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This paper is concerned with combinations of un-sharp masking, logarithmic transformation 

and adaptive histogram equalization techniques to arrive at a hybrid method for 

enhancement different types of medical image’ contrast. Motivation behind the 

hybridization is the need to have a contrast enhancement method that is not application 

specific and that can be deplored to several medical image enhancement. Four different 

types of medical images: X-ray, ultrasound, magnetic resonance and computer tomographic 

images are utilized in the evaluations of the proposed hybrid contrast enhancement method. 

As performance metrics, absolute mean brightness error, mean square error, peak signal to 

noise ratio and entropy are used. Comparative results both qualitative and quantitative, were 

conducted at the end of the research, and the proposed method out-perform other three 

(CLAHE, Fuzzy-based and Wavelet Transform-based) related selected methods in the field 

which used the same dataset in terms of testing accuracy. The enhancement quality of the 

proposed method was found to be satisfactory and can be used for any time of medical 

image, thus, the proposed hybrid technique produces better enhanced medical images from 

different medical image inputs. 
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I. INTRODUCTION 

Image enhancement falls within the purview of computer 

vision with the aim of improving the visualization of asymmetric 

brightness level in images [1]. It is a technique widely utilized in 

medical image processing and analysis [2],[3] to modify a given 

picture such that desirable characteristics of the image are easier to 

recognize by automated image analysis systems [4] and aid 

accurate judgment from the image. Image enhancement represents 

one of the phases of digital image processing tasks, along with 

image detection, segmentation and classification [5]. The 

procedure of image enhancement encompasses a variety of 

approaches that geared towards improved image's aesthetic appeal, 

visual clarity and overall look of an image in order to facilitate 

easier extraction of its spatial characteristics [6]. In other word, 

through enhancement of an image, details of the image that are not 

readily visible in the original image right away become available. 

The need for the enhancement of an image may arise when the 

image data and the display system have different dynamic ranges, 

when the image is embedded with a lot of noise, or when the 

contrast is too low [4]. 

Image enhancement methods are divided into spatial 

domain-based and transformation domain-based approaches [5] - 

[6] Histogram Equalization (HE) is a frequently used spatial 

domain-based approach that produces a picture with a uniform 

distribution of intensity following equalization; however, if the 

histogram has high peaks, contrast is over-enhanced, resulting in a 

harsh and noisy image. Several other approaches have been used to 

address these shortcomings, including automatic image 

equalization using Gaussian mixture modeling [7], power-

constraint contrast enhancements based on HE [8], and entropy 

maximization histogram modification for image enhancement [9], 

all of which were still deficient by causing a halo effect in high 

contrast areas [10]. In the transform-based approaches, one can find 

threshold transformation [11], log transformation [11], multi-scale 

retinex-based [12], image size dependent normalization [13], 

adaptive gamma correction-based algorithm [14], fractional order 

and directional derivatives [15], wavelet transform [16] and Non-
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Subsampled Contourlet Transform (NSCT) [5]. Others are fuzzy 

logic-based and neuro-fuzzy method [11], [17].  

A variety of apps provide a selection of photos with certain 

features, and the selection of augmentation techniques vary greatly 

based on particular requirements. The subject of this study is 

medical imaging. Globally, healthcare engineering is a significant 

and quickly growing field that includes illness prevention, 

diagnosis, treatment, and management as well as the maintenance 

and improvement of physical and mental health [18],[19]. In 

addition to diagnosing and treating diseases, medical imaging 

technologies are becoming more and more important for disease 

prevention, health screening, major disease screening, health 

management, early diagnosis, determining the severity of a disease, 

choosing a treatment plan, evaluating the effects of that plan, and 

rehabilitation [19]–[21]. As such, there has been a significant 

increase in the significance of medical imaging technology in 

healthcare delivery applications [19],[20]. 

Medical image enhancement has become standard practise 

due to its ability to improve different medical procedures, image-

guided surgery, and illness detection and therapy [22]. Improving 

the clarity and quality of images is the goal of medical image 

enhancement, which also aims to improve the images' 

interpretability for human viewers. X-rays, Computed 

Tomography (CT), ultrasound, and Magnetic Resonance Imaging 

(MRI) are among the frequently used medical imaging [5]–[6], 

with the latter being especially helpful in the diagnosis of 

cerebrovascular diseases. The accuracy of doctors' diagnoses and 

treatments, where images of internal organs and human sub-

systems are involved, is directly influenced by the quality of the 

images. This singular reason makes medical imaging an integral 

aspect of contemporary and modern medicine 

 

II. THEORETICAL REFERENCE 

Medical images are frequently bedeviled with effects of 

interference from sounds and electromagnetic sources, which often 

degrade the resultant image's quality. Furthermore, presence of 

noise and artifacts contribute uncertainty to the medical image in 

the form of ambiguous image segment homogeneity or ambiguous 

object-background contrast. These make segmentation and 

detection of contours and textures of the image very challenging 

[9]. 

A remapping technique called contrast enhancement 

modifies the image intensity distribution so that the entire image 

intensity range can be used [23]. This method has been used to 

improve the visual quality of photos, highlight important 

information, and highlight image aspects. For medical pictures, a 

variety of contrast enhancement techniques have been put forth. 

The Bihistogram Bezier curve contrast enhancement method was 

presented in [23], showing how well it works to emphasise 

important brain imaging features in low-resolution brain MR 

images [24]. A multimodal contrast enhancement strategy was 

proposed in [25] and successfully handled the problem of weak 

contrast in images of children's hand bones. In addition to the 

previously discussed techniques, the Hopfield Neural Network 

(HNN) is another way for image augmentation [26]. To ensure 

network stability throughout the training phase, this approach is 

said to have a few disadvantages [27], one of which is its propensity 

to converge to a fixed point [28]. Additionally, there could be a 

chance that the quality of the images decreases [29]. 

Notwithstanding these drawbacks, investigating various contrast 

enhancement techniques is still essential for developing the area of 

medical image enhancement and tackling particular problems 

related to various kinds of medical images. 

NSCT technique introduced in [5] combined methods of 

adaptive thresholding and enhanced fuzzy set to meet the demands 

of medical image improvement. The fuzzy contrast function was 

improved through the adjustment of the normal inverse which was 

utilized in the creation of a new function for calculating the 

enhanced pixel gray membership. The new enhanced membership 

function together with the Laplace operator were used to improve 

the image details. The approach was able to boost the general 

contrast of an image, emphasize the features and contours of an 

image, and considerably improve the visual impression of an 

image; nevertheless, the algorithm's flexibility was ineffective. 

Other efforts to improve medical imaging include an approach to 

improving the visual look that makes use of the Bi-histogram 

Bezier Curve [23]. This technique focuses on improving MRI 

pictures that show a sudden leap in the knee. A different endeavour 

pertains to an altered iteration of the Hopfield Neural Network 

(HNN) methodology [30], which tackles the convergence issues 

linked to the conventional HNN approach. The goal of this update 

is to improve the HNN technique's overall efficacy in improving 

medical images. Additionally, a multimodal method has been 

investigated [6] that is intended for clinical imaging sensor 

applications. These varied methods demonstrate a dedication to 

honing procedures for a range of clinical settings and image types, 

and they highlight the continuous attempts to develop and improve 

in the field of medical image enhancement. 

While those aforementioned methods and many others 

ensure improvement in the image contrast, there arises a problem 

of non-uniformity in enhancement and most importantly, over 

enhancement of certain portion of the image. There have been 

various modifications made to conventional histogram equalisation 

techniques in order to address the issue of over-enhancement. The 

contrast limited dynamic quadri-histogram equalisation [31], the 

minimum mean brightness error bi-histogram equalisation in 

contrast enhancement [32], the range limited weighted histogram 

equalisation (RLWHE) [33], the recursively separated weighted 

histogram equalisation (RSWHE) incorporating a normalised 

power law function [34], and the Recursive Mean-Separate 

Histogram Equalisation (RMSHE) intended for scalable brightness 

preservation [35] are noTab. among these techniques. The 

tendency towards over-enhancing in the final image remains a 

recurrent problem, even though these variations of the histogram 

equalisation (HE) technique have proven effective in producing 

high contrast enhancement and good brightness retention. Adaptive 

Gamma Correction with Weighted Distribution (AGCWD) is a 

revolutionary automated transformation approach that was 

developed [36] to solve the problems associated with RMSHE, 

RSWHE, and related techniques. To further address over-

enhancement problems in medical image processing, the Triple 

Dynamic Clipped Histogram Equalisation based on Mean or 

Median (TDCHEM) approach [37] was put forth. The challenges 

presented by conventional histogram equalisation methods in 

medical image enhancement may be addressed by these creative 

approaches, which aim to achieve greater contrast while 

maintaining image quality. The two approaches AGCWD and 

TDCHEM are able to boost contrast and also prevent over-

enhancement of images, however, none of them is able to retain 

brightness and preserve structures of images. 

Several researches have been made in this area of contrast 

enhancements of medical images, various successes have been 

recorded and each technique with its identified shortcomings. 

Some of the shortcomings include the problem of over-
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enhancement, proper enhancement but brightness not preserved, 

some methods are not suiTab. for all types of medical images and 

so on. This study is primarily motivated by the shortcomings found 

in the previously described methods as well as the need for a low-

complexity picture enhancing method. This work focuses on 

developing a hybrid algorithm for medical picture improvement 

that combines three different techniques: Un-sharp Masking (UM), 

Logarithm Transformation (LT), and Adaptive Histogram 

Equalisation (AHE). These three strategies were carefully chosen 

because they each have advantages over other alternatives in terms 

of robustness, low computational complexity, and short calculation 

times. By utilising the distinct benefits of each method, this hybrid 

strategy seeks to jointly address the issues raised by over-

enhancing and computational complexity in medical picture 

enhancement. 

 

III. MATERIALS AND METHODS 

This study uses three different enhancing strategies in a 

cascaded manner. Un-sharp Masking (USM) is the first technique 

in this series, which is used to improve the image by sharpening 

edges and removing intrinsic blurring from the input medical 

image. Logarithm Transformation (LT) uses the output that is 

produced when USM is applied to the medical image. LT is 

specifically made to increase the brightness of the image's dark 

pixels, increasing its dynamic range. LT seeks to bring to light 

aspects that are buried inside the picture. The output is then passed 

into the Adaptive Histogram Equalisation (AHE) method after the 

LT step. AHE seeks to enhance the image's contrast even more. 

The planned tri-modal medical image enhancement strategy comes 

to a close with the final output of the AHE stage. The USM-LT-

AHE medical image enhancement approach is the name given to 

this sequential process. These strategies were chosen because they 

have clear benefits over other approaches, such as being robust, 

efficient, and simple in terms of mathematical complexity. 

A thorough block diagram is used in Fig. 1 to graphically 

represent the suggested hybrid UM-LT-AHE contrast enhancement 

technique. As shown in figure 1, the methodology is divided into 

five main stages: pre-processing (colour conversion), post-

processing (colour conversion), Adaptive Histogram Equalisation 

(AHE), Logarithm Transformation (LT), and Un-sharp Masking 

(UM). The primary goals of this image processing approach are 

contrast enhancement and image de-blurring. The input image is 

specially de-blurred by the UM stage, and the contrast of the image 

is improved by the LT and AHE stages. We then emphasise each 

step of the proposed UM-LT-AHE medical image enhancement 

strategy, starting with the first image colour conversion. This 

methodical technique aims to solve issues with image quality and 

enhance both clarity and contrast in medical images. 

 

Figure 1: Block diagram of the proposed hybrid UM-LT-AHE 

method. 

Source: Authors, (2024). 

III.1 IMAGE COLOR CONVERSION 

For the suggested hybrid UM-LT-AHE enhancement 

approach to be compatible and provide accurate colour rendering, 

two colour conversion stages must be included. Colour conversions 

are not required before the first processing steps or after the final 

output stages when the input is a grayscale image. However, colour 

conversion becomes an essential step when dealing with a colour 

image input. Prior to the Un-sharp Masking (UM) algorithm 

processing, the Red, Green, and Blue (RGB) components of the 

image are mapped into their equivalent Hue-Saturation-Value 

(HSV) on the input side. The output stage involves converting the 

processed image from the HSV mapping back to RGB equivalent 

using the Adaptive Histogram Equalisation (AHE) technique. The 

MATLAB environment facilitates the smooth execution of colour 

conversions for pre-processing and post-processing, with the 

rgb2hsv and hsv2rgb functions, respectively. Through these colour 

conversion steps, the suggested improvement method is made 

sufficiently flexible to handle both colour and grayscale images, 

offering a unified and uniform approach across many input 

conditions. 

III.2 UN-SHARP MASKING 

The Un-sharp Masking (UM) algorithm sharpens edges and 

areas with plenty of detail in a picture to highlight details that are 

otherwise hidden. This is accomplished by creating a corrective 

signal, which is basically an enlarged version of the input image's 

signal representation. A Laplacian filter, which has a negative 

centre coefficient, is used to generate the corrective signal. To 

recover the image's lost grey tones, this correction signal is then 

deducted from the original input image signal. Mathematically, the 

expression for the Un-sharp Masked input image at a pixel location 

(x, y) is represented as: 

 

𝑈𝑀(𝑥, 𝑦) = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 (𝑥, 𝑦)𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑖𝑔𝑛𝑎𝑙(𝑥, 𝑦)(1) 

In this equation, 𝑈𝑀(𝑥, 𝑦) denotes the Un-sharp Masked 

pixel value at location (x, y), which is obtained by subtracting the 

Correction Signal at the same location from the corresponding 

pixel value in the original input image. This process results in an 

image that emphasizes fine details and enhances the overall 

sharpness of the edges within the original image. 

The output image from UM stage that is fed into the input 

of LT stage is expressed as: 

 

𝑌𝑈𝑀(𝑥, 𝑦) = 𝐼𝑜(𝑥, 𝑦) + 𝐾𝐼(𝑥, 𝑦)                      (2) 

 

where 𝑌𝑈𝑀(𝑥, 𝑦) is the output image from the UM stage and 

K  is a positive scaling factor that controls the level of achievable 

image de-blurring or sharpness level. The values for K is such that 

0.2 ≤ 𝐾 ≤ 0.9 [38]. 

USM involves the following steps: 

i. Get the input image that requires enhancement 

ii. Generation of a blur copy of the input image using 

Laplacian of Gaussian (LoG) filter. 

iii. Subtract blur copy from the input to give un-sharp 

masking image 

iv. Multiplications of the un-sharp masking image by a 

fractional value “K” 

Addition of the result in (iv) to the original image in (i). 
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III.3 LOGARITHMIC TRANSFORMATION 

In the suggested enhancement scheme, the main goal of the 

Logarithm Transformation (LT) technique is to transfer the image's 

dark (or low) intensity values to brighter (or higher) values, 

increasing the visibility of features. Higher-intensity pixels are 

little impacted by the LT algorithm's application; instead, low-

intensity pixels are mapped to high-intensity pixels. The expression 

for the logarithm transformation can be expressed mathematically 

as follows: 

 

𝐿𝑇(𝑥, 𝑦) = 𝑐. log(1 + 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 (𝑥, 𝑦)) (3) 

Here, 𝐿𝑇(𝑥, 𝑦) denotes the pixel value after the Logarithm 

Transformation at location (𝑥, 𝑦) and c is a scaling factor. The 

logarithmic function log(1 + 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 (𝑥, 𝑦)) is applied 

to the pixel values of the original image at the corresponding 

location. The addition of 1 in the logarithmic function helps avoid 

the issue of taking the logarithm of zero. 

This transformation improves the contrast of the image 

overall by making details in the dark areas of the image more 

visible. The logarithmic function is a good choice since it preserves 

information in higher-intensity regions while extending the 

dynamic range of low-intensity values. 

 

III.4 ADAPTIVE HISTOGRAM EQUALIZATION 

The plot of the number of pixels 𝑛𝑘 in an image against the 

intensity value 𝑘 describes the image histogram, where 0 ≤ 𝑘 ≤
2𝑥 − 1 and 𝑥 is the class unit of the image. In the context of this 

paper, 256 intensity levels are considered, resulting in a class unit 

of 8. This corresponds to an intensity value range between 0 

(representing black) and 255 (representing white). For an image 

with a total number of pixels 𝑁 the associated probability density 

function (PDF) is given: 

 

𝑃(𝑘) =
𝑛𝑘

𝑁
        (4) 

𝑃(𝑘) is the probability density function at intensity value 𝑘 

𝑛𝑘 is the number of pixels at intensity value 𝑘, 

𝑁 is the total number of pixels in the image 

The probability density function illustrates the possibility of 

coming across a pixel in the image with a certain intensity value. 

With 256 intensity levels in the provided context, the function 

characterises the distribution of pixel intensities throughout the 

image, offering important details about contrast, brightness, and 

general tonal qualities.  

 

III.5 SUMMARY OF STEPS INVOLVED IN THE 

IMPLEMENTATION 

The steps involved in the implementation of the proposed 

hybrid UM-LT-AHE contrast enhancement scheme for medical 

images: 

1. Select the Type of Image:  

• Ascertain whether the input image is grayscale or 

colour. 

2. Read Grayscale Pixel Values:  

• If the image is in grayscale, read each pixel's value. 

3. Convert the RGB colour space to the HSV colour space 

if the image is coloured. 

• Examine the HSV's value component. 

4. Sharp Masking Absence (UM): 

• As necessary, apply the Un-sharp Masking method 

to the results of steps (ii) or (iii). 

5. Logarithm Transformation (LT):  

• Map the step (iv) output using a Logarithm 

Transformation mapping function. 

6. Adaptive Histogram Equalisation (AHE):  

• Apply step (v)'s output to the Adaptive Histogram 

Equalisation with clipping. 

7. Store Output (Grayscale):  

• Store the step (vi) output and move on to step (x) if 

the input image is grayscale. 

8. Modify the Colour Image Value Component: 

• If the input image is coloured, use step (vi)'s result 

as the image's new V (value). 

9. Combine H, S, and New V:  

• Combine the H and S components of the input image 

with the newly acquired V component from the 

previous step to create a new HSV colour space for 

the image. 

10. RGB conversion:  

• Return the newly created HSV colour space from 

step (viii) to RGB colour space. 

• Keep the result stored. 

11. Output Enhanced Image:  

This is a version of the original input image that has been 

enhanced. 

The developed hybrid UM-LT-AHE medical image 

enhancement approach was implemented using the MATLAB 

R2018a environment, which was set up on an HP EliteBook 

running Windows 10 with a core i5 processor, 64-bit architecture, 

and 4 GHz RAM. During implementation, a number of functions 

from the image processing toolbox were used, including rgb2hsv, 

hsv2rgb, imfilter, adapthisteq, and others. 

A collection of sixteen test medical photos was used to 

assess how well the suggested UM-LT-AHE medical image 

enhancement method performed. These photographs cover a range 

of medical imaging modalities, such as ultrasound, X-ray, MRI, 

and CT scan images as shown in Table 1 and were taken from 

publicly accessible online databases. Both colour and grayscale 

photographs are included in the collection; each image format 

contributes four images. 

 

Table 1: Descripption of images used for experiment. 

Images Ultrasound X-ray MRI scan CT scan 

(i) 
multiple 

gestation 

human 

elbow 

cervical 

spine 

gray scale 

abdominalcavity 

(ii) 
human 

kidney 

human 

knee 

human 

knee 

healthy human 

heart 

(iii) 

human liver 

with gall 

bladder 

human 

leg 

human 

lung 

brain tumor 

(iv) 
human liver human 

toes 

multiple 

fetal 

color abdominal 

cavity 

Source: Authors, (2024). 

 

III.6 PERFORMANCE METRICS 

By comparing its outcomes with existing methods from the 

literature, the suggested technique's performance in contrast 

enhancement is assessed using objective assessment criteria. For 

this, Absolute Mean Brightness Error (AMBE), Mean Square Error 

(MSE), Peak Signal-to-Noise Ratio (PSNR), and entropy are the 
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four essential performance indicators used. When compared to the 

outputs of various contrast enhancement techniques in the 

literature, the suggested method is deemed superior if it produces 

an output image with the lowest AMBE, lowest MSE, highest 

PSNR, and highest entropy values. 

 

Absolute Mean Brightness Error (MBE); the difference 

between the brightness level of the enhanced image and original 

image. 

𝑨𝑀𝐵𝐸 = ⃓ 𝐸(𝑦) − 𝐸(𝑥)⃓ (7) 

 

Where: 𝑬(𝒙) = average intensity of input image; 𝑬(𝒚) = 

average intensity of output image.  

The output of this research was compared with those of 

other works using AMBE, the method yielding the least numerical 

value is adjudged best in performance in terms of brightness 

preservation.   

 

Peak-Signal-to-Noise-Ratio (PSNR): is the evaluation 

standard of the reconstructed image quality, and is an important 

measurement feature. PSNR is measured in decibels. The higher 

the PSNR, the better the method. 

 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10
𝑅2

𝑀𝑆𝐸
   (8) 

Where 𝑹 =  𝟐𝒙𝒃𝒊𝒕𝒔 which depends on image class 

 

Entropy: This is a statistical measure of randomness that can 

be used to characterize the texture of an image. It is the measure of 

the content of an image. The higher the entropy, the better the 

method. 

𝑬𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑖𝑃𝑖𝑙𝑜𝑔2𝑃𝑖  (9) 

 

Where 𝑷𝒊 is the probability that the difference between 

adjacent pixels is equal to 𝒊. 

 

IV. RESULTS AND DISCUSSIONS 

Obtained simulation results from the proposed hybrid UM-

LT-AHE method are compared with those from three other 

methods (CLAHE, Fuzzy and WT) in the literature, for image 

contrast enhancement. 

What follows are the simulation results beginning with 

those of ultrasound images. The images in (a) are the original 

images before they were subjected to various enhancement 

techniques, (b)-(e) are the images after they have been enhanced 

with different enhancement methods; the Hybrid UM-LT-AHE, 

CLAHE, AHE and Fuzzy-based methods respectively. The level of 

enhancement on the images can be visualized in the output as 

shown in the Figure 2 to 5. 

 
Figure 2: Simulation results using Ultrasound images (a)original image (b)UM-LT-AHE method (c)CLAHE method (d)Fuzzy-based 

method (e)WT method. 

Source: Authors, (2024). 
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Figure 3: Simulation results using X-ray images (a)original image (b)UM-LT-AHE method (c)CLAHE method (d)Fuzzy-based method 

(e)WT method. 

Source: Authors, (2024). 

 

Figure 4: Simulation results using MRI scan images (a)original 

image (b)UM-LT-AHE method (c)CLAHE method (d)Fuzzy-

based method (e)WT method. 

Source: Authors, (2024). 

 

 
Figure 4: Simulation results using CT scan images (a)original 

image (b)UM-LT-AHE method (c)CLAHE method (d)Fuzzy-

based method (e)WT method. 

Source: Authors, (2024). 
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A cursory look at simulation results presented in Figure 2 to 

5 for enhanced images of different types reveal that outputs of the 

proposed UM-LT-AHE medical image enhancement method fare 

better than other four methods employed in comparison. It is 

obvious that output images using the proposed UM-LT-AHE 

medical image enhancement method closely match the input test 

images than what obtains from other four methods used.  

Next in the evaluation process is quantitative and objective 

evaluation of the performance of the UM-LT-AHE medical image 

enhancement method proposed in this work along with those of 

CLAHE, Fuzzy-based and Wavelet transform-based methods 

using those sixteen test images described in Table 1.  

Table 2 to 4 present computed parametric results, starting 

with those of X-ray images. 

 

Table 2: Evaluation results using X-ray images. 
ELBOW    

Parameters CLAHE Fuzzy-

based 

Wavelet-

based 

Proposed 

AMBE 186583 10.3738 39.6560 18.528 

MSE 0.0910 0.0853 0.11225 0.0678 

PSNR 23.9670 24.6105 21.8702 26.9127 

Entropy 7.7059 6.5089 6.8866 7.5612 

KNEE  

Parameters CLAHE Fuzzy-

based 

Wavelet-

based 

Proposed 

AMBE 18.528 0.37373 36.446 1.0074 

MSE 0.0866 0.0978 0.1040 0.0635 

PSNR 24.4660 23.2496 22.6370 27.5704 

Entropy 7.6671 6.6577 6.9027 7.4787 

LEG 

Parameters CLAHE Fuzzy-

based 

Wavelet-

based 

Proposed 

AMBE 19.5594 20.2151 34.3872 4.6719 

MSE 0.0917 0.0723 0.1060 0.0703 

PSNR 23.8899 26.2699 22.4391 26.5479 

Entropy 7.6073 6.7336 6.9859 7.5064 

FOOT 

Parameters CLAHE Fuzzy-

based 

Wavelet-

based 

Proposed 

AMBE 5.0847 11.2024 15.1105 2.5408 

MSE 0.0616 0.0775 0.0638 0.0553 

PSNR 27.8784 25.5748 27.5273 28.9528 

Entropy 6.2224 5.7115 5.5348 6.2548 

Source: Authors, (2024). 

 

Objective evaluation results involving X-ray images show 

that the proposed hybrid UM-LT-AHE contrast enhancement 

method performed better than each of CLAHE, fuzzy-based and 

wavelet transform-based methods. Specifically, the performance of 

the proposed method in this work surpasses those of others in terms 

of AMBE, MSE and PSNR Figures in all four images while it has 

entropy Figures that are slightly lower than those yielded by 

CLAHE in three of the test images 

 

Table 3: Evaluation results using Ultrasound images. 
MULTIPLE GESTATION  

Parameters CLAHE Fuzzy-

based 

Wavelet-

based 

Proposed 

AMBE 18.4466 7.2810 12.4194 3.6492 

MSE 0.0714 0.0723 0.0570 0.0523 

PSNR 26.3917 26.2662 28.6539 29.5030 

Entropy 7.1841 6.3418 7.0386 7.2399 

HEALTHY KIDNEY   

Parameters CLAHE Fuzzy-

based 

Wavelet-

based 

Proposed 

AMBE 27.5549 8.1986 17.7543 9.7369 

MSE 0.0481 0.0228 0.0303 0.0287 

PSNR 30.3426 37.8118 34.9762 35.5070 

Entropy 6.9083 4.9430 6.2130 6.8636 

HUMAN LIVER WITH GALL BLADDER  

Parameters CLAHE Fuzzy-

based 

Wavelet-

based 

Proposed 

AMBE 8.7964 6.4803 18.9987 8.8073 

MSE 0.0995 0.0901 0.1029 0.0715 

PSNR 23.0714 24.0728 22.7391 26.382 

Entropy 7.8810 7.8152 7.4250 7.6415 

NORMAL LIVER  

Parameters CLAHE Fuzzy-

based 

Wavelet-

based 

Proposed 

AMBE 25.845 10.7739 14.7473 0.58036 

MSE 0.0690 0.0443 0.0513 0.0400 

PSNR 26.7381 31.1763 29.7004 32.1825 

Entropy 7.7775 6.9439 7.3239 7.3812 

Source: Authors, (2024). 

 

Results shown in Table 3 for ultrasound test images reveal 

a different scenario from that of X-ray images. While Fig.s 

obtained from the proposed hybrid UM-LT-AHE method are 

generally not the best, they are however, compare favorably with 

those adjudged to be best for ultrasound images. In fact, the 

marginal difference in those parameters is small as can be inferred 

from results involving ‘healthy kidney’ image where fuzzy-based 

method appear better than others as well as those of entropies 

returned by CLAHE for ‘human liver with gall bladder’ and 

‘normal liver’. 

 

Table 4: Evaluation results using CT-scan images. 

Parameters CLAHE Fuzzy-based Wavelet-based Proposed 

GRAY SCALE ABDOMINAL CAVITY 

AMBE 17.3672 10.9913 11.4329 14.4132 

MSE 0.0858 0.0666 0.0691 0.0783 

PSNR 24.5553 27.0946 26.7278 25.4705 

Entropy 7.6063 6.5047 6.8863 7.6202 

HEALTHY HEART 

AMBE 2.7463 15.7666 13.4307 8.5005 

MSE 0.0515 0.0789 0.0550 0.0348 

PSNR 29.67 25.3993 29.0009 33.5753 

Entropy 5.5869 4.9244 6.0456 5.7624 

BRAIN TUMOR 

AMBE 4.5612 6.3451 16.7043 12.896 

MSE 0.0407 0.0501 0.0403 0.0327 

PSNR 32.0259 29.9346 32.1063 34.1945 

Entropy 4.8102 30.751 44.571 4.8786 

COLOR ABDOMINAL CAVITY 

AMBE 16.0203 24.185 14.8689 12.558 

MSE 0.0695 0.0654 0.0593 0.0509 

PSNR 26.6681 27.2683 28.2501 29.7763 

Entropy 7.173 5.9548 6.7886 7.2027 

Source: Authors, (2024). 

 

Although parametric evaluation results CT scan of gray 

scale abdominal cavity image show that fuzzy-based method 

performed better than others in terms of AMBE, MSE and PSNR 

Figure, however, judging by the margin between corresponding 

values returned by the proposed hybrid UM-LT-AHE method, it 
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can be safely said that the method compare well. Aside the results 

of gray scale CT scan of abdominal cavity, the proposed hybrid 

UM-LT-AHE method performed better than other methods, 

especially in terms of MSE and PSNR Figures. These observations 

are premised on results presented in Table 4. 

 

Table 5: Evaluation results using MRI-scan images. 

Parameters CLAHE 
Fuzzy-

based 

Wavelet-

based 
Proposed 

CERVICAL SPINE 

AMBE 28.6652 13.0575 17.212 28.2196 

MSE 0.0630 0.0937 0.0406 0.0604 

PSNR 2.7654 23.6791 32.0408 28.0758 

Entropy 6.8039 48.239 64.707 68.113 

KNEE 

AMBE 13.0372 96.004 155.956 111.961 

MSE 0.0638 0.1394 0.0544 0.0583 

PSNR 27.5133 19.7026 29.1072 28.4297 

Entropy 62.196 50.685 58.780 62.251 

LUNG 

AMBE 20.2711 18.5814 37.828 24.3273 

MSE 0.1279 0.1627 0.2150 0.1150 

PSNR 20.563 18.1576 15.3711 21.6259 

Entropy 77.815 65.790 64.779 76.419 

MULTIPLE FETAL 

AMBE 13.4195 7.2406 12.6458 11.0239 

MSE 0.0883 0.2131 0.0786 0.0806 

PSNR 242.710 154.600 254.397 251.808 

Entropy 78.333 71.747 74.522 77.251 

Source: Authors, (2024). 

 

Evaluation results using MRI scan images appear rather 

clumsy as mixed results are returned. One thing that is cleared from 

entries of Table 5, where MRI scan images results’ are presented,  

is that the results of the proposed UM-LT-AHE method still 

compare well with those of other methods used for comparison. 

 

IV.I. LIMITATION OF THE PROPOSED METHOD 

The proposed method is limited to medical images drawn 

from CT scan, MRI images, Ultrasound scan and X-rays. Other 

medical images from other sources were not considered. 

 

IV.II. FUTURE WORK 

The method should be tested for its applicability in 

enhancement of many imaging applications such as underwater, 

astronomical, and consumer-based electronics. 

 

V. CONCLUSIONS 

We present a novel hybrid UM-LT-AHE technique in this 

work that is intended primarily to improve contrast in medical 

photos. This technique is noteworthy for its adaptability, as it can 

handle medical images in both grayscale and colour. Our 

assessment, carried out on a variety of test medical pictures 

including X-ray, ultrasound, CT, and MRI scan modalities, proved 

that the hybrid UM-LT-AHE contrast enhancement method that 

was suggested was effective. Its application to a variety of medical 

images was demonstrated by the results, which also showed that it 

produced accepTab. results for important assessment metrics like 

AMBE, MSE, PSNR, and entropy Figures. This highlights how 

well the technique works to improve contrast in a range of medical 

imaging situations, confirming its usefulness as a strong and adap 

table. instrument in the field of medical image processing. 

Furthermore, it was shown here that the proposed hybrid UM-LT-

AHE method performed well than each of CLAHE, fuzzy-based 

and wavelet transform-based methods, on the average when 

deployed for contrast enhancement of the four aforementioned 

medical image types. Based on these findings, the proposed UM-

LT-AHE method can be safely deployed for the enhancement of 

different types of medical images’ contrast with satisfactory results 

for all types of images, something which was lacking in some other 

methods. 
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