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Permanent Magnet Synchronous Motors (PMSM) which are used in commercial 

applications, requires precise torque calculation, which is necessary for the intended control. 

Conventional Model Predictive Control (MPC) performance is hampered by model 

parameter mismatches and high computational demands, precise torque control often 

necessitates the knowledge of rotor speed and position, which are traditionally obtained 

using mechanical sensors. The paper proposes Feedforward Neural Network model to 

estimate the parameter for desired switching of inverter for accurate position of rotor in 

optimized time. However, this model uses the d-q axis currents, voltages, rotor angle as 

inputs, and electromagnetic torque as the output. The model is developed with the help of 

Python programming based on Hyperband algorithm for hyperparameter tuning. Hyperband 

algorithm, efficiently optimizes hyperparameters by adaptive resource allocation, early 

stopping, reducing training time and improving accuracy. This integration allows the neural 

network(NN) to dynamically optimize its architecture, ensuring precise torque estimation. 

This approach addresses computational challenges and enhances the system's efficiency and 

responsiveness to real-time parameter variations and disturbances, leading to more robust 

and high-performing motor control applications. 

 

Feedforward Neural Network 

(FNN),  

Permanent Magnet Synchronous 

Motors (PMSM), 
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I. INTRODUCTION 

 Electric vehicles (EVs) have emerged as a promising 

solution to address the growing concerns over environmental 

pollution and energy sustainability. PMSM have become a popular 

choice for EV propulsion systems [1] due to their high-power 

density, efficiency, and wide constant power speed range. The 

PMSM can provide high torque at low speeds, making them 

suitable for urban driving conditions. In addition, their compact 

size and lightweight design make them ideal for integration into the 

limited space available in EV. 

 One of the key aspects of utilizing PMSM in EV is the 

precise control of torque. The torque control in PMSM drives is 

crucial for achieving optimal performance and efficiency in EV 

propulsion systems. To achieve effective torque control, various 

control strategies can be employed, such as field-oriented control 

(FOC) or direct torque control (DTC) [2]. Advancements in motor 

control algorithms and sensor technologies have enhanced the 

accuracy and responsiveness of torque control in PMSM drives, 

leading to improved overall system efficiency and performance [3]. 

The integration of advanced sensor technologies has significantly 

enhanced the accuracy and responsiveness of torque control in 

PMSM drives. This level of control ensures smooth operation and 

optimal performance, further contributing to the overall efficiency 

of electric vehicle propulsion systems. In addition to advanced 

sensor technologies, there have been significant developments in 

sensor less control techniques for PMSM in EV. These techniques 

use algorithms and mathematical models to estimate the motor's 

operating conditions and rotor position without the need for 

physical sensors, thereby reducing cost and complexity in EV 

propulsion systems [4]. The offline torque estimation using sensors 

and torque transducers provides the necessary data for optimizing 

torque control strategies, ensuring that the PMSM meet the 

dynamic power requirements of electric vehicle propulsion 

systems. This approach further contributes to the smooth operation 

and overall efficiency of EV, addressing the specific needs of urban 

driving conditions and improving the driving experience for users 

[5]. Online torque estimations enable real-time monitoring and 

adjustment of torque in PMSM drives, ensuring optimal power 
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delivery and responsiveness to dynamic power requirements. By 

incorporating advanced algorithms and sensor feedback, online 

torque estimations contribute to the seamless operation of EV in 

varied driving conditions, including urban settings with frequent 

starts and stops. One such approach is the use of Kriging-based 

techniques for online torque calculation in brushless DC motors, as 

highlighted in [6]. By leveraging improved estimation techniques, 

EV equipped with PMSMs can achieve enhanced performance and 

responsiveness, particularly in urban settings with frequent starts 

and stops. 

 Deep learning models, such as convolutional NN and 

recurrent NN, can be utilized to analyze and learn from large 

datasets of motor parameters and operating conditions. By training 

these models on a diverse set of torque measurements and 

corresponding motor states, the deep learning approach can provide 

accurate and real-time torque estimations for PMSMs in EV [7]. 

The block diagram Figure 1 depicts a system for controlling a 

PMSM. It includes components for current and voltage 

measurement, voltage source inverter, electrical angle 

measurement, sector identification, and lookup tables for 

estimators, ensuring accurate motor control and performance 

optimization. 

 

 
Figure 1: Torque control of PMSM Drive. 

Source: Authors, (2024). 

 Accurately estimating motor torque is essential for the 

efficient control of PMSM. Torque estimation methods are 

generally categorized into online and offline techniques. Online 

methods use real-time electrical parameters—such as voltages, 

currents, and rotor position—to calculate instantaneous torque, 

offering the benefit of reduced system complexity and cost by 

eliminating the need for additional sensors. Offline methods, 

however, rely on detailed motor characterization through complex 

models and extensive testing. Although more complex, offline 

techniques can yield higher accuracy, particularly for motors with 

intricate magnetic structures. The choice between these methods 

depends on the application's specific needs, balancing complexity, 

cost, and accuracy. 

 

Table 1: Related Literature Review. 
Reference Strength of Review 

[8] 

Suggests a technique for improving the identification 

of PMSM motor parameters through the use of a 

Chaotic Artificial Fish Swarm Algorithm (CAFSA) 

to optimize initial weights in a Back Propagation 

Neural Network (BPNN). 

[9] 

Introduces a sensor less speed tracking control 

method using polynomial equations and sliding 

mode-based control, validated on an embedded 

board. 

[10] 
Develops a feedforward NN for PMSM temperature 

estimation, achieving closed-loop errors under 4.5°C. 

[11] 

Assesses deep recurrent and convolutional NN with 

residual connections for PMSM temperature 

prediction, offering high performance without 

domain expertise. 

[12] 

 

Introduces sensor less robust optimum control 

strategy for PMSM with NN-based observers, 

validated by comparison tests and simulations. 

Source: Authors, (2024). 

 The structure of this document is as follows. The 

suggested methodology framework is explained in Section 2, the 

results and discussion are covered in Section 3, and the conclusion 

is provided in Section 4. 

 

II. PROPOSED METHODOLOGY 

II.1 FRAME WORK FOR PROPOSED 

METHODOLOGY 

 This study presents a machine learning (ML) method for 

precise PMSM torque prediction. Data on currents, voltage and 

torque are collected cleaned and standardized. The model 

undergoes hyperparameter tunning and iterative training, with 

performance evaluated using R2. Figure 2 visualization support 

model analysis, aiming to enhance motor control and optimization. 

 
Figure 2: Flow chart of Proposed Methodology. 

Source: Authors, (2024). 
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II.2. TORQUE ESTIMATION IN PMSM 

 Performance and efficiency can be significantly increased 

by integrating torque estimation techniques with PMSM control. 

For example, the application of DTC strategies—which can offer 

better dynamic responsiveness and fault tolerance than 

conventional vector control methods—can be made possible by the 

availability of correct torque information. Furthermore, the use of 

torque estimation in engine speed control can contribute to 

enhanced engine performance and efficiency, as demonstrated in 

the application of nonlinear observer-based torque estimation for 

engine speed control. 

One widely adopted approach is to utilize the Clark and 

Park transformations to simplify the PMSM model and enable the 

implementation of field-oriented control techniques.  The Clark 

transformation converts the three-phase stator voltages and 

currents into their equivalent two-phase stationary reference frame 

components, while the Park transformation further transforms 

these components into a synchronously rotating reference frame, 

relationships is explained in figure 3. 

 

 
Figure 3: Transformation relationship in PMSM. 

Source: Authors, (2024). 
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In a PMSM, 𝐿 represents the magnetic flux generated by 

the stator's permanent magnet and 𝑢a, 𝑢b and 𝑢c are the voltages in 

each phase of the stator winding within a three-phase coordinate 

system. Similarly, 𝑖a, 𝑖b and 𝑖c indicate the phase currents in this 

system, while 𝑅 refers to the resistance of each stator winding 

phase. The three-phase voltage equations of a PMSM are 

inherently differential equations, which makes direct solutions 

complex and challenging. The angular velocity of rotation within 

the 𝑎-𝑏-𝑐 coordinate system is denoted by 𝜔. To effectively 

simplify the problem and enhance the motor's control capabilities, 

a suitable transformation is required to decouple these variables. 

This transformation process for the PMSM, which involves 

converting between various coordinate systems, is guided by the 

principles of preserving equivalent current, voltage, flux, and 

magnetomotive force. For instance, the Park transform converts the 

voltage model from the rotating d-q coordinate system to a form 

easier to manage, while the Clark transform shifts from the space 

vector to the 𝑎-b-𝑐 coordinate system for the static two-phase 

voltage model (𝛼, 𝛽). These transformations yield a voltage model 

similar to that of a two-phase DC motor, making it easier to control. 

The transformations help determine the phase angle 𝜃 between the 

d-axis and q-axis, which is crucial for accurate motor control. 

Equations (2) through (5), in that order, display the park 

transformation relations between current and the Clark 

transformation in each coordinate system. Similar results can be 

obtained for the voltage transformation relationship in each 

coordinate system. 

 

II.3. IMPLEMENTATION OF POLYNOMIAL LINEAR 

REGRESSION MODEL 

 The desired response for the variable PLRM is obtained 

using the estimated torque control, while the regressors are the 

observed torque and speed. The mathematical expectation of items 

with a higher order, k =0 in Equation (6), which presents the torque 

curve with respect to observed torque and speed, may then be fitted. 

It is assumed that the population size for things with a higher order 

"k" is minimal. But, bivariate kth-order PLRM [13], is the equation 

(6) is known as. 

Tcij=∑ ∑ 𝛽𝛾𝜆𝑇𝑚𝑖𝑗𝜆 + 𝜀𝑖𝑗
𝑘
𝜆=0

𝑘
𝛾=0                    (6) 

Where must be k≥1, and i = 1,2,……n & j = 1,2,…..q 

When βγλ is the regression coefficient that needs to be 

determined, εij is the torque error, and each εij is independent and 

has the same distribution. to acquire the linear regression of second 

order polynomials. In equation (6), the value of k is 2. Equation 2 

shows how to use the regressors of the observed torque and speed 

to create the bivariate second order PLRM. 

Tcij = β00+β01𝜔𝑖 + 𝛽02𝜔𝑖
2 + 𝛽10𝑇𝑚𝑖𝑗 + 𝛽11𝑇𝑚𝑖𝑗𝜔𝑖 + 𝛽20𝑇𝑚𝑖𝑗

2 +𝜀𝑖𝑗          (7) 

 

where𝑇𝑚𝑖𝑗 = [

𝑥𝑖100 𝑥𝑖101 𝑥𝑖102

𝑥𝑖200 𝑥𝑖201 𝑥𝑖202

⋮
𝑥𝑖𝑞00

⋮
𝑥𝑖𝑞01

⋮
𝑥𝑖𝑞02

         

𝑥𝑖110 𝑥𝑖11 𝑥𝑖120

𝑥𝑖210 𝑥𝑖211 𝑥𝑖220

⋮
𝑥𝑖𝑞10

⋮
𝑥𝑖𝑞11

⋮
𝑥𝑖𝑞20

]    (8) 

 

β=[𝛽00 𝛽01 𝛽02    𝛽10    𝛽11 𝛽20]
𝑇                                (9) 

 

The value of ωi in equation (8) is 0. After that, as equation 

(10) shows how to generate the univariate second order PLRM 

using the observed torque's regressor. One way to rewrite equation 

(9) is as equation (11) shows. 

         Tcij=𝛽00 + 𝛽10𝑇𝑚𝑖𝑗 + 𝛽20𝑇𝑚𝑖𝑗
2 + 𝜀𝑖𝑗                           (10) 

         β=[𝛽00 𝛽10 𝛽20]
𝑇                (11) 
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II.4. IMPLEMENTATION OF DEEP LEARNING 

TECHNIQUE 

 The integration of deep learning with motor control 

systems holds the potential to revolutionize the field of PMSM 

torque estimation. It not only contributes to enhanced performance 

and energy efficiency but also facilitates the development of 

intelligent and autonomous electromechanical systems [14]. In this 

study, we explore the implementation of ML algorithms for torque 

estimation in PMSMs. Deep Learning models, especially NN, have 

emerged as an effective tool for accurate torque estimation in 

PMSMs. 

 Since the selection of hyperparameters can have a 

substantial impact on the model's performance, hyperparameter 

tuning in NN is an essential step in the creation of ML models.  In 

particular for complicated models with several hyperparameters, 

traditional hyperparameter optimization techniques like grid search 

and random search can be computationally costly and time-

consuming. [15]. To address this challenge, the Hyperband 

algorithm has been proposed as a novel and efficient approach to 

hyperparameter optimization shown in Figure 4 NN structure. 
 

 
Figure 4: Neural Network Structure. 

Source: Authors, (2024). 

 
Figure 5: Hyperparameter optimization. 

Source: Authors, (2024). 

 Scholars have investigated diverse methodologies for 

optimizing hyperparameters, encompassing extensive trials to 

comprehend the impacts of distinct hyperparameters and their 

mutual relations. Figure 5 illustrates one such strategy called 

Hyperband, a cutting-edge bandit-based technology that can offer 

appreciable speedups over conventional optimization techniques. 

III.1 RESULTS AND DISCUSSION 

III.1. DATA SET 

 This article proposes a comprehensive analysis on two 

datasets, namely Dataset 1 and Dataset 2, which contain 

measurements such as, the target variable torque T in Nm [16][17]. 

The dataset statistics as shown in figure 6 supports the torque T in 

Nm are as follows: 

• Dataset 1: The dataset consists of 37 million samples with a mean 

value of -0.86 Nm and a standard deviation of 71.39 Nm. The 

minimum and maximum values are -133.90 Nm and 134.07 Nm, 

respectively. The interquartile range (IQR), spanning from the 

25th percentile (-56.13 Nm) to the 75th percentile (55.40 Nm), 

indicates a wide spread of data points around the median (-1.08 

Nm). 

• Dataset 2: Similar to Dataset 1, this dataset also contains 37 

million samples. The mean value is slightly lower at -0.90 Nm, 

with a higher standard deviation of 72.51 Nm. The minimum and 

maximum values are -136.84 Nm and 136.04 Nm, respectively. 

The IQR for Dataset 2 is slightly broader, with the 25th percentile 

at -59.40 Nm and the 75th percentile at 57.54 Nm, and a median 

of -1.37 Nm. 

 

 

 
Figure 6: Dataset visualization. 

Source: Authors, (2024). 
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III.2. RESULTS 

 The training process of the NN model loss values for both 

the training and validation datasets over 15 epochs. The tuning 

process yielded the following optimal hyperparameters: 

 Number of Neurons: 42, Layers: 8 and Learning Rate: 

0.001, The model’s training and validation loss over a period of 15 

epochs conducted on dataset (2000RPM) is displayed in Figure 7 

was developed in python version 3.12 with the help of keras tuner 

tool. Within the first few epochs, the model shows a quick decrease 

in both training and validation loss, followed by a stable plateau, 

suggesting that the model converged successfully and that there 

was not a large amount of overfitting during training Each hidden 

layer’s dense component has 1,806 parameters (42 inputs * 42 

outputs + 42 biases), while the output layer has 43 parameters (42 

inputs * 1 output + 1 bias), leading to a total of 14,785 trainable 

parameters in the network. The developed model was pre-trained 

on NN was employed and subsequently trained on to adapt to a 

similar distinct dataset (120RPM). This process was carried out 

using TensorFlow with a distributed training strategy to optimize 

the model’s performance. The training and validation loss over a 

period of 15 epochs is depicted in the graph as shown in figure 8. 

Early on, both losses exhibit a notable decline, pointing to a quick 

convergence of the model. The model may be well-tuned and not 

overfit if the validation loss is continuously less than the training 

loss. This steady performance demonstrates the resilience and 

generalizability of the approach. 

 

 
Figure 7: Loss curves for 2000RPM. 

Source: Authors, (2024). 

 
Figure 8: Loss curve for 120RPM. 

Source: Authors, (2024). 

 Tables 2 and 3 compare the performance of polynomial 

linear regression and a fully connected feedforward neural network 

(NN) for torque estimation at two different speeds: 120 RPM and 

2000 RPM. Table 2 shows that polynomial linear regression yields 

relatively high Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), and Mean Absolute Error (MAE) values, with 

MSEs of 212.850 and 206.064 at 120 RPM and 2000 RPM, 

respectively. These values indicate a moderate level of prediction 

accuracy, further corroborated by the R-squared values of 0.958 

and 0.9608, suggesting that the model explains a substantial portion 

of the variance in the data but leaves some room for improvement. 

In contrast, Table 3 presents the results for the fully connected 

feedforward NN, which demonstrates significantly lower error 

metrics at both speeds. The MSE is reduced to 0.0009 at 120 RPM 

and 0.0093 at 2000 RPM, with corresponding RMSEs of 0.0301 

and 0.0963. The MAE values are also much lower, at 0.0192 and 

0.0542, respectively. The near-perfect R-squared values of 0.999 

at both speeds indicate that the NN model almost entirely captures 

the variance in the dataset, showcasing its superior predictive 

capabilities over polynomial linear regression for this application. 

Overall, the NN model provides more accurate and reliable torque 

estimation across different speeds, making it a more suitable choice 

for this specific task compared to polynomial linear regression. 

Table 2:Polynomial Linear Regression (Tourque Estimation). 

Speed MSE RMSE MAE R-square 

RPM 120 212.850 14.589 10.949 0.958 

RPM 2000 206.064 14.354 10.714 0.9608 

Source: Authors, (2024). 

Table 3: Fully connected feedforward NN  (Tourque estimation). 

Speed MSE RMSE MAE R-square 

RPM 120 0.0009 0.0301 0.0192 0.999 

RPM 2000 0.0093 0.0963 0.0542 0.999 

Source: Authors, (2024). 

 The scatter plot presented in Figure 9 and 10 illustrates the 

relationship between the direct axis current (id) and the quadrature 

axis current (iq) for the PMSM. The data points, shown as dense 

clusters, reveal the operational characteristics and current 

interactions within the motor current dynamics. The plot 

showcases a distinctive pattern, indicative of the motor’s response 

under varying load conditions and rotational speeds. The clustering 

and spread of data points highlight the motor’s operational 

envelope and provide insights into the performance and efficiency 

of the PMSM. 

 
Figure 9: Scatter Plot of id vs. iq for 120RPM. 

Source: Authors, (2024). 
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Figure 10: Scatter Plot of id vs. iq for 2000RPM. 

Source: Authors, (2024). 

Heat Map 

 
Figure 11: Heat Map at 120RPM. 

Source: Authors, (2024). 

Case 1: Correlation Matrix Heatmap at 120 RPM 

 Figure 11 presents the correlation matrix heatmap for 

various features of the PMSM dataset, including the electrical 

angle (ϵel), id, iq, ud, uq, and torque (T). This heatmap visually 

represents the correlation coefficients between these features, 

providing insights into their linear relationships. The heatmap uses 

a colour gradient to depict the correlation values, where red shades 

indicate positive correlations, and blue shades signify negative 

correlations. The intensity of the colour corresponds to the 

magnitude of the correlation coefficient, with values ranging from 

-1 to 1. 

Key observations from the heatmap include: 

• A strong positive correlation (r=0.87) between the iq and 

torque (T), suggesting that as iq increases, the torque also 

increases. 

• The correlations among other variables, such as id, ud, uq, and 

electrical angle(€el), are relatively weak, with coefficients 

close to zero, signifying little to no linear relationship. 

 

 
Figure 12: Heat Map at 2000RPM. 

Source: Authors, (2024). 

Case 2: Correlation Matrix Heatmap at 2000 RPM 

 Figure 12 shows the correlation matrix heatmap for 

various features of the PMSM dataset at 2000 RPM, including the 

electrical angle (ϵel), id, iq, direct axis voltage (ud), quadrature axis 

voltage  (uq), and torque (T).   

 

Key observations from this heatmap include: 

• A strong positive correlation (r=0.87) between the iq and 

torque (T), indicating that an increase in iq is associated with 

an increase in torque. 

• A significant negative correlation (r=−0.67) between the ud 

and the iq, suggesting an inverse relationship between these 

variables. 

IV. CONCLUSION 

 The article demonstrated the effective solution of deep 

learning for the torque estimation of PMSM. This utilizes the 

extensive datasets of currents, voltage and rotor angle was 

implemented in NN model with eight hidden layers, each layer 

contains 42 neurons. The model demonstrated the superior 

predictive performance, significantly reducing loss values and 

attaining high accuracy in torque estimation, outperforming 

polynomial linear regression models in terms of Mean Squared 

Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE), and R-square metrics at both 120 RPM and 2000 

RPM. Scatter plots of direct axis current (i_d) vs. quadrature axis 

current (i_q) revealed critical insights into motor behaviour under 

varying conditions. The investigations underscore the potential of 

deep learning to improve motor performance, energy efficiency, 

and operational stability, showcasing NN model in minimizing 

errors and enhancing torque estimation accuracy. The research 

enlightened the reputation of advanced ML techniques in industrial 

automation, offering a promising direction for future research and 

development in PMSM torque.  
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