones included high-altitude areas primarily used for 

coffee and cardamom cultivation and lower-altitude regions where 

pepper is predominantly grown. 

For cardamom fields, samples were collected from various 

elevations within the plantations to account for micro-

environmental variations affecting soil properties. A total of 300 

samples were taken from various cardamom fields, at depths 

ranging from 0 to 30 cm, the typical rooting zone for cardamom 

plants. This approach ensured a comprehensive understanding of 

the soil conditions specific to cardamom cultivation. In pepper 

fields, samples were collected from both the base of the vines and 

the inter-vine spaces. A total of 320 samples were taken from 

various pepper fields, providing a thorough understanding of the 

soil conditions influencing pepper growth and capturing variations 

that could affect nutrient availability and plant health. For coffee 

fields, given the extensive root system of coffee plants, soil 

samples were collected from a slightly deeper profile, up to 50 cm 

depth. A total of 300 samples were taken from various coffee fields, 

ensuring the capture of nutrient availability within the entire root 

zone, which is critical for the healthy growth of coffee plants. 

Each soil sample was collected using a soil auger to ensure 

consistency. The samples were placed in sterile, labeled bags and 

transported to the laboratory for analysis using sensors. Care was 

taken to avoid contamination between samples, and all tools were 

sterilized between uses. In total, 920 samples were collected: 300 

from cardamom fields, 320 from pepper fields, and 300 from coffee 

fields. 
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Figure 1: Crops under study (a) cardamom (b) black pepper (c) 

coffee. 

Source: Authors, (2024). 

The primary soil parameters measured included potassium 

(K), phosphorus (P), nitrogen (N) content, temperature, pH, 

moisture content, and electrical conductivity. These parameters 

were chosen due to their critical roles in plant growth and soil 

health. The detailed analysis of these parameters provided the 

necessary data for training and validating the machine learning 

models used in this study. Each sample's nutrient profile was then 

used to predict the suitability of the soil for cultivating cardamom, 

pepper, or coffee using advanced machine learning techniques. 

II.2 HARDWARE DETAILS 

The core of our hardware setup was the JXCT 7-in-1 soil 

sensor, an advanced IoT-enabled device capable of measuring 

multiple soil parameters simultaneously. This is shown in Figure 2.  

 

 
Figure 2: 7 in 1 Soil Sensor. 

Source: Authors, (2024). 

This sensor is designed to provide accurate real-time data 

on soil moisture, temperature, pH, electrical conductivity, nitrogen, 

phosphorus, and potassium levels. The JXCT 7-in-1 soil sensor is 

particularly suitable for agricultural applications due to its 

robustness, precision, and ease of integration with microcontroller 

platforms like Arduino. 

The JXCT 7-in-1 soil sensor features high-precision probes 

that penetrate the soil to measure the desired parameters. It uses 

electrochemical sensors to detect nutrient levels and capacitive 

sensors for moisture content. The sensor outputs data in a digital 

format, making it compatible with various microcontroller 

interfaces. The integration of the JXCT 7-in-1 soil sensor with the 

Arduino UNO was a critical aspect of our hardware setup. This is 

shown in figure 3. The JXCT 7-in-1 soil sensor, known for its 

ability to measure multiple soil parameters with high precision, was 

connected to the Arduino UNO to facilitate real-time data 

acquisition. To begin, the sensor’s VCC (power) pin was connected 

to the 5V pin on the Arduino, while the GND (ground) pin was 

connected to the GND pin on the Arduino. The sensor’s data output 

pins, typically labeled as TX and RX, were connected to the 

appropriate digital input pins on the Arduino to enable seamless 

communication between the sensor and the microcontroller. 
 

 
Figure 3: Sensor interfacing with Arduino UNO. 

Source: Authors, (2024). 

 

We developed a custom Arduino sketch to read the sensor 

data and transmit it for further analysis. This sketch utilized the 

Arduino SoftwareSerial library to manage the serial 

communication with the sensor. The program was designed to read 

data from the sensor at regular intervals, process the information, 

and store it in a structured format suitable for machine learning 

applications. To facilitate real-time monitoring and remote data 

access, the Arduino UNO was integrated with the JXCT 7-in-1 soil 

sensor. This setup enabled continuous monitoring of soil 

conditions and provided a robust foundation for our crop prediction 

system. By leveraging the capabilities of the JXCT 7-in-1 soil 

sensor and the Arduino UNO, we were able to collect precise, real-

time soil data critical for accurate crop suitability analysis. 

 

II.3 CLASSIFICATION 

The core objective of our study was to predict the most 

suitable crops (cardamom, pepper, and coffee) for the soil samples 

based on the measured parameters. To achieve this, we employed 

machine learning techniques, specifically using the XGBoost and 

AdaBoost algorithms. These algorithms were chosen for their 

robustness, accuracy, and efficiency in handling complex, non-

linear relationships within the data. The ensemble learning 

methods have shown great performances in sensor-based systems 

across various fields, including healthcare, agriculture, and 

automation [17-20]. In agricultural systems, particularly those 
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utilizing data and images, these algorithms have demonstrated 

excellent results [21]. By combining the strengths of multiple 

algorithms, ensemble learning methods enhance predictive 

accuracy and robustness. In agriculture, these methods can analyze 

soil data, weather patterns, and crop images to provide precise 

recommendations for crop management, pest control, and 

irrigation scheduling. This approach improves crop yields and 

sustainability and optimizes resource usage and reduces 

environmental impact [22],[23]. 

The dataset used for training and testing the machine 

learning models consisted of comprehensive soil parameter 

measurements (independent variables) and corresponding crop 

suitability classifications (dependent variable). The soil parameters 

included potassium content, phosphorus content, nitrogen content, 

soil temperature, pH level, moisture content, and electrical 

conductivity, which are critical indicators of soil health and 

fertility. The crop suitability labels were determined based on 

historical crop yield data and expert agronomic advice, 

categorizing each sample as suitable for cardamom, pepper, or 

coffee. This labeling process involved analyzing past crop 

performance in conjunction with expert insights to ensure accurate 

and reliable suitability classifications.  

XGBoost is an advanced implementation of the gradient 

boosting algorithm that optimizes performance and efficiency. It 

builds an ensemble of decision trees sequentially, where each tree 

corrects the errors of its predecessor. Key hyperparameters for 

XGBoost include the learning rate, maximum depth of trees, and 

the number of trees [24]. These parameters were optimized using 

cross-validation techniques to prevent overfitting and ensure 

generalizability. AdaBoost is another ensemble learning technique 

that combines the predictions of multiple weak classifiers to create 

a strong classifier [25]. In our case, decision trees with limited 

depth were used as the weak classifiers. AdaBoost assigns higher 

weights to misclassified instances in each iteration, forcing the 

model to focus on difficult cases. The primary hyperparameters for 

AdaBoost include the number of weak classifiers and the learning 

rate, which were also fine-tuned through cross-validation. 

The performance of the trained models was evaluated using 

standard metrics such as accuracy, precision, recall, and f1-score. 

Additionally, we used confusion matrices to analyze the 

classification results and identify areas of improvement. The model 

with the best performance metrics was selected for deployment. 

 

III. RESULTS AND DISCUSSIONS 

In this study, we employed cross-validation methods to 

evaluate the performance of our machine learning models, 

specifically XGBoost and AdaBoost, in predicting the suitability of 

soil for cardamom, pepper, and coffee cultivation. Cross-validation 

is a robust statistical method that involves partitioning the dataset 

into subsets, training the model on some subsets, and validating it 

on others to ensure the model's reliability and generalizability. We 

used three different cross-validation techniques: 3-fold, 5-fold, and 

10-fold. In 3-fold cross-validation method the dataset was divided 

into three equal parts. In each iteration, two parts were used for 

training, and one part was used for validation. This process was 

repeated three times, with each part serving as the validation set 

once. In 5-fold method, the dataset was divided into five equal 

parts. In each iteration, four parts were used for training, and one 

part was used for validation. This process was repeated five times, 

with each part serving as the validation set once. 10-fold cross-

validation divides dataset into ten equal parts. In each iteration, 

nine parts were used for training, and one part was used for 

validation. This process was repeated ten times, with each part 

serving as the validation set once. 

The performance of the models was evaluated using four 

key metrics: accuracy, precision, recall, and F1-score. These 

metrics provide a comprehensive understanding of the models' 

performance. Accuracy is the ratio of correctly predicted instances 

to the total instances. Precision is the ratio of correctly predicted 

positive observations to the total predicted positives. Recall is the 

ratio of correctly predicted positive observations to the all 

observations in actual class. F1-Score represents the weighted 

average of precision and recall [26-28].  The results of the cross-

validation for both XGBoost and AdaBoost models are 

summarized in Tables 1 and 2.  

 

Table 1: XGBoost Model Performance. 
Cross-Validation Accuracy Precision Recall F1-score 

3-Fold 85.7 87.3 83.4 85.2 

5-Fold 88.9 90.2 86.7 88.4 

10-Fold 91.2 94.3 89.5 95.0 

Source: Authors, (2024). 
 

Table 2: AdaBoost Model Performance. 

Cross-Validation Accuracy Precision Recall F1-score 

3-Fold 82.4 84.0 80.1 82.0 

5-Fold 86.3 88.1 84.7 86.4 

10-Fold 88.5 89.7 86.2 87.8 

Source: Authors, (2024). 

 

The superior performance of the XGBoost model can be 

attributed to its ability to handle complex, non-linear relationships 

in the data and its effectiveness in preventing overfitting. XGBoost, 

being an ensemble learning method, builds multiple decision trees 

sequentially, with each tree correcting the errors of its predecessor. 

This approach allows the model to learn intricate patterns in the 

soil data, which is crucial for accurate crop prediction. 

Accuracy: The XGBoost model achieved a high accuracy 

of 91.2% with 10-fold cross-validation, indicating that it correctly 

predicted the suitability of soil for cardamom, pepper, and coffee 

in most instances. This high accuracy demonstrates the model's 

reliability and potential for practical application in precision 

agriculture. 

Precision and Recall: The precision of 94.3% signifies that 

the model has a low rate of false positives, meaning it rarely 

predicts a crop as suitable when it is not. The recall of 89.5% 

indicates that the model successfully identifies most of the actual 

suitable crops, with few false negatives. The balance between 

precision and recall, reflected in the high F1-score of 95.0%, 

highlights the model's robustness and its ability to provide 

actionable insights for farmers. 

Comparison with AdaBoost: While the AdaBoost model 

also performed well, its accuracy, precision, recall, and F1-score 

were consistently lower than those of the XGBoost model. This 

difference can be attributed to AdaBoost's sensitivity to noisy data 

and outliers, which can impact its performance. In contrast, 

XGBoost's regularization techniques help mitigate the effects of 

such data irregularities, enhancing its predictive power. 

The results clearly indicate that the XGBoost model 

outperformed the AdaBoost model across all cross-validation 

methods. The best performance was achieved using the 10-fold 

cross-validation method with XGBoost, yielding an accuracy of 

91.2%, precision of 94.3%, recall of 89.5%, and an F1-score of 

95.0%. The confusion matrix of XGBoost that has given best 

results in the prediction is shown in Figure 4.  
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Figure 4: Confusion matrix XGBoost. 

Source: Authors, (2024). 

 

The confusion matrix for the XGBoost shown in the 

Figures 4, provide a comprehensive breakdown of the models' 

predictions for the three crops: cardamom, pepper, and coffee. The 

confusion matrix is a crucial tool in evaluating the performance of 

classification models by comparing the actual target values with 

the predicted values.  

For the XGBoost model, the confusion matrix reveals that 

out of 300 actual instances of soil for cardamom, 280 were 

correctly identified as soil for cardamom, while 15 were incorrectly 

classified as soil for pepper, and 5 were misclassified as soil for 

coffee. This high number of correct predictions (280) against a 

relatively low number of incorrect predictions (20) demonstrates 

the model's effectiveness in identifying cardamom. For soil 

suitable for pepper, out of 320 actual instances, 290 were correctly 

classified, but 10 were mistakenly predicted as soil for cardamom 

and 20 as soil for coffee. Although the number of correct 

predictions remains high (290), the errors indicate slight confusion 

between soil for pepper and the other crops, particularly soil for 

coffee. This might be due to overlapping soil nutrient profiles 

between these crops, which the model had to navigate. Similarly, 

for soil suitable for coffee, the confusion matrix shows that out of 

300 instances, 281 were accurately predicted as soil for coffee. 

However, there were 7 instances where soil for coffee was 

incorrectly identified as soil for cardamom and 12 as soil for 

pepper. Despite these errors, the majority of predictions for coffee 

were correct, highlighting the model's proficiency in distinguishing 

coffee from the other two crops. 

These detailed breakdowns for each crop category allow 

us to thoroughly understand the model's strengths and weaknesses 

in making predictions. The high number of true positives across all 

categories highlights the model's robust overall performance. 

However, the presence of false positives and false negatives 

underscores areas where the model could be further refined. 

Specifically, the errors in prediction suggest a need for fine-tuning 

to better distinguish between pepper and coffee, which appear to 

have some similarities in their soil nutrient profiles as captured by 

the sensor data. These similarities could be leading to 

misclassifications, indicating that the model might benefit from 

additional training data or enhanced feature engineering to improve 

its discriminative power. By addressing these issues, we can 

increase the model's accuracy and reliability, ensuring more precise 

crop suitability predictions and better support for farmers in 

making informed decisions.  

The ROC (Receiver Operating Characteristic) curve is a 

valuable tool for assessing the performance of a classification 

model by illustrating the trade-off between the true positive rate 

(sensitivity) and the false positive rate (1-specificity) across 

various threshold settings. In this analysis, the ROC curves were 

evaluated using a 10-fold cross-validation method to ensure robust 

and reliable performance metrics. The ROC curve of XGBoost and 

AdaBoost for the crop prediction is shown in Figure 5. 

 

 
Figure 5: ROC curve of XGBoost and AdaBoost. 

Source: Authors, (2024). 

 

For the XGBoost model, the ROC curve achieved an 

impressive AUC (Area Under the Curve) of 0.93. This high AUC 

value indicates that XGBoost excels in distinguishing between the 

different crop classes, demonstrating a strong capability to 

correctly classify instances while minimizing false positives. The 

ROC curve for XGBoost is notably close to the top left corner of 

the plot, reflecting its high accuracy and effectiveness in predicting 

crop types based on soil nutrient data. In comparison, the AdaBoost 

model yielded an AUC of 0.91. Although slightly lower than 

XGBoost, this AUC still represents strong performance. The ROC 

curve for AdaBoost, while also showing good discriminative 

ability, reveals a marginally higher rate of false positives compared 

to XGBoost. This suggests that while AdaBoost performs well, it 

is less precise in separating the crop classes than XGBoost. The 

ROC curve analysis reinforces the findings from the confusion 

matrix and performance metrics, highlighting that the XGBoost 

model, with its superior AUC, is more effective for crop prediction 

in this context. The use of a 10-fold cross-validation method has 

provided a robust evaluation of model performance, confirming the 

reliability and accuracy of XGBoost in precision agriculture 

applications. 

IV. CONCLUSIONS 

This study introduces an innovative crop prediction system 

utilizing IoT-enabled soil sensors and advanced machine learning 

to assess soil suitability for cardamom, pepper, and coffee in Idukki 

District, Kerala, India. By integrating a JXCT 7-in-1 soil sensor 

with an Arduino UNO, the system precisely measures key soil 

parameters such as potassium, phosphorus, nitrogen, temperature, 

pH, moisture content, and electrical conductivity. These inputs are 

processed through XGBoost and AdaBoost algorithms, with the 

XGBoost model achieving the highest accuracy of 91.2% in 10-

fold cross-validation, and an AUC of 0.93, reflecting its strong 
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predictive capability. AdaBoost also performed well with an AUC 

of 0.91. The findings demonstrate the effectiveness of combining 

IoT technology with machine learning for precision farming, 

enabling farmers to make data-driven decisions for improved crop 

yields and sustainable practices. The study's approach is adaptable 

to other regions and crops, highlighting its potential for broad 

agricultural application. Future research could expand the dataset 

and refine models, integrating additional IoT devices to further 

enhance farm management and productivity. 
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