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This study analyzes the detection of substation fouling failures in District Heating and 

Cooling (DHC) systems using synthetic data. In the study, high, medium and low levels of 

contamination are considered and both machine learning and deep learning techniques are 

applied for the detection of these failure types. Within the scope of the analysis, machine 

learning algorithms such as K-Nearest Neighbors, XGBoost and AdaBoost are compared 
with the proposed Convolutional Neural Network (CNN) model. The machine learning 

algorithms and the Convolutional Neural Network model are trained to perform fault 

detection at different contamination levels. In order to improve the performance of the 

machine learning models, hyperparameter tuning was performed by Grid Search 

Optimization method. The results obtained show that the proposed Convolutional Neural 

Network model provides higher accuracy and overall success compared to machine learning 

methods. High performance measures such as Matthews correlation coefficient 0.944 and 

accuracy rate 0.972 were achieved with the CNN model. These findings reveal that 

contamination detection in substations can be done effectively with CNN-based approaches, 

especially for situations that require high accuracy. This study on fault detection in DHC 

systems provides a new and reliable solution for industrial applications. 
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I. INTRODUCTION 

District Heating and Cooling (DHC) systems are a critical 
infrastructure component in modern urban energy management, 

providing efficient heating and cooling services to both residential 

and commercial buildings. These systems play an important role in 

improving energy efficiency and reducing operating costs. 

However, the reliability and performance of DHC systems can be 

affected by various failures, which can put the efficiency, safety 

and overall operational stability of the system at risk. 

The development of effective fault detection and diagnosis 

(FDD) models for DHC systems is an important research area to 

ensure uninterrupted operation of the system and improve its 

reliability. Traditional fault detection methods are often based on 
manual checking and heuristic approaches, but these methods may 

not be sufficient to address the complexities of modern DHC 

systems. Recent advances in data-driven techniques, especially in 

the fields of machine learning (ML) and data analytics, offer 

promising solutions to these challenges. The lack of 

comprehensive datasets is a significant barrier to developing robust 

data-driven models. Existing studies emphasize that the lack of 

quality datasets limits the effectiveness of data-driven approaches 

[1]. To overcome this problem, researchers have focused on 

creating synthetic data sets through simulation or using open data 

sources. These data sets usually cover various system components 

such as generation units, distribution networks and storage 

facilities. 
Numerous machine learning approaches for DHC system 

defect detection have been studied in recent research. For instance, 

because of its propensity to handle intricate patterns in data, 

XGBoost, Support Vector Machine (SVM), and Logistic 

Regression are often employed [2]. Studies have shown that these 

models can detect energy efficiency related faults with high 

accuracy, but there can be difficulties in detecting more subtle 

problems, e.g. thermal losses. 
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To improve the reliability of fault detection models, 

researchers are investigating integrating real-time data with 

simulation results and open data. This approach aims to increase 

the generalizability and robustness of the models, thus ensuring 

their applicability to a wide range of operational scenarios [3]. 

District Heating and Cooling (DHC) systems are 

increasingly being used to improve energy efficiency and reduce 

carbon emissions. DHC systems eliminate the need for individual 

heating or cooling systems by transmitting heat and cooling energy 

generated from a centralized source to buildings over a wide 
network. These systems play an important role in energy saving 

and environmental sustainability, especially in urban areas [4]. 

 However, ensuring the long-term efficient operation of 

DHC systems poses a major challenge in terms of their 

maintenance and early detection of potential failures. Failures in 

substations, such as contamination, reduce the overall efficiency of 

the system and increase costs. In the past, the detection of such 

faults was mostly limited to physical checks or manual 

interventions in case certain critical limits were exceeded. Today, 

however, technological advances such as data analytics and 

machine learning offer the possibility to make these processes more 
automated and accurate [5]. 

In the past, fault detection processes in DHC systems were 

generally handled with a reactive approach. Physical inspections, 

periodic maintenance work and performance monitoring systems 

are among the classical methods that are activated after failures 

occur. These approaches are often time-consuming, lead to delays 

in fault detection and negatively affect the efficiency of the system. 

Furthermore, most of these methods are activated when there is a 

significant degradation in system performance, which often results 

in more costly repairs and system downtime. However, with the 

development of data collection and analysis techniques in recent 

years, methods such as machine learning and deep learning offer 
an important alternative for fault detection. By analyzing large 

amounts of data, these new methods provide the opportunity to 

detect signs and trends before failures occur [6]. Thus, early 

diagnosis of failures and implementation of preventive 

maintenance strategies become possible. 

Machine learning and deep learning methods offer many 

advantages over traditional fault detection techniques [7]. Machine 

learning algorithms have achieved significant success in fault 

prediction by learning meaningful patterns from large datasets. 

Algorithms such as K-Nearest Neighbors (KNN), XGBoost and 

AdaBoost have the ability to automate fault prediction by training 
on data collected in the past. These algorithms have been successful 

in predicting system failures by analyzing correlations in the data 

and possible signs of failure. However, these methods are usually 

dependent on a more limited data structure and may be inadequate 

for complex or multidimensional data [8]. In contrast, deep 

learning methods, especially models such as Convolutional Neural 

Network (CNN), stand out with their capacity to process more 

complex data structures. CNN models provide higher success rates, 

especially in large and complex data sets, enabling the detection of 

previously undetected faults. 

In this study, the failure conditions caused by contamination 
of substations in DHC systems are analyzed. Different machine 

learning algorithms (KNN, XGBoost, AdaBoost) and deep 

learning (CNN) models are compared using synthetic data for high, 

medium and low levels of contamination. Grid Search 

Optimization method was used to optimize the performance of the 

models and the best hyperparameters were selected. The results 

show that the CNN model outperforms the other models and 

achieves high accuracy rates. 

The aim of this study is to develop a more accurate and 

efficient solution that goes beyond traditional methods for early 

detection of faults in DHC systems. In particular, it is aimed to 

detect complex failure types such as contamination of substations 

more effectively. The main advantage of the study is that higher 

accuracy rates are achieved with the CNN model and fault 

detection can be done at an earlier stage. This increases the overall 

efficiency of the system and reduces maintenance costs. However, 

the fact that deep learning models require large amounts of data 

and processing power is considered as a significant disadvantage 
of the study. Moreover, experiments with synthetic data need to be 

validated with real-world data, which is also one of the limitations 

of the study. 

The study makes several important contributions to the 

literature. First, it demonstrates the applicability of deep learning 

methods for fault detection in DHC systems. Second, it proposes a 

solution for early detection of more complex fault types such as 

substation contamination. Finally, the high accuracy rates of the 

model proposed in the study provide a practical benefit for 

industrial applications. These findings not only contribute to the 

development of more efficient maintenance strategies in DHC 
systems, but also provide a new perspective on how deep learning 

algorithms can be applied in industrial processes. 

Section 1 of this paper gives an overview of the problem. 

The following sections of the paper are as follows. Literature 

review related to the study is presented in Section 2. The 

implementation materials and methods are presented in Section 3, 

and the discussion and conclusions are presented in Section 4. 

Future work and conclusions are presented in Section 5. 

 

II. THEORETICAL REFERENCE 

In this study, problem diagnosis and detection techniques 

for District Heating and Cooling (DHC) systems are investigated. 
Using the IEA DHC Annex XIII as a framework, it offers a 

thorough study of typical DHC system faults. District heating 

systems have evolved from steam-based systems to ultra-low 

temperature networks, with future designs integrating distributed 

low-temperature sources and building-side heat pumps. A case 

study shows that while ultra-low temperature ring networks are 

23% more expensive than 3rd generation systems, they are cost-

effective when free waste heat is available [9].  

France aims to decarbonize heating by expanding District 

Heating and Cooling Networks (DHCN) and identifying suitable 

areas for development. Using variables such as energy density, 
building age, and energy mix, the paper estimates the potential of 

DHN at 132 TWh/year and DCN at 7.8 TWh/year across France 

[10]. 

Decarbonizing energy sectors, especially heating, is crucial 

to combating climate change, as heating represents nearly half of 

global energy consumption. This paper reviews the role of heat 

pumps in reducing emissions and adding flexibility to renewable 

energy systems, but highlights economic, regulatory, and 

infrastructural challenges to their widespread adoption [11]. 

The article reviews 40 European thermal networks using 

distributed heat pumps and clarifies definitions of Fifth-Generation 
District Heating and Cooling (5GDHC). It finds that while 5GDHC 

systems in countries like Germany and Switzerland excel with 

renewable heat sources, they face higher pumping energy demands 

and variable control strategies compared to traditional district 

heating [12].  

Even though the majority of research concur on a core set 

of typical failures, they frequently don't result in instant shutdowns 

and may thus go unreported. Although air-source chillers have 
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received a lot of attention, DHC systems are also susceptible to 

identical issues that have been seen in water-source systems. This 

study looks on ways to diagnose and find faults in District Heating 

and Cooling (DHC) systems.  

District heating and cooling systems have evolved over a 

century, serving over 70 million people in Europe with an 

estimated energy consumption of over 450 TWh. This paper 

reviews the current state of these systems, highlighting variations 

across countries in terms of technology, market structure, and 

regulations, and introduces a new socio-demographic approach to 
create indicators for modeling future systems [13]. 

Fifth-generation district heating and cooling (5GDHC) 

systems, tested in Melbourne, show 9-29% cost savings and 25-

58% GHG emissions reduction compared to traditional systems. 

They offer economic and environmental benefits, especially in 

mild climates, and could expand to other regions with similar 

conditions [14]. 

Temperature control significantly impacts Fifth Generation 

District Heating and Cooling (5GDHC) systems. This study finds 

that constant temperature control can be more effective but is 

sensitive to setting changes, while simple multi-stage controls may 
underperform. Proper strategy selection and coordination are 

crucial for optimal system efficiency [15].  

District heating and cooling networks offer benefits by 

integrating renewable energies and local thermal resources, but 

effective design and optimization are key. This review evaluates 

the use of Life Cycle Assessment (LCA) for assessing the 

environmental impact of these networks, revealing a wide range of 

emission factors. It emphasizes the need for improved management 

practices and proposes future research for developing a universal 

LCA tool for network analysis [16]. 

Due to the limited availability of real-world data, the 

development of optimized synthetic data sets is investigated to 
improve the accuracy of three different ML models such as K-

Nearest Neighbors (KNN), Support Vector Machine (SVM) and 

Random Forest (RF). The integration of real and synthetic data 

improved the identification of initial faults using ML algorithms 

and the quality of the synthetic data obtained was found to be 

superior to existing methods [17]. 

A simulation-based dataset was developed to evaluate 

various types of failures in District Heating and Cooling (DHC) 

systems and tested with five machine learning models. The tests 

showed that the dataset provides high performance in fault 

detection and the applicability of the models to real systems [18]. 
 Traditional and innovative methods used to achieve goals 

such as peak shaving, demand response and fast fault detection in 

advanced district heating and cooling systems are examined. The 

advantages and disadvantages of modern approaches such as model 

predictive control and machine learning are detailed [19].  

A machine learning method is proposed to detect leakage 

faults with data from flow and pressure sensors. Using a delayed 

warning algorithm, a leak signal is sent and the model identifies the 

faulty pipe based on this signal. The method was successfully 

tested with 85.85% accuracy and a macro-F1 score of 0.99786 [20]. 

 A machine learning model has been developed that 
performs well and can distinguish between data sets containing 

faults. The model is trained with data from a district heating 

substation in Sweden and tested with various parameters. The 

results show that the model successfully models the substation 

behavior and has high fault detection capability [21].  

A study was conducted to develop an automatic fault 

detection and diagnosis (AFDD) framework for district heating 

substations. With data from Denmark, common faults are analyzed 

and the potential of AFDD to reduce energy use is highlighted. 

Additional indicators were proposed and improvements were made 

to detect future anomalies [22]. A study was conducted to show 

how smart meter data can be used for fault detection and 

maintenance processes. Faults were detected in advance with 

machine learning algorithms and maintenance improvements were 

provided with performance indicators. The findings were validated 

by experts and the importance of data utilization for smart heating 

networks was emphasized [23].  

A two-level model was developed for fault detection in 
district heating systems. This model, which distinguishes high-

level system faults and low-level sub-faults, provided high 

accuracy and reliability in tests. The results show that the model 

provides an effective solution for real-time monitoring [24]. In 

[25], a machine learning method is proposed to detect leakage 

faults with flow and pressure data. The delayed warning algorithm 

and the model ensure accurate identification of leaks. The method 

was successfully tested with 85.85% accuracy and a macro-F1 

score of 0.99786. 

 

III. MATERIALS AND METHODS 

III.1 DATASET 

This dataset contains synthetic fault data related to 

contamination in substations of District Heating and Cooling 

(DHC) systems. The dataset was developed as part of the 

International Energy Agency's (IEA) DHC Annex XIII project 

“Artificial Intelligence Fault Detection and Prediction of Heat 

Production and Demand in District Heating Networks”. This 

project develops artificial intelligence methods for the prediction 
of heat demand and production and evaluates algorithms for fault 

detection. The experiments in the dataset are simulations covering 

a period of 28 days, during which faults that can occur at various 

time points are observed [18]. Failures can occur with different 

intensities, either sudden or gradual. The failure intensity can be 

interpreted differently depending on the simulation model used. 

This dataset provides a valuable resource for the development of 

new approaches to fault detection in DHC systems. Table 1 lists 

the input names and basic statistics of the dataset [26]. 

 

Table 1: Basic statistical information about the data used in the 

dataset. 

Variable Explanation Min Max 

BC 
Id of the boundary conditions 

used for this experimen 
   0 12 

F1_type 
Type of fault used in the 

experiment  
0 1 

F1_start 
Start time of the fault, in 

hours 
0 671 

F1_stop 
Stop time of the fault, in 

hours 
0 672 

F1_init 
İnitial intensity of the fault, 

in the range [0-1] 
0 1 

F1_final 
Final intensity of the fault, 

in the range [0-1] 
0 1 

Source: [26]. 
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III.2 K-NEAREST NEIGHBOR REGRESSION 

K-Nearest Neighbor (KNN) regression is one of the 
supervised learning methods and is based on the idea of predicting 

a target data point by looking at the values of its neighboring data 

points.  

KNN regression has a similar approach to the classification 

problem, but focuses on the prediction of a continuous target 

variable. The predicted value for a data point is determined by the 

average or weighted average of the target values of the selected “k” 

number of nearest neighbors. Since KNN regression is a parameter-

free method, the structure of the model is shaped according to the 

data set and provides flexibility, especially for complex data 

distributions. However, the increase in computational costs for 
high-dimensional data sets and the impact of distance metrics on 

the performance of neighbor selection are important factors to be 

considered [27]. 

 

III.3 EXTREME GRADIENT BOOSTING REGRESSION 

XGBoost (Extreme Gradient Boosting) is a powerful 

machine learning algorithm often used in supervised learning 

problems such as regression and classification. XGBoost is an 

ensemble learning method based on decision trees and minimizes 

errors by successively adding weak learners (usually decision 

trees). In regression problems, the main goal of XGBoost is to 

linearly improve the model's predictions as much as possible and 

minimize the loss function. The algorithm's innovations on 

gradient boosting include optimizations that make tree structures 

faster and more efficient, regularization (L1 and L2) and missing 

data management. This allows XGBoost to achieve high 
performance on large datasets while providing superior results in 

terms of speed and accuracy compared to other methods. The fact 

that it does not require as much computational power as deep 

learning techniques and its nonparametric structure have made it a 

frequently preferred method in regression analysis [28]. 

 

III.4 ADAPTIVE BOOSTING REGRESSION 

Adaboost (Adaptive Boosting) is an ensemble learning 

method used to improve the performance of weak learners. 

Basically, by emphasizing the errors of each weak learner, weight 

is given to the next learner. In the regression problem, Adaboost 

successively combines weak regression models to minimize 

prediction errors. At each step, different weights are assigned to the 

samples, taking into account the model's previous prediction errors. 

This weighting allows the model to focus specifically on data 
points that have struggled with previous predictions. Adaboost 

regression is often applied with weak learners such as decision 

trees and is known for providing high accuracy in regression as 

well as in classification problems. However, it can be sensitive to 

overfitting and noisy data, so it requires careful model selection 

and parameter tuning. Adaboost's strength is that it can successfully 

combine weak learners to improve the overall performance of the 

model [29]. 

 

III.5 CONVOLUTIONAL NEURAL NETWORKS 

Convolutional Neural Networks (CNNs) are deep learning 

architectures structurally inspired by the visual cortex of the human 

brain. They are particularly effective in computer vision tasks such 

as image recognition, object detection and classification.  

The basic building blocks of CNNs are convolution layers 
that focus on capturing local features in the data, thereby reducing 

the number of parameters of the model through dimensionality 

reduction. These layers extract meaningful features from the input 

data through filters, and these features are abstracted in deeper 

layers, allowing more complex structures to be learned. CNNs offer 

high performance and accuracy, especially on large data sets, 

thanks to parameter sharing and local connections. Their advanced 

architecture and level of performance have made CNNs a popular 

solution in various fields such as medical imaging, autonomous 

vehicles, and face recognition [30]. 

 

III.6 GRID SEARCH OPTIMIZATION 

Grid Search Optimization is a method of hyperparameter 

tuning used to improve the performance of machine learning 
models. Machine learning algorithms are structured with various 

hyperparameters that affect the behavior of the model, and 

choosing the optimal values of these parameters greatly affects the 

accuracy and overall performance of the model. 

The Grid Search method aims to systematically scan all 

possible combinations of the specified hyperparameters and select 

the combination that gives the best result. This is accomplished by 

evaluating the model against a specified performance metric. 

Although Grid Search is usually used for smaller datasets and in 

environments with limited computational power, the processing 

time can increase considerably with large datasets or a large 

number of hyperparameters. In this case, the Grid Search method 
can become costly in terms of time and resources. Nevertheless, by 

finding the optimal parameters, the generalizability and accuracy 

of the model can be improved. Due to these features, Grid Search 

Optimization is widely used in the process of improving the 

success rates of machine learning and deep learning models. 

 

III.7 GENERATION OF SYNTHETIC FAILURE 

Synthetic failure data was generated using Modelica-based 

open source simulation models. First, potential failures in the 

system were identified by Failure Modes, Effects and Criticality 

Analysis (FMECA) and different failure scenarios were modeled. 

Simulations were performed by applying different failure profiles 

(step and ramp type) under boundary conditions such as outdoor 

temperature, solar radiation and heat demand. These profiles are 

defined by parameters such as fault onset time, severity and 
development time. Each simulation recorded the responses of the 

system for the faulted and unfaulted cases, forming a synthetic data 

set [19]. 

The data set was diversified with various failure types and 

boundary conditions. The onset time and severity of the faults were 

randomly selected, resulting in a data set that matches real-world 

conditions. As a result, for each simulation, variables such as 

boundary conditions, system inputs and outputs, and fault 

conditions were recorded to create a data set. This data set is 

structured in accordance with the machine learning models to be 

used in fault detection and diagnosis. Failure profiles are defined 

by the parameters given in Figure 1 below: 
• Profile type: Failure can occur as a step or ramp. 

• Start time (t₀): The moment when the fault occurs. 

• End time (tₓ): In the ramp profile only, the moment when 

the fault reaches maximum severity. 

• Start intensity (v₀): Always starts at 0. 

• Final severity (vₓ): varies between 0 and 1, 1 being the 

maximum fault severity. 

• These parameters were used to model different failure 

scenarios in the simulations. 
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Figure 1: The simulation employed the following fault 

appearance profiles: ramp on the left for progressive faults and 

step on the right for sudden faults. 

Source: [19]. 
 

The fault severity is represented by a number between 0 

and 1, where 1 denotes the highest fault severity possible in the 

model. The model and type of fault will determine this. 

 

IV. RESULTS AND DISCUSSIONS 

In this section, the performance results and evaluation of the 

fault detection models developed for substation contamination are 

presented. The machine learning models KNN, XGBoost and 

AdaBoost along with the CNN model are tested and compared to 

detect faults at different contamination levels. Common 

performance metrics such as accuracy rate, Matthews correlation 

coefficient (MCC) and Accuracy are used to determine the 

performance of the models. The results show that the CNN model 

has a significant advantage over machine learning methods, 

especially in detecting more complex and low-level faults. In this 

section, the performance of each model is discussed in detail. The 
outstanding achievements of each model will be analyzed and the 

practical relevance of these findings for DHC systems will be 

evaluated. 

The results of the KNN algorithm showed an accuracy rate 

of 86.4% and Matthews correlation coefficient performance of 

72.3% for the detection of substation contamination faults. In order 

to improve the performance of the KNN model, hyperparameter 

optimization was performed with the Grid Search method. In this 

optimization process, important hyperparameters such as the 

number of neighbors (k) and distance metric for the KNN 

algorithm were selected from various values. In Table 2, the 

optimal hyperparameter values determined by the Grid Search 
method are presented in detail. These parameters aimed to improve 

the classification accuracy of the model, but it was observed that 

the performance of KNN was limited in complex data. 
 

Table 2: KNN regression parameters. 

Parameter Value 

n_neighbors 7 

weight distance 

algorithm auto 

Leaf_size 30 

p 2 

n_jobs 10 

Source: Authors, (2024). 

The confusion matrix of the KNN algorithm is shown in 

Figure 2. In addition, Table 6 shows all performance metrics of the 

KNN algorithm. 

 

 
Figure 2: KNN regression confusion matrix. 

Source: Authors, (2024). 

 
Figure 3 presents the analysis for different levels of 

substation contamination in District Heating and Cooling (DHC) 

systems for the KNN algorithm. The graphs represent four different 

levels of contamination: very high fouling (75%), medium fouling 

(20% and 11%), and low fouling (5%). The expression UA [W/K] 

relates to the heat transfer coefficient in a heat exchange system or 

thermal system. There are two graphs for each level: The left-hand 

graphs show the probability of failure detection and the UA [W/K] 

values together. The graphs on the right-hand side show the correct 

and incorrect fault detections.  

The case where the contamination in the system is very high 

is analyzed. In the left graph, the UA [W/K] values show a 
significant decrease with time, showing the effect of fouling and 

the loss of thermal performance of the system. The yellow dots 

represent the degree of fouling, while the blue line marks the point 

of failure. The right graph shows that the UA [W/K] value 

decreases continuously with time, indicating that the fouling is 

continuously increasing. In the case of moderate contamination, the 

spread of the yellow dots in the left graph is more regular and the 

UA [W/K] values are relatively more stable. However, after a 

certain point, there is a significant decrease in system performance 

with increasing fouling. In the right graph, the UA [W/K] value 

shows a later and slower decline compared to high contamination. 
It shows a similar pattern for a lower fouling level of 11%, which 

is lower than the medium level. In the left graph, the yellow dots 

are less diffuse and the UA [W/K] value decreases less over time. 

In the right graph, the decline in system performance is again 

observed, but it is later and less sharp.  

Finally, for low levels of fouling, the graphs show a much 

more stable situation. In the left graph, the yellow dots are more 

concentrated at the upper levels and the UA [W/K] value remains 

stable for longer. In the right graph, it can be seen that the UA 

[W/K] remains largely stable and only slightly decreases.  
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Figure 3: Analysis for different levels of substation contamination in DHC systems with KNN algorithm. 

Source: Authors, (2024). 

 

The results of the XGBoost algorithm were found to be 

highly successful for the detection of substation contamination 

faults. XGBoost achieved 96.1% accuracy rate and 92.0% 

Matthews correlation coefficient performance. In order to 

maximize the performance of the algorithm, hyperparameter tuning 
was performed using Grid Search Optimization. In this process, 

important hyperparameters such as learning rate and maximum 

depth (max_depth) were optimized. 

 

Table 3: XGBoost regression parameters. 

Parameter Value 

Base_score 0.7 

booster gbtree 

Max_depth 5 

Min_child_weight 5 

Learning_rate 0.33 

n_estimators 250 

N_jobs 10 

Random_state 5 

Tree_method approx 

Source: Authors, (2024). 

 

In Table 3, the optimal hyperparameters obtained as a result 

of this optimization process are presented in detail. The Grid 

Search optimization enabled the XGBoost model to detect fouling 

failures more accurately, resulting in an efficient model with high 

accuracy and short processing time. The confusion matrix of the 

XGBoost algorithm is shown in Figure 4. In addition, Table 6 

shows all performance metrics of the XGBoost algorithm. 

 

 
Figure 4: XGBoost regression confusion matrix. 

Source: Authors, (2024). 
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Figure 5 presents the analysis for different levels of 

substation contamination in District Heating and Cooling (DHC) 

systems for the XGBoost algorithm. The left graph with high 

contamination shows the probability of fault detection and UA 

[W/K] values. In the case of very high contamination, the 

probability of fault detection increases rapidly from the point where 

the contamination starts and the system performance decreases 

significantly. In the right graph, the blue line represents the ground 

truth, the green area represents correct detections and the red area 

represents incorrect detections. In the case of very high 
contamination, the majority of correct failures are detected and the 

degradation of the system can be clearly observed. In the case of 

medium contamination, the left graph shows that at 20% 

contamination, the probability of fault detection fluctuates at first, 

but increases rapidly after a certain point. The UA [W/K] value 

shows a steady decrease over time. In the right graph, the correct 

detections are marked in green and it can be seen that the correct 

detection rate is high after the onset of contamination. However, 

false detections are observed for some points. At 11% 

contamination, the left graph shows that the probability of fault 

detection increases at a later stage compared to 20% contamination. 

The UA [W/K] value shows a less pronounced downward trend. In 

the right graph, correct detections are again indicated by green 

areas. At this level, correct detections are still predominant, but due 

to the low contamination, the system takes longer to detect a fault. 

At low contamination level, the left graph shows that the 
probability of fault detection remains low for a long time and only 

increases significantly in the later stages of contamination. The UA 

[W/K] values are more stable. In the right graph, the correct 

detections for this low level of contamination are highlighted in 

green, and the failure detection process is delayed compared to the 

other levels as the system performance is not degraded much. 

 

 
Figure 5: Analysis for different levels of substation contamination in DHC systems with XGBoost algorithm. 

Source: Authors, (2024). 

 

The AdaBoost model, a machine learning algorithm for the 

detection of substation contamination faults, achieved 91.3% 

accuracy and 82.6% Matthews correlation coefficient. 

Performance metrics such as model accuracy and Matthews 

correlation coefficient demonstrate the effectiveness of AdaBoost. 

In order to maximize the performance of the model, the 

hyperparameters were determined using the Grid Search 

Optimization method and the values are presented in Table 4. The 

confusion matrix of the Adaboost algorithm is shown in Figure 6. 

In addition, all performance metrics of the Adaboost algorithm are 

given in Table 6. 

Table 4: Adaboost regression parameters. 

Parameter Value 

Max_depth 5 

Min_samples_leaf 5 

Min_samples_split 10 

n_estimators 250 

Learning_rate 0.33 

Random_state 5 

Source: Authors, (2024). 
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Figure 6: Adaoost regression confusion matrix. 

Source: Authors, (2024). 

 

Figure 7 shows the fault detection results for the Adaboost 

algorithm for different percentages of substation contamination 

levels. Very high contamination follows a curve with a very high 

probability of fault detection in the left-hand graph and a constant 

fault detection in a short time. There is a small difference between 

the onset of contamination and the point at which fault detection 

starts. The graph on the right shows that the system makes a correct 

detection in a very short time and there are almost no false 

detections. In the case of medium contamination, the probability of 

fault detection increases gradually and there is a steady detection 

trend after a value of about 1000. There is a slight delay in fault 

detection compared to the beginning of the contamination. The 

graph on the right shows that the system generally makes correct 

detections and there are few false detections. In the 11% 

contamination scenario, the probability of failure detection 

increases more slowly and stabilizes at a later time. This shows that 

the system is slower to detect lower contamination rates. The graph 

on the right shows that the correct detections are indicated by the 

green line and that these correct detections start later, as well as a 

few incorrect detections. At the lowest contamination level, the 

probability of fault detection increases significantly later and 

stabilizes over a longer period of time. This indicates that the 

system struggles to detect low contamination. The graph on the 

right shows that correct detections occur quite late and there are a 

relatively high number of false detections.

 

 
Figure.7: Analysis for different levels of substation contamination in DHC systems with Adaboost algorithm. 

Source: Authors, (2024). 
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In the tests performed with the CNN algorithm, an accuracy 

rate of 97.2% and a Matthews correlation coefficient value of 

94.4% were obtained. 

 

 
Figure 8: CNN algorithm confusion matrix. 

Source: Authors, (2024). 

A summary of the CNN model is given in Table 5. Figure 8 

shows the confusion matrix of the CNN model. Table 6 shows the 

results obtained with the CNN algorithm. 

Table 5: CNN model summary. 

Layer Output Shape Param  

dense (None, 128) 1,280 

batch_normalization) (None, 128) 512 

dropout (None, 128) 0 

dense (None, 128) 16,512 

batch_normalization (None, 128) 512 

dropout (None, 128) 0 

dense (None, 64) 8,256 

batch_normalization (None, 64) 256 

dropout (None, 64) 0 

dense (None, 1) 65 

Total params  27,393 

Trainable params  26,753 

Non-Trainable params  640 

Source: Authors, (2024). 

 
Figure 9: Analysis for different levels of substation contamination in DHC systems with CNN algorithm. 

Source: Authors, (2024). 
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Figure 9 shows the fault detection results for the CNN 

algorithm for different percentages of substation contamination 

levels. In the case of very high levels of fouling, the graph on the 

left, the orange dots show the probabilities of fouling failure 

detection. The blue line shows the moment of actual fouling onset, 

while the gray line shows how the heat transfer coefficient (UA) 

value changes over time. Fouling was correctly detected with a 

high probability and at an early stage. In the graph on the right, the 

green and red horizontal lines represent correct and incorrect 

detections. The length of the green line indicates how long the 

model correctly detected contamination. In this case, the model has 

successfully detected very high contamination. The graph on the 

left shows that for medium contamination at 20%, the model made 

some incorrect detections but was generally correct. At the 11% 

contamination level, the detection success seems to be slightly 

lower, with a shorter green correct detection time and an increased 

number of incorrect detections. At the low contamination level, the 

model seems to have a lower probability of detection and a higher 

number of false detections. The blue line again shows the actual 

fouling time, while the gray line represents the heat transfer 

coefficient. In the graph on the right, the green correct detection 

line is quite short and the red false detection line is long. This 

indicates that the model struggles to detect the low fouling level. 

In general, the graphs show that the accuracy and speed of 

fault detection varies depending on the contamination level. At 

very high contamination levels, the system makes fast and accurate 

detections, while at low contamination levels the detection time is 

longer and the number of false detections increases. This suggests 

that the system's ability to detect low levels of contamination is 

limited. These analyses highlight the importance of automatic 

fouling detection systems to improve the operational efficiency of 

DHC systems. Integrating systems with early warning mechanisms 

can play a critical role in saving energy and extending equipment 

lifetime. 

Table 6: Comparison of algorithm results. 

Algorithms Accuracy 
Matthews 

Corrcoef 

Elapsed 

Time 

KNN 86.4 72.3 67.55 

XGBoost 96.1 92.0 26.96 

AdaBoost 91.3 82.6 239.76 

CNN Model 97.2 94.4 542.34 

Source: Authors, (2024). 

 

Table 6 shows the performance metrics of four different 

machine learning and deep learning algorithms for detecting 

substation contamination failures in District Heating and Cooling 

(DHC) systems. Accuracy, Matthews correlation coefficient 

(MCC) and Elapsed Time are evaluated for each algorithm. These 

metrics are important to understand the success and efficiency of 

the models in fault detection. 

The KNN algorithm achieved 86.4% accuracy and 72.3% 

Matthews correlation coefficient. This shows that the model 

performs moderately well, but may misclassify some 

contamination cases. The KNN algorithm can perform well, 

especially when working with a small number of data points, but 

its performance may degrade with large datasets. The processing 

time was 67.55 seconds, which is a reasonable speed compared to 

other algorithms. The XGBoost algorithm performed very well 

with an accuracy of 96.1% and a Matthews correlation coefficient 

of 92.0%. These results show that XGBoost is capable of efficient 

classification and accurate detection at different contamination 

levels. Moreover, the processing time of the algorithm was very 

low at 26.96 seconds. The optimized nature of XGBoost makes it 

an effective option for users who want fast and accurate results. 

The AdaBoost algorithm produced lower results than 

XGBoost, but better than KNN, with an accuracy of 91.3% and a 

Matthews correlation coefficient of 82.6%. AdaBoost uses the 

technique of strengthening weak classifiers to improve 

classification performance. Although it achieved a relatively high 

success rate, the processing time was considerably longer than the 

other algorithms at 239.76 seconds. This long processing time may 

limit AdaBoost's usefulness in scenarios with large datasets or fast 

results. The CNN model outperformed all other algorithms with the 

highest accuracy rate of 97.2% and the highest Matthews 

correlation coefficient of 94.4%. This high performance of the 

CNN model shows that deep learning models can work more 

effectively with large and complex datasets. However, the CNN 

model has the longest processing time of 542.34 seconds, 

indicating that the model requires high computational power and 

therefore runs for longer periods of time. 

Comparing the performance of all algorithms, the CNN 

model gives the best results in terms of accuracy and Matthews 

correlation coefficient, but this superior performance is achieved at 

the cost of a longer processing time. XGBoost, on the other hand, 

produces almost as good results as CNN, but with a much shorter 

processing time, which makes it advantageous in practical 

applications. AdaBoost performs well in terms of accuracy, but is 

at a disadvantage in terms of processing time. The KNN algorithm, 

although one of the fastest algorithms, has lower accuracy and 

Matthews correlation coefficient compared to the other models. In 

conclusion, each algorithm offers different advantages and 

disadvantages in terms of accuracy, speed and computational cost. 

 

V. CONCLUSIONS 

In this study, various machine learning and deep learning 

algorithms are investigated for the detection of substation 

contamination faults in District Heating and Cooling (DHC) 

systems. The algorithms used include K-Nearest Neighbors 

(KNN), XGBoost, AdaBoost and Convolutional Neural Network 

(CNN) models. Contamination failures were analyzed at high, 

medium and low levels and hyperparameter optimization for the 

detection of these failures was performed by Grid Search method. 

The results show that the CNN model offers the best performance 
with 97.2% accuracy and 94.4% Matthews correlation coefficient. 

However, CNN has the longest processing time (542.34 seconds). 

XGBoost stood out as a fast and efficient alternative with 96.1% 

accuracy and short processing time (26.96 seconds). AdaBoost, 

despite having an accuracy of 91.3%, was quite slow with a 

processing time of 239.76 seconds. KNN, on the other hand, 

showed the lowest performance with an accuracy of 86.4%, and 

although it works fast, it is insufficient for complex data. In future 

studies, it is recommended to test these models on real-world 

datasets, optimize the processing time of CNN models, and 

investigate different types of failures more comprehensively. 
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