
Journal of Engineering and Technology for Industrial Applications

ITEGAM-JETIA

Manaus, v.11 n.51, p. 20-27. January/February., 2025.

DOI: https://doi.org/10.5935/jetia.v11i51.1310

RESEARCH ARTICLE OPEN ACCESS

ISSN ONLINE: 2447-0228

Journal homepage: www.itegam-jetia.org

COMPARATIVE EVALUATION BETWEEN JAVA APPLICATION USING JNI

AND NATIVE C/C++ APPLICATION RUNNING ON AN ANDROID

PLATFORM

Álison de Oliveria Venâncio1, Thales Ruano Barros de Souza2 and Bruno Raphael Cardoso Dias3

1 2 3 Instituto de Pesquisas Eldorado. Manaus-Amazonas, Brazil.

1http://orcid.org/0009-0000-2850-185X , 2https://orcid.org/0000-0001-6333-8840 , 3http://orcid.org/0000-0003-0517-7895

Email: alison.venancio@gmail.com, thalesrmb@gmail.com, brunodias89@gmail.com

ARTICLE INFO ABSTRACT

Article History

Received: September 27, 2024

Revised: October 20, 2024

Accepted: November 01, 2024

Published: January 30, 2025

Android is a popular operating system based on the Linux kernel and has a Java-based

framework. As it is built on Linux, it supports the development of applications written in

C/C++, known as native applications. The Native Development Kit (NDK), along with the

Java Native Interface (JNI), provides a solution for communication between Java

applications and native C/C++ applications, resulting in a significant performance boost.

This article evaluated the performance difference between Java applications using JNI with

the NDK and native C/C++ applications, focusing on algorithms widely used in various

areas such as automation, networking, telecom, cybersecurity, etc. We conducted sequence

of executions initiated either through a graphical interface or via the Android Debug Bridge

(ADB) command line, with timing performed by external hardware with its own firmware

for this evaluation. Based on the results, we observed that in all test cases, the native

application performs faster, except when there are variations related to process scheduling,

which may rarely lead to a reversal of this pattern.

Keywords:

Android,

Embedded,

Linux,

Java,

JNI.

Copyright ©2025 by authors and Galileo Institute of Technology and Education of the Amazon (ITEGAM). This work is licensed

under the Creative Commons Attribution International License (CC BY 4.0).

I. INTRODUCTION

Android [1] is an operating system initially developed with

a focus on mobile devices, but nowadays it is widely used in

various applications such as cars, televisions, refrigerators, POS

systems, and more. It is currently the most popular operating

system [2] and is officially developed by the Open Handset

Alliance. The source code is released as open-source software [3],

and its structure is based on the Linux kernel, with a Java-based

framework in its user space.As Android is a system based on Linux,

it also supports the development of applications written in C/C++.

These are known as native applications because they use libraries

compiled specifically for the target system. Some examples of

native libraries include libC, OpenGL, WebKit, etc. Since this type

of application is closer to the kernel layer, its execution time is

usually shorter, but there is a higher complexity in understanding

and mastering the syntax of the language.Java is a programming

language that utilizes a virtual machine to interact with the system,

which results in higher processing costs due to the additional layers

of software and this can reduce performance when accessing

hardware devices. For this purpose, there is a tool called the Native

Development Kit (NDK) [4] that allows communication between a

Java application and a native C/C++ application, bringing a

considerable performance gain to them.One of the main tools of the

NDK is the Java Native Interface [5] (JNI). Applications that use

JNI can incorporate native code written in C/C++ while still

gaining the advantages of using a higher-level language.

Additionally, JNI enables the utilization of native Linux libraries,

in conjunction with the benefits of the Android framework

simultaneously.

When developing an Android application, it is essential to

consider how the system works, and one of the first aspects to

evaluate is the execution time. The performance difference

between a Java application and a C/C++ application has been a

well-established study, but there are few analyses related to this

topic applied on an Android platform using the NDK.
In this paper, we evaluate the performance difference

between a Java application using JNI and a native C/C++

application. The focus is on testing consolidated algorithms widely

used in various areas such as automation, networks,

telecommunications, cybersecurity, etc. The main objective of this

http://orcid.org/0009-0000-2850-185X
https://orcid.org/0000-0001-6333-8840
http://orcid.org/0000-0003-0517-7895
mailto:alison.venancio@gmail.com
mailto:thalesrmb@gmail.com
mailto:brunodias89@gmail.com

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 20-27, January/February., 2025.

work is to establish a comparison between these two development

approaches in Android. This comparison provides valuable insights

for developers who need to choose between the two approaches to

achieve greater efficiency in their applications, either due to

hardware limitations or battery consumption.

The article is organized as follows:

 Section II: Review of the algorithms used for performance

comparison.

 Section III: Brief description of related works.

 Section IV: Explanation of the development methodology

for the test pipeline, metrics, and analysis.

 Section V: Presentation of the test case results.

 Section VI: Analysis of obtained results.

 Section VII: Conclusion of the work and proposals for

future research.

II. ALGORITHM DESCRIPTIONS

This section provides a comprehensive overview of the

algorithms selected for our performance comparison. These

algorithms are widely used across various domains, including data

processing, network routing, signal processing, and cryptography.

We have carefully chosen algorithms that exhibit different

computational complexities and characteristics to ensure a

thorough evaluation of the performance differences between Java

and C/C++ implementations on Android.

II.1 QUICKSORT

Quicksort is renowned for its efficiency as a sorting

algorithm and utilizes a divide-and-conquer strategy to organize

data. The core mechanism involves partitioning an array into

smaller subarrays around a pivot element. This partitioning step is

recursively applied to the resulting subarrays until the entire array

is sorted. The selection of the pivot element significantly affects

the performance of Quicksort. In the best-case scenario, where the

pivot divides the array into nearly equal halves, Quicksort achieves

a time complexity of O(n log n). However, in the worst case, where

the pivot selection results in highly imbalanced partitions, the time

complexity can degrade to O(n²). To address these performance

issues, techniques such as introsort, which combines Quicksort

with Heapsort, and three-way partitioning are employed. Introsort

ensures that the algorithm's performance remains O(n log n) in the

worst case, while three-way partitioning helps improve

performance by handling arrays with many duplicate elements

more effectively [6].

QuickSort(arr, low, high):

 if low < high:
 pivot ← Partition(arr, low, high)

 QuickSort(arr, low, pivot - 1)
 QuickSort(arr, pivot + 1, high)
Partition(arr, low, high):
 pivot ← arr[high]
 i ← low – 1

 for j ← low to high - 1:
 if arr[j] ≤ pivot:
 i ← i + 1

 Swap(arr[i], arr[j])
 Swap(arr[i + 1], arr[high])
 return i + 1

Figure 1: Flow of the QuickSort algorithm showing the

partitioning process and recursion to sort a list of numbers.

Source: Authors, (2025).

II.2 DIJKSTRA'S ALGORITHM

Dijkstra's algorithm is a fundamental graph search

algorithm designed to determine the shortest path between nodes

in a weighted graph. The algorithm operates by iteratively

exploring neighboring nodes and updating the estimated distance

to the destination node. A priority queue, often implemented as a

minimum heap, is used to select the node with the smallest known

distance for expansion. This approach ensures that the shortest path

is identified efficiently.

The time complexity of Dijkstra’s algorithm depends on the

data structure used for the priority queue. When using a binary

heap, the algorithm runs in O((|V| + |E|) log V), where |V| is the

number of vertices and |E| is the number of edges in the graph. If a

Fibonacci heap is used, the complexity can be reduced to O(|E| +

|V| log |V|) [7]. Dijkstra's algorithm is widely applicable, including

in network routing protocols, geographic information systems, and

robotics for pathfinding.

It is important to note that Dijkstra’s algorithm can only be

used on graphs that have non-negative edge weights. For graphs

containing negative edge weights, the Bellman-Ford algorithm or

other techniques may be used [8], [9].

Dijkstra(graph, source):

 for each v of V:

 dist[v] ← ∞

 dist[source] ← 0

 priority_queue ← [source]

 while priority_queue is not empty:
 u ← node with smallest dist in priority_queue

 Remove u from priority_queue

 for each neighbor v of u:
 if dist[u] + weight(u, v) < dist[v]:
 dist[v] ← dist[u] + weight(u, v)
 Add v to priority_queue

 return dist

Figure 2: Illustration of Dijkstra's algorithm determining the

shortest path in a weighted graph, focusing on updating distances

and selecting nodes using a priority queue.

Source: Authors, (2025).

II.3 FAST FOURIER TRANSFORM

The Fast Fourier Transform (FFT) is a powerful algorithm

for computing the Discrete Fourier Transform (DFT), which

decomposes a signal into its constituent frequency components.

The FFT is invaluable in various signal processing applications,

including filtering, data compression, and spectral analysis. In

image processing, FFT is employed for tasks such as convolution,

filtering, and edge detection.

The efficiency of FFT arises from its recursive structure,

which reduces the computational complexity from O(n²) for the

naive DFT algorithm to O(n log n). This reduction is achieved by

recursively dividing the DFT computation into smaller, more

manageable subproblems. The FFT’s ability to handle large

datasets with reduced computational requirements makes it a

crucial tool in both theoretical and applied signal processing [10].

Page 21

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 20-27, January/February., 2025.

FFT(A):

 n ← length(A)
 if n = 1:
 return A

 w_n ← e^(2πi/n) // nth root of unity

 A_even ← FFT(A[0], A[2], ..., A[n-2])
 A_odd ← FFT(A[1], A[3], ..., A[n-1])

 for k = 0 to n/2 - 1:
 w ← w_nk

 A[k] ← A_even[k] + w * A_odd[k]
 A[k + n/2] ← A_even[k] - w * A_odd[k]

 return A

Figure 3: Diagram of the FFT decomposition process, showing

how the input sequence is divided into even and odd components

and processed recursively.

Source: Authors, (2025).

II.4 RIVEST-SHAMIR-ADLEMAN ALGORITHM

The Rivest-Shamir-Adleman (RSA), algorithm is a widely

adopted public-key cryptosystem that provides a secure method for

encrypting and decrypting information over public channels. The

security of RSA is based on the mathematical difficulty of factoring

large composite numbers. The algorithm involves generating a pair

of keys: a public key used for encryption and a private key used for

decryption. Encryption is performed by raising the message to the

power of the public key exponent, modulo the product of two large

prime numbers.

Decryption, on the other hand, is carried out using the

corresponding private key. The computational complexity of RSA

encryption and decryption is dominated by the modular

exponentiation step, which has a time complexity of O((log n)³),

where n is the size of the modulus (product of the two primes).

The strength of RSA lies in the size of the keys and the

computational challenge associated with factoring the product of

large primes. RSA is extensively used in various security protocols,

including SSL/TLS for secure web communications and digital

signatures for authentication and data integrity [11].

RSA Key Generation:

 Choose two large primes p and q
 n ← p * q
 φ(n) ← (p - 1) * (q - 1)

 Choose e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1
 Compute d such that (d * e) % φ(n) = 1
 Public key = (e, n)
 Private key = (d, n)

 RSA Encryption(m, e, n):
 c ← (m^e) % n

 return c

 RSA Decryption(c, d, n):
 m ← (c^d) % n
 return m

Figure 4: Representation of the RSA algorithm, detailing key

generation, encryption, and decryption of a message using

modular arithmetic.

Source: Authors, (2025).

III. RELATED WORKS

Some work has already been done to measure the

performance of Android applications, such as the one by [12],

which made comparisons of applications running on an Android

emulator under a Linux x86 system. The study concluded that

native applications can be up to 30 times faster than a Java

application executing the same algorithm, and this time can be

improved up to 10 times if the Java application uses JNI. However,

since the tests were executed on an emulator, the results may not

fully reflect the reality of an embedded system. Additionally, the

experiments were limited to calculations with mathematical

integers, which may not be sufficient to capture the performance

difference.

According to [13] executed 11 algorithms for the

comparison between a pure Java application running a shared

library via the virtual machine and one running the same library via

JNI on specific hardware. In their results, they found that, overall,

an application using JNI performs 34.20% better than one using the

virtual machine. However, in 3 out of the 11 tests, the Java

application performed better. Notably, the author developed their

own task execution timer within their Java application, allowing a

biased result when the system decides that this is not a priority task.

This paper is based on the work of [14], in which they used

6 algorithms and compared the results between a native application

and a Java application with JNI. In contrast to what might be

expected, their results indicated that the algorithms called via JNI

were faster than those in the native application, except for Dijkstra's

algorithm. The authors concluded that native applications were

slower due to the native Android library, GNU C, and the

compilation done with the GNU Compiler, in comparison with the

bionic C/C++ library used in the development of the native layer

of their JNI application.

A limitation in the authors' methodology is that each

algorithm was executed 15 times, but it is not clear if there was

variation in the inputs, as the result graphs are almost constant, with

some slight variations that may be related to other processes that

the operating system was running at the time. Another limitation is

how the test timing was implemented, which was done via software

within their target (system). Since Android is not a real-time

operating system, this method of timing may lead to biased results

when the system determines that certain tasks are not a priority.

IV. MATERIALS AND METHODS

In this work, we developed a pipeline for evaluating the

execution time of native and Java applications using a timer

external to the device running the application. We chose to use an

external timer instead of one programmed within the applications

to avoid potential bias caused by the system's task scheduling

during the timing of execution. By doing so, we isolated the timer

as an external device solely responsible for measuring the time of

each execution.

Figure 5 provides a detailed view of the developed

pipeline.

Page 22

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 20-27, January/February., 2025.

Figure 5: Developed pipeline for algorithm evaluation: the JNI

application tests are initiated via LCD, while the native

application tests are started through the Android Debug Bridge

(ADB); When the target begins executing the algorithm, it

triggers the external timer, and at the end of the test, it stops the

timer.

Source: Authors, (2025).

The standard way to access a native application on an

Android device is through the command line, as it is executed by

an external machine referred to as the Host, via ADB. The method

used to access the Java application is through a graphical interface,

where the Target utilizes an LCD screen to display the options of

algorithms to be executed.

When the Host machine or the LCD requests the execution

of an algorithm, a sequence of executions is called according to the

chosen algorithm. For instance, if the Quicksort algorithm tests are

triggered via the LCD, at that moment, tests with 8 different input

sizes are programmed, and each of these sizes will be executed 100

times. In other words, the counting is done 800 times in this

example of sequence of executions.
When the test initialization is requested, the Target verifies

if the timer is available to start the countdown. If it is not available,

Target waits for its release; if it is available, it triggers the timer,

initiating the countdown and starting the execution of an algorithm.

When an algorithm completes its execution, the application

triggers the timer again, ending the countdown, and at this moment,

the timer sends the test result to the Host and notifies the Target

that is available to count again.
For the test execution, the hardware chosen was Raspberry

Pi 4B, and the operating system used was Android 13. To measure

the time, an external device (Arduino Micro) controlled via

General Purpose Input/Output (GPIO) by Target was utilized.
In the following subsections, we will explain each of the

modules presented in Figure 5.

IV.1 HOST

For the host machine, represented in Figure 5 as 'Host', was

used a computer with Ubuntu 20.04.6 LTS 64-bit system. The Host

has two tasks in the developed pipeline, executing tests of the

Android Native Layer via ADB and receiving the times of each

test, both native and JNI, through Universal Asynchronous

Receiver/Transmitter (UART) communication.

IV.2 TIMER

The execution time is calculated using an external hardware,

represented in Figure 5 as 'Timer (Arduino)'. The Timer receives a

pulse on a GPIO to indicate the start of an execution. During the

execution, it signals that it is busy counting through another GPIO.

When the execution is completed, another pulse is sent to the same

GPIO, indicating that the counting can stop. Upon receiving the

second pulse on the first GPIO, the Arduino writes the execution

time in microseconds to the serial port, which will be received by

the Host. Due to the external communication, this method takes

some time that should be disregarded in the algorithm results,

referred to as the 'communication offset' between the Target and

the Timer.

IV.3 TARGET

The test target, represented in Figure 5 as 'Target (Raspberry

Pi)', used Android version 13 ported to the Raspberry Pi 4B [15].

This platform featured the Broadcom BCM2711 SoC, with 4 ARM

Cortex-A72 64-bit cores running at 1.8GHz and 8GB of RAM [16].

For cross-compilation, the Low Level Virtual Machine (LLVM)

compiler infrastructure, which is the standard in current versions of

the Android Open Source Project, (AOSP) was used in conjunction

with Clang, the C/C++ compiler present in LLVM, both of which

were included in the Android NDK (Native Development Kit). The

version of the Android NDK used was r17c [17]. To access the

interface of the JNI application, a 7-inch LCD screen with a

resolution of 1024x600 pixels was utilized, and to execute the

program of the native layer, the Host was used.

As the timer is an external hardware that communicates with

Android via GPIO, it was necessary to develop a native library to

access it. This library defines a class, called Timer, that

encapsulates the management of GPIO in 3 methods that:

1) Indicate whether the timer is available.

2) Trigger and stop the timer.

3) Reset the test counting.

Figure 6: Circuit connections between the target and timer.

Source: Authors, (2025).

Figure 6 represents the circuit connection between the

Target and the timer. To make external hardware accessible to the

Java application layer on Android, a Hardware Abstraction Layer

(HAL) must be created. To access the timer, the implemented HAL

utilizes the Timer library mentioned in the previous paragraph and

creates a service in the Android framework, enabling access

through the JNI application.

Page 23

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 20-27, January/February., 2025.

IV.4 TARGET ALGORITHM LIBRARY

For the test execution on the target, we selected some well-

established algorithms, such as Quicksort, Dijkstra, Fast Fourier

Transform (FFT), and the Rivest-Shamir-Adleman (RSA)

algorithm, which were implemented in a single library and

statically compiled along with the executed binaries. Here is a brief

description of the algorithms and how they were executed in this

work:

 Quicksort, from the automation category, is an algorithm

for sorting arrays. We executed arrays of lengths 1000, 2000, 4000,

6000, 8000, 10000, 12000, and 14000. For each array length, we

performed 100 tests with the worst-case scenario for the algorithm,

including arrays that are already sorted or have all elements equal.

 Dijkstra's algorithm, from the networks category,

calculates the minimum cost between the vertices of a graph.

Weighted graphs were run with vertex numbers of 200, 400, 600,

800, 1000, 1200 and 1400, and for each number of vertices 100

different randomly generated graphs with connections and weights

were tested.

 Fast Fourier Transform (FFT), from the

telecommunication category, decomposes a polynomial signal into

the frequency domain. We executed inputs with power of 2, which

indicates the degree of the polynomial signal to be transformed.

The exponents used in the tests were 14, 15, 16, 17, 18, 19, and 20.

 The Rivest-Shamir-Adleman (RSA) algorithm, from the

cybersecurity category, encrypts messages using a private and

public key generated from prime numbers. With a fixed key, we

encrypted and decrypted texts of lengths 2000, 4000, 6000, 8000,

10000, 12000, and 14000, with any ASCII character. For each

length, we tested 100 different strings generated randomly.

IV.5 NATIVE APPLICATION

A Native Application is a type of application that uses

native libraries, i.e. libraries that can communicate directly with the

system. The Native Application is a type of application that makes

use of native libraries, meaning libraries that can communicate

directly with the system. As Android is a Linux-based system, this

type of application is developed in C/C++, and after compilation, a

single binary file is generated that can be executed using the

command line provided by adb. Figure 7 represents the binary of

the application with algorithm library compiled together with it.

Figure 7: Representation of the native application compiled

together with the algorithm library.

Source: Authors, (2025).

IV.6 JAVA APPLICATION USING JNI

Android applications developed in Java and Kotlin are the

main ways for users to interact with a device, using a graphical

interface. When compiled, the Java application generates a

bytecode, which, differently from native applications that are

executed directly by the system, requires a virtual machine to

translate it. The virtual machine used by Android is called the

Android Runtime (ART). Due to the distinct execution and

compilation of Java and C/C++, the developed method for

communication between these two types of languages is the Java

Native Interface (JNI), which integrates a Java method to access

functions from a shared native library. Figure 8 illustrates the flow

of access by the Java application to the shared library, which, in

this case, contains the functions from the algorithm library to be

executed.

Figure 8: Representation of the communication flow between a

Java application and a shared native library using JNI.

Source: Authors, (2025).

V. RESULTS AND DISCUSSIONS

The results were collected from the sequence of executions

for each algorithm and plotted in graphs for better visualization.

First, it was necessary to calculate the average of the

communication offset between the applications and the Timer. This

value is subtracted from the algorithm results to obtain a value that

closely approximates the real execution time.

V.1 ESTIMANION OF THE COMMUNICATION OFFSET

BETWEEN THE SYSTEM AND THE TIMER

Figure 9 shows the difference between the communication

offsets for each application and the external timer. This means that

the Timer is called without any algorithm running, resulting in only

the time taken for the pulse to be sent twice – once to start the

counting and another to stop it. The x-axis represents the number

of executions, and the y-axis represents the time obtained in each

repetition. The average of these times gives the value of the

communication offset, which will be subtracted from the execution

time of the algorithms.

Page 24

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 20-27, January/February., 2025.

Figure 9: Overhead due to Communication in Java Applications

(100 Runs).

Source: Authors, (2025).

Figure 10: Variation in FFT Algorithm Execution Time for 100

Tests with 216. Inputs.

Source: Authors, (2025).

As shown, the native application had an average offset of

199.68ms, while the Java application had an average offset of

200.65ms. This small difference is possibly related to the layers

that the system needs to pass to communicate with a JNI

application.

V.2 CALCULATION OF ALGORITHM EXECUTION TIMES

Figure 11 presents the execution times of various algorithms

for different input sizes. The x-axis represents the input size, while

y-axis shows the execution time (excluding communication

overhead). Each column displays the average execution time across

100 test runs for a specific input size, measured for both the native

application and the JNI implementation.

Error bars indicate the standard deviation of these execution

times. Figure 11a illustrates that the native application consistently

outperforms JNI across all input sizes. Notably, the native

application’s execution time is between 3% (6,000 inputs) and 20%

(2,000 inputs) faster than JNI.

Figure 11a: Result obtained with the Quick Sort algorithm for

input vectors with sizes ranging between 2000 and 14000.

Source: Authors, (2025).

Similar trends are observed in Figure 11b. The native

application generally executes faster than JNI, with an average

difference of 4% to 5.5%. In rare instances where JNI is faster, the

maximum advantage is around 1.4% compared to the native

application’s average execution time.

Figure 11b: Result obtained with the Dijkstra algorithm for

graphs with number of vertices varying between 200 and 1400.

Source: Authors, (2025).

Figure 11c depicts the performance of the RSA algorithm.

The native application demonstrates consistent speedup compared

to JNI for all input sizes. However, the performance gap narrows

with increasing input size. The native application exhibits a

maximum efficiency gain of 6.5% (2,000 inputs) and a maximum

of 0.7% (1,200 inputs) over JNI.

Page 25

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 20-27, January/February., 2025.

Figure 11c: Result obtained with the RSA algorithm for input

vectors with sizes between 2000 and 14000.

Source: Authors, (2025).

In the analysis of the FFT algorithm, it was necessary to

make a scale break as shown in Figure 11d, as the time variation

according to the inputs was high, varying from 8.4 ms for 214

inputs and 2194 ms for 220 inputs. The native application is faster

than JNI at most input sizes, with the average ranging between 3%

and 12%. However, in cases where the JNI application is faster,

there is a large variation, being 5% to 15% faster than the native

one, on average executions.

Figure 11d: Results of running the FFT algorithm on vectors size

214to 220.

Source: Authors, (2025).

VI. ANALYSIS OF RESULTS

Our experiments show that native applications generally

outperform Java applications using JNI, as shown in the graphs of

Figure 11. This advantage stems from the way each application

interacts with the system. Native applications have built-in

algorithm libraries allowing their code to run directly with the

system without needing translation. In contrast, Java applications

using JNI require an extra layer of communication. This translation

process through JNI adds some overhead, slowing down the

execution.

These factors not only make native applications faster but

also less prone to execution time variations. Figure 10 illustrates

this point for the FFT algorithm with a 216 input. The native

application’s execution time remains consistent, while the Java

application’s time fluctuates more. Although the Java application

might be faster in rare moments, the native application is generally

faster and more reliable.

These variations explain the rare instances where the Java

application surpassed the native application. Specifically, this

occurred with the Dijkstra algorithm for graphs with 600 vertices

and de FFT algorithm for a 215 input. The reason for these

variations lies in Android. Since Android is a Linux-based system,

it doesn’t guarantee real-time performance. This means that in

some situations, the system might prioritize other tasks, causing

temporary slowdowns for the Java application. However, these

slowdowns shouldn’t be a common occurrence.

VII. CONCLUSIONS AND FUTURE WORKS

This article provides a comprehensive comparison between

the performance of native C/C++ applications and Java

applications utilizing a shared library accessed via the Java Native

Interface (JNI) from the Android Native Development Kit (NDK).

Both applications were compiled using the same toolkit to ensure

a level playing field for comparison.

The experimental results demonstrate a consistent

performance advantage for the native C/C++ application across all

tested algorithms. Specifically, the performance improvements

were significant, with the native application outperforming the Java

application by up to 20% for the Quicksort algorithm. For

Dijkstra’s algorithm, the performance gain was 5.5%, while for the

Fast Fourier Transform (FFT), the improvement was 12%. The

RSA algorithm showed a performance enhancement of 6.5%.

These results underscore the efficiency of native code execution,

particularly in scenarios where computational intensity is high.
However, it is worth noting that for very small input sizes,

the execution times for both types of applications were relatively

faster and exhibited greater susceptibility to system variations. In

these cases, there were instances where the Java application

achieved faster execution times, influenced by system fluctuations

and variations in processing load.
When comparing the results of this study with those

reported by Kim, Cho, Kim, Hwang, Yoon, and Jeon [14], it is

evident that the complete migration of AOSP to using the Bionic

library and the LLVM compilation toolkit has significantly

optimized the performance of native applications. This transition

has resulted in native applications consistently outpacing Java

applications that use JNI. The improvements in the Bionic library

and LLVM toolchain have contributed to this enhanced

performance by optimizing low-level operations and compilation

processes.
Looking ahead, future research will explore additional

performance comparisons by examining Java/native

communication via JNI against communication using Binder Inter-

Process Communication (IPC). Binder IPC, introduced in Android

10, represents a paradigm shift in the Hardware Abstraction Layer

(HAL) development compared to the traditional JNI standard. This

investigation will aim to assess how Binder IPC influences

performance and efficiency in comparison to JNI, providing further

insights into optimizing communication strategies within Android

apqplications.

Page 26

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 20-27, January/February., 2025.

VIII. AUTHOR’S CONTRIBUTION

Conceptualization: Álison de Oliveira Venâncio.

Methodology: Álison de Oliveira Venâncio.

Investigation: Álison de Oliveira Venâncio.

Discussion of results: Álison de Oliveira Venâncio.

Writing – Original Draft: Álison de Oliveira Venâncio.

Writing – Review and Editing: Thales Ruano Barros de Souza,

Bruno Raphael Cardoso Dias.

Supervision: Thales Ruano Barros de Souza, Bruno Raphael

Cardoso Dias.

Approval of the final text: Álison de Oliveria Venâncio, Thales

Ruano Barros de Souza, Bruno Raphael Cardoso Dias.

IX. ACKNOWLEDGMENTS

This work was supported by the training program of the

Instituto de Pesquisas Eldorado. The research was conducted

during the specialization course in Embedded Systems at the

SENAI São Paulo Faculty of Technology – "Anchieta" Campus.

X. REFERENCES

[1] What is Android. Accessed: Sep. 26, 2024. [Online]. Available:

https://www.android.com/what-is-android.

[2] Statcounter GlobalStats. Accessed: Sep. 26, 2024. [Online]. Available:

https://gs.statcounter.com.

[3] Android Open Source Project. Accessed: Sep. 26, 2024. [Online]. Available:
https://source.android.com.

[4] Android NDK. Accessed: Sep. 26, 2024. [Online]. Available:

https://developer.android.com/ndk.

[5] S. Liang, "The Java Native Interface Programmer's Guide and Specification",

1st ed.: Addison-Wesley, 1999.

[6] A. Aftab, M. A. Ali, A. Ghaffar, A. U. R. Shah, H. M. Ishfaq, and M. Shujaat,

"Review on performance of quick sort algorithm", International Journal of
Computer Science and Information Security, vol. 19, no. 2, pp. 114-120, 2021.

[7] Y. Sun, M. Fang, M. and Y. Su, "AGV Path Planning based on Improved
Dijkstra Algorithm", Journal of Physics: Conference Series, vol. 1746, no. 1, 2021.

[8] U. S. R. Murty, John. A. Bondy. "Graph Theory", 1st. ed.: Springer-Verlag,
2008.

[9] F. Mukhlif, and A. Saif, "Comparative study on Bellman-Ford and Dijkstra
algorithms", in International Conference on Communication, Electrical and

Computer Networks, 2020.

[10] H. A. Ghani, M. R. A. Malek, M. F. K. Azmi, M. J. Muril and A. Azizan, "A

review on sparse Fast Fourier Transform applications in image processing",

International Journal of Electrical & Computer Engineering, vol. 10, no. 2, pp.
1346-1351, 2020.

[11] A. B. Alhassan, A. H. Mahama and S. Alhassan, "Residue architecture
enhanced audio data encryption scheme using the Rivest, Shamir, Adleman

algorithm", International Journal of Advanced Engineering and Technology, vol. 6,

no. 2, pp. 21-29, 2022.

[12] L. Batyuk, A.D. Schmidt, H.G. Schmidt, A. Camtepe and S Albayrak,

"Developing and Benchmarking Native Linux Applications on Android", Lecture
Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, vol. 7, pp. 381-392, 2009.

[13] C. M. Lin, J. H. Lin, C. R. Dow and C. M. Wen, "Benchmark Dalvik and Native

Code for Android System", in Second International Conference on Innovations in

Bio-inspired Computing and Applications, Shenzhen, China, 2011, pp. 320-323,
doi: 10.1109/IBICA.2011.85.

[14] Y. J. Kim, S. J. Cho, K. J. Kim, E. H. Hwang, S. H. Yoon and J. W. Jeon,
"Benchmarking Java application using JNI and native C application on Android,"

in 12th International Conference on Control, Automation and Systems, Jeju, Korea

(South), 2012, pp. 284-288.

[15] Android for Raspberry Pi4. Accessed: Sep. 26, 2024. [Online]. Available:

https://github.com/android-rpi/device_arpi_rpi4.

[16] Raspberry Pi4 Model B. Accessed: Sep. 26, 2024. [Online]. Available:

https://www.raspberrypi.com/products/raspberry-pi-4-model-b.

[17] Google LLC. (2024). NDK Revision History. Accessed: Sep. 26, 2024.

[Online]. Available:

https://developer.android.com/ndk/downloads/revision_history.

Page 27

