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Regarding energy efficiency, the unit contract problem (UCP) is significant. It need to be 
seen as the assurance of occasions and energy commodities in which the generator offers 
the most value in addition to having a large amount of energy storage. In this study, we 
offer a novel approach to solve the UCP issue for a 10-generator test system with variable 
prices depending on hourly variations in power demand, utilizing particle swarm 

optimization (PSO). The objective is to keep energy levels sufficient to fulfill demand 
while reducing the total cost of producing power. Initially, a collection of objects that may 
hold the key to solving UCP are generated via the suggested PSO technique. Their 
dedications to the project and the power they create have an impact on everyone's health 
because of the mobility restriction. Using a combination of their own and other objects' 
histories, objects may discover the best solution for UCP via the iterative adjustments in 

speed and location made by the PSO algorithm. This strategy might boost generator 
economy and efficiency while also resolving the UCP issue. A number of scenarios with 
various storage factors should be taken into account in order to assess the PSO method 's 
efficacy. The results demonstrate that the cost-confidence ratio is regarded as equal and 
that the algorithm may converge to the ideal or nearly optimal solution. The efficiency of 
alternative optimization techniques and the suggested PSO approach are compared using 

comparative analysis. The findings demonstrate that PSO is more cost -effective than 
earlier research in identifying the effects of rising storage prices on power consumption 
between 50 and 100 MW. 
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I. INTRODUCTION 

In order to fulfill energy demand while lowering overall 
production costs, generators must cooperate effectively for the 
electric power system to function efficiently. This issue is 

resolved by the Contract issue (UCP), which works out the 
optimal generator scheduling strategy, taking into account their 
obligations (on/off) and the locations where they can reliably 
provide power. The intricate issue of UCP has a direct bearing on 
energy planning. However, these approaches struggle to handle 
the scenario's complexity and the problem's complexity, 

particularly when it comes to the requirements of the fans and 

other challenges, which is a unique circumstance. They often 
resolve challenging optimization issues. The Particle Swarm 
Optimization (PSO) algorithm is one of the PSO algorithms; it is 
inspired by the behavior of swarms of fish or birds. PSO provides 
an effective approach to a wide range of optimization issues, 
including electrical system-related ones. Repurposing garbage is 

the new way of solving this issue. The goal is to lower the overall 
cost of manufacturing while still adhering to the spinning 
specifications in order to boost productivity and dependability. 
The strategy aims to address issues with energy efficiency while 
addressing the drawbacks of conventional methods and offering 
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workable, efficient alternatives. Numerous research studies have 
looked at PSO's potential for power optimization and have shown 
that it may be used to handle a wide range of energy production-
related issues, such as budgetary allocation, energy efficiency, 
and energy management. By taking into account the impact of 
valves, Lee et al. [1] used PSO to address the transmission issue. 

The results demonstrated the superiority of this strategy over 
others. [2] Used PSO to effectively resolve multi-objective issues 
that take into account both environmental and economic goals at 
the same time. The results demonstrate that PSO is capable of 
resolving competing goals and offering many Pareto-optimal 
options. In a different research, Hu et al. [3] used PSOs to reduce 

power loss and provide consistent power, hence controlling 
voltage and power loss in power distribution. 

Additionally, PSO advancements have spawned a 
number of variations and hybrid strategies. Kennedy and 
Eberhart's objective [4] was to apply the idea of adaptive inertia 
to PSO; this weight accelerated the concept's convergence and 

preserved equilibrium between exploration and exploitation. 
Furthermore, combining PSO with other optimization techniques 
has shown promising results. For example, Wang et al. suggested 
a hybrid PSO-GA method. [5] They combine the local search 
capability of GA with the global search capability of PSO to 
achieve the most efficient produced power distribution. Regarding 

the Unit Commitment Issue, PSO has a track record of successful 
investigations. For the sake of this example, Liu's team [6] used 
PSO to solve the UCP while accounting for the maximum rate 
restriction and the spinning time limits; they were able to achieve 
the best generator scheduling and improved system reliability. In 
a similar vein, Chen et al. [7] used a novel PSO method to solve 

the UCP with a valve-like property, and this technique showed 
that it could provide nearly optimum solutions. 

Previous studies have shown that PSO can handle the 
Unit Commitment Issue for a test system consisting of ten 
generators with varying values for the spin reserve. The 
development and use of a modified PSO algorithm that takes into 
consideration the UCP's reserve storage needs is the paper's 

unique contribution. The algorithm's effectiveness is ascertained 
by carrying out in-depth trials and comparing the outcomes with 
those of other widely used optimization techniques. 
 

II. LITERATURE REVIEW 

The unit commitment issue is to determine the power 

settings of committed units that have to abide by the regulations 

of both the producing unit and the system, as well as the states 

(on/off) of power generating units for each time slot. Minimizing 

the total operating cost within the given time range is the aim of 

the UC problem. As a result, the total of the fuel and equipment 

starting costs for the generating units becomes the goal function. 

The UC issue has the following mathematical explanation: 

Reduce TC, which may be found by: 

 

∑ ∑ [𝐼𝑖(𝑡)𝐹𝑖(𝑃𝑇𝑖(𝑡)) + 𝑆𝑖(𝑡)(1 − 𝐼𝑖(𝑡 − 1))𝐼𝑖(𝑡)]
𝑇

𝑡=1
𝑁
𝑖=1            (1) 

 

the fuel cost of unit i at time t is provided by𝐹𝑖 (𝑃𝑇𝑖
(𝑡)), 

where N is the number of generators, T is the total scheduling 

hours, 𝑃𝑇𝑖
(𝑡)is the power production of unit i at time t, and li(t) is 

the ON/OFF state of unit i at time t (ON ndOFF=0). 

 

 

                     𝐹𝑖(𝑃𝑇𝑖
(𝑡)) = 𝑎𝑖 + 𝑏𝑖𝑃𝑇𝑖

(𝑡) + 𝑐𝑖𝑃𝑇𝑖
(𝑡)2                 (2) 

 

where ai, b, and c stand for unit I's fuel cost coefficients. 

(t) At time t, what is the initial investment needed for 

unit I, as mentioned? 

 

𝑆𝑖(𝑡) = {
𝑆ℎ𝑖

𝑆𝑐𝑖
 𝑖𝑓𝑇𝑖,𝑜𝑓𝑓(𝑡) ≤ 𝑇𝑖,𝐷𝑜𝑤𝑛 + 𝑇𝑖,𝑐𝑜𝑙𝑑𝑖𝑓𝑇𝑖,𝑜𝑓𝑓(𝑡) >

𝑇𝑖,𝐷𝑜𝑤𝑛 + 𝑇𝑖,𝑐𝑜𝑙𝑑                                                                            (3) 

 

Where is the hot starting price? TiDown is the least 

amount of time spent down, Ticold is the cold start time of unit i, 

Sci is the cold starting cost, and t is the continuous length of time 

off of unit i at time t. 

1) System real power balance 

 

                         ∑ 𝐼𝑖(𝑡)𝑃𝑇𝑖
(𝑡) = 𝑃𝑖(𝑡)

𝑁

𝑖=1
                        (4) 

 

The system power demand at time t is represented by Pt(t). 

2) System spinning reserve requirement 

When the power grid sends a signal, the reserve version 

of the generator, known as Spinning Reserve, is prepared to start 

generating. This may happen in a matter of minutes. The service 

description fits the profile of most thermal generating assets (coal 

plant, for example), which need several hours to "warm up" and 

start producing. Consequently, this process pays generators that 

are set to spin reserve to use fuel in a "hot standby," spinning, and 

ready to swiftly align and create. 

 

                         ∑ 𝐼𝑖(𝑡)𝑃𝑇𝑖

𝑚𝑎𝑥 ≥ 𝑃𝑙(𝑡) + 𝑃𝑅(𝑡)
𝑁

𝑖=1
                      (5) 

 

The system spinning reserve at time t is denoted by 𝑃𝑅(𝑡). 

3) Generation unit's limits 

 

                             𝑃𝑇𝑖

𝑚∈(𝑡) ≤ 𝑃𝑇𝑖
(𝑡) ≤ 𝑃𝑇𝑖

𝑚𝑎𝑥                               (6) 

 

where the lowest and maximum production limits of unit 

I at time t are, respectively, represented by n(t) and Pmax(t). 

4) Minimum up/down times 

              (𝑇𝑖,𝑜𝑛(𝑡 − 1) − 𝑇𝑖,𝑈𝑝)(𝐼𝑖(𝑡 − 1) − 𝐼𝑖(𝑡)) ≥ 0               (7) 

(𝑇𝑖,𝑜𝑓𝑓(𝑡 − 1) − 𝑇𝑖,𝐷𝑜𝑤𝑛)(𝐼𝑖(𝑡 − 1) − 𝐼𝑖(𝑡)) ≥ 0 

 

(t) represents unit i's continually on time.  

5) Ramp up and ramp down rates: 

 

                            𝑃𝑇𝑖
(𝑡) − 𝑃𝑇𝑖

(𝑡 − 1) ≤ 𝑈𝑅𝑖                             (8) 

                           𝑃𝑇𝑖
(𝑡 − 1) − 𝑃𝑇𝑖

(𝑡) ≤ 𝐷𝑅𝑖 

 

where URi and DRi, respectively, stand for the ramp up 

and ramp down rates of unit I. 
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III PSO-BASED METHODOLOGY 

Kennedy and Eberhart developed the particle swarm 

optimization method [8], [9], a heuristic optimization technique 

that is based on social psychology. It has been noted that PSO 

works well with problems that have high dimensionality, 

numerous optima, differentiability threshold, or nonlinear. 

Evolution has shown that it is efficient. Compared to other 

optimization techniques, it offers a number of advantages, 

including being easy to use and potentially producing a high-

quality solution with a steady tendency to converge. 

Other evolutionary computational techniques modify the 

individual by using evolutionary operators. Nevertheless, PSO 

does not have an evolutionary mechanism for this. Rather, every 

entity in PSO swoops around, seeking a location that is 

dynamically modified according to its own flight history as well 

as the histories of its partners. Each person is seen as a 

volumeless sphere inside a d-dimensional exploratory space. Each 

particle keeps track of where it is in the space of issues; this is 

linked to its greatest level of achievement to yet. The term "pbest" 

refers to this figure. The total value and location of the largest 

gain made by any particle in the population to date is another 

advantageous feature of the particle swarm optimizer's global 

version. The gbest is the name given to this area. Particle swarm 

optimization is the idea of changing the velocity of each particle 

at each iteration to achieve its maximum and most advantageous 

positions. The item's velocity is enhanced by a random term that 

uses a random number generator to accelerate the object in the 

direction of its best and largest locations. In d-dimensional space, 

the ith particle, for instance, is represented by the formula 

x=(x_i1,x_i2,⋯x_id)). The documentation for the ith particle's 

former location is best=(pbest_i1, pbesti2..pbestid). The gbesta is 

the indicator of the biggest particle in each population. For 

particle i, the frequency of position change (velocity) is expressed 

as v = v=(v_i1,v_i2,⋯v_id). The current velocity and the distance 

from pbestid to gbestd may be used to calculate the changed 

velocity and location of each individual particle, as shown by the 

following formula: 

 

𝑣𝑡,𝑑
𝑘+1 = 𝑤𝑣𝑡,𝑑

𝑘 + 𝑐1 × 𝑟𝑎𝑛𝑑1 × (𝑝𝑏𝑒𝑠𝑡𝑡,𝑑
𝑘 − 𝑥𝑡,𝑑

𝑘 ) + 𝑐2 ×           (9) 

𝑟𝑎𝑛𝑑2 × (𝑔𝑏𝑒𝑠𝑡𝑑
𝑘 − 𝑥𝑖,𝑑

𝑘 ) 

 

                                 𝑥𝑖,𝑑
𝑘+1 = 𝑥𝑖,𝑑

𝑘 + 𝑣𝑖,𝑑
𝑘+1                                  (10) 

 

In this case, w is the inertia weight factor, C1 and C2 are 

the acceleration constants, rand1 and rand2 are the uniform 

random numbers between 0 and 1, xka is the current position of 

individual i at iteration k, pbest is the particle best of individual i, 

and gbest is the generation best of the group  k,𝑣𝑑
𝑚∈𝑛 ≤ 𝑣𝑖,𝑑

𝑘 ≤

𝑣𝑑
𝑚𝑎𝑥k is the velocity of individual i at iteration k. 

The option vmax determines the extent to which areas 

close to the goal location and close to the current position are 

taken into account in the aforementioned procedures. Particles 

will struggle to pass through the advantageous solutions if vmax is 

too low. Particles won't have enough time to explore outside of 

the local solutions if vmax is too high. In the past, vmax was usually 

set at 10–20% of the range of variation on each dimension when 

using PSO. The weight of the random term that pushes each 

particle in the direction of their greatest and most advantageous 

locations is called the constant C1. Before being reattached, the 

particles may travel great distances from their intended 

destinations when C1 and C2 have low values. On the other hand, 

high values cause a quick movement in the direction of or away 

from the targeted places. Because of this, the acceleration C1 and 

C2 values were often chosen to be in the range of 2.0 based on 

prior information. Equation (11) guarantees a proportionate 

balance between local and global exploration and exploitation for 

a range of inertia-related weights. According to the initial plan, w 

would gradually decline at a pace of 0.9 to 0.4. Generally, the 

following formula is used to calculate the inertia weight. 

 

                          𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚∈

1𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑙𝑡𝑒𝑟                       (11) 

 
 The maximum iteration number (generations) is 
represented by Itermax Itermax, the current iteration number is 
Itermax, and the maximum and lowest values of inertia weight are 

represented by Wmax and Wmin, respectively. 
 

IV. SIMULATION 

For the purposes of this paper, we assume that power 

reserve value should be proportional and enough to cover load 

demand increasing in range between 50 to 100 MW should be 

added over load demand, since 50 MW is the lowest increase in 

load demand (as we can notice in table-1-: increasing from hour 1 

to hour 2 and hour4 to hour5) and 100MW is the highest 

increasing value (as in increasing from hour2 to hour3 and hour5 

to hour6): 

 

Table 1: The typical daily load requirement in hours. 
Hour Load (MW) Hour Load (MW) Hour Load (MW) 

1 700 9 1300 17 1000 

2 750 10 1400 18 1100 

3 850 11 1450 19 1200 

4 950 12 1500 20 1400 

5 1000 13 1400 21 1300 

6 1100 14 1300 22 1100 

7 1150 15 1200 23 900 

8 1200 16 1050 24 800 

Source: Authors, (2024). 

 This increasing in load demand will force the operator to 

respond effectively in two aspects, first: use ready spinning 

reserve to cover increasing in load demand and second, support 

spinning reserve for next hours.  
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 For better planning, we will use PSO to solve UCP of 

10Gen set regarding 6 different values of spinning reserve in 

range between 50-100MW (50, 60, 70, 80, 90 and 100) MW, 

figure -1- show the load demand and red-shaded area represent 

spinning reserve range between 50-100 MW. 

 

 
Figure 1: 24 hours load demand and spinning reserve range 

between 50-100 MW. 
Source: Authors, (2024). 

 
 A particle's orientation may be altered by altering one of 

its coordinates using the binary PSO technique. On the other 

hand, a large number of optimizations exist in the other direction, 
varying in quality across levels and factors. The approach is only 
the change in the chance that a coordinate has a binary value (0 or 
1) in the binary form of PSO [10]. Therefore, substituting 
equation (12) for equation (10) is the key difference between the 
binary PSO and the primary PSO. 

 
𝑖𝑓(𝑟𝑎𝑛𝑑 < 𝑆(𝑣𝑖,𝑑

𝑘+1)){ 

𝑥𝑖,𝑑
𝑘+1 = 1 

Else{ 

𝑥𝑖,𝑑
𝑘+1 = 1                                          (12) 

where S(v) is a sigmoid function that restricts the range 

of transformation to [0,1], and rand is a random integer selected 

from a uniform distribution that is limited to [0,1]. 

 

                                         𝑆(𝑣) =
1

1+𝑒−𝑣                                    (13) 

 

The discrete variant preserves vmax, thus |𝑣𝑖,𝑑
𝑘+1 <vmax|. 

This only reduces the final possibility that the bit xid will take on 

a binary value. More flexibility will be possible with a smaller 

vmax [11]. See [10] for further details on binary PSO. 

 

 

 
Figure 2: Binary Particle Swarm optimization for the UC problem. 

Source: Authors, (2024). 
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 A test bench with 10 units and a 24-hour timetable makes up the 10-unit system. Table (2) displays the necessary generator and 

data for this challenge. 

 

Table 2: Data of the 10-Unit System. 

Parameters Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 

Pmax(MW) 455 455 130 130 162 

Pmin(MW) 150 150 20 20 25 

a($/hr) 1000 970 700 680 450 

b($/MWhr) 16.19 17.26 16.60 16.50 19.70 

c($/MW2hr) x10^-4 4.8 3.1 20 21.1 39.8 

Min up time(hr) 8 8 5 5 6 

Min down time(hr) 8 8 5 5 6 

Hot start-up cost($) 4500 5000 550 560 900 

Cold start-up cost ($) 9000 10000 1100 1120 1800 

Cold start-up hrs(hr) 5 5 4 4 4 

Initial status(hr) 8 8 -5 -5 -6 

Parameters Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

Pmax(MW) 80 85 55 55 55 

Pmin(MW) 20 25 10 10 10 

a($/hr) 370 480 660 665 670 

b($/MWhr) 22.26 27.74 25.92 27.27 27.79 

c($/MW2hr) x10^-4 71.2 7.9 41.3 22.2 17.3 

Min up time(hr) 3 3 1 1 1 

Min down time(hr) 3 3 1 1 1 

Hot start-up cost($) 170 260 30 30 30 

Cold start-up cost ($) 340 520 60 60 60 

Cold start-up hrs(hr) 2 2 0 0 0 

Initial status(hr) -3 -3 -1 -1 -1 

Source: Authors, (2024). 
 

 

 Results show feasible operation control on increasing 
pattern within economical frame and so far safe and reliable 
operation as in table 3: 

 

Table 3: Six different values of spinning reserve with total 
operation cost at each case. 

Spinning Reserve MW Total Operation cost 

50 557046.535860194 

60 558043.128870206 

70 558337.564043407 

80 558902.236240183 

90 559655.047590170 

100 560968.143280082 

Source: Authors, (2024). 
 
 Also, we can notice in Figure-3- an impressive behavior 

of total cost increasing in spinning reserve range of 60MW to 

70MW which is increase in production cost get slighter 
comparing to increasing of total cost in range of 70, 80, 90 and 
100MW. 
 

 
Figure 3: Total cost of units in 6 cases along with different 

spinning reserves values. 
Source: Authors, (2024). 

 

V. CONCLUSIONS 

Simulation of PSO for 10 Generators set system using 
MATLAB in 6 cases represents 6 different values of spinning 
reserve base on load demand hour to hour minimum and 
maximum increasing values show magnificent results and wide 
reduction in cost of operation comparing with results obtained 

from earlier researches [11], [10]. 
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