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Android is a popular operating system based on the Linux kernel and has a Java-based 

framework. As it is built on Linux, it supports the development of applications written in 

C/C++, known as native applications. The Native Development Kit (NDK), along with the 

Java Native Interface (JNI), provides a solution for communication between Java 

applications and native C/C++ applications, resulting in a significant performance boost. 

This article evaluated the performance difference between Java applications using JNI with 

the NDK and native C/C++ applications, focusing on algorithms widely used in various 

areas such as automation, networking, telecom, cybersecurity, etc. We conducted sequence 

of executions initiated either through a graphical interface or via the Android Debug Bridge 

(ADB) command line, with timing performed by external hardware with its own firmware 

for this evaluation. Based on the results, we observed that in all test cases, the native 

application performs faster, except when there are variations related to process scheduling, 

which may rarely lead to a reversal of this pattern. 
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I. INTRODUCTION 

Android [1] is an operating system initially developed with 

a focus on mobile devices, but nowadays it is widely used in 

various applications such as cars, televisions, refrigerators, POS 

systems, and more. It is currently the most popular operating 

system [2] and is officially developed by the Open Handset 

Alliance. The source code is released as open-source software [3], 

and its structure is based on the Linux kernel, with a Java-based 

framework in its user space.As Android is a system based on Linux, 

it also supports the development of applications written in C/C++. 

These are known as native applications because they use libraries 

compiled specifically for the target system. Some examples of 

native libraries include libC, OpenGL, WebKit, etc. Since this type 

of application is closer to the kernel layer, its execution time is 

usually shorter, but there is a higher complexity in understanding 

and mastering the syntax of the language.Java is a programming 

language that utilizes a virtual machine to interact with the system, 

which results in higher processing costs due to the additional layers 

of software and this can reduce performance when accessing 

hardware devices. For this purpose, there is a tool called the Native 

Development Kit (NDK) [4] that allows communication between a 

Java application and a native C/C++ application, bringing a 

considerable performance gain to them.One of the main tools of the 

NDK is the Java Native Interface [5] (JNI). Applications that use 

JNI can incorporate native code written in C/C++ while still 

gaining the advantages of using a higher-level language. 

Additionally, JNI enables the utilization of native Linux libraries, 

in conjunction with the benefits of the Android framework 

simultaneously. 

When developing an Android application, it is essential to 

consider how the system works, and one of the first aspects to 

evaluate is the execution time. The performance difference 

between a Java application and a C/C++ application has been a 

well-established study, but there are few analyses related to this 

topic applied on an Android platform using the NDK. 
In this paper, we evaluate the performance difference 

between a Java application using JNI and a native C/C++ 

application. The focus is on testing consolidated algorithms widely 

used in various areas such as automation, networks, 

telecommunications, cybersecurity, etc. The main objective of this 
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work is to establish a comparison between these two development 

approaches in Android. This comparison provides valuable insights 

for developers who need to choose between the two approaches to 

achieve greater efficiency in their applications, either due to 

hardware limitations or battery consumption. 
 

The article is organized as follows: 

 Section II: Review of the algorithms used for performance 

comparison. 

 Section III: Brief description of related works. 

 Section IV: Explanation of the development methodology 

for the test pipeline, metrics, and analysis. 

 Section V: Presentation of the test case results. 

 Section VI: Analysis of obtained results. 

 Section VII: Conclusion of the work and proposals for 

future research. 
 

II. ALGORITHM DESCRIPTIONS 

This section provides a comprehensive overview of the 

algorithms selected for our performance comparison. These 

algorithms are widely used across various domains, including data 

processing, network routing, signal processing, and cryptography. 

We have carefully chosen algorithms that exhibit different 

computational complexities and characteristics to ensure a 

thorough evaluation of the performance differences between Java 

and C/C++ implementations on Android. 
 

II.1 QUICKSORT 

Quicksort is renowned for its efficiency as a sorting 

algorithm and utilizes a divide-and-conquer strategy to organize 

data. The core mechanism involves partitioning an array into 

smaller subarrays around a pivot element. This partitioning step is 

recursively applied to the resulting subarrays until the entire array 

is sorted. The selection of the pivot element significantly affects 

the performance of Quicksort. In the best-case scenario, where the 

pivot divides the array into nearly equal halves, Quicksort achieves 

a time complexity of O(n log n). However, in the worst case, where 

the pivot selection results in highly imbalanced partitions, the time 

complexity can degrade to O(n²). To address these performance 

issues, techniques such as introsort, which combines Quicksort 

with Heapsort, and three-way partitioning are employed. Introsort 

ensures that the algorithm's performance remains O(n log n) in the 

worst case, while three-way partitioning helps improve 

performance by handling arrays with many duplicate elements 

more effectively [6]. 

 
QuickSort(arr, low, high): 

    if low < high: 
        pivot ← Partition(arr, low, high) 

        QuickSort(arr, low, pivot - 1) 
        QuickSort(arr, pivot + 1, high) 
Partition(arr, low, high): 
    pivot ← arr[high] 
    i ← low – 1 

 
    for j ← low to high - 1: 
        if arr[j] ≤ pivot: 
            i ← i + 1 

            Swap(arr[i], arr[j]) 
    Swap(arr[i + 1], arr[high]) 
    return i + 1 

Figure 1: Flow of the QuickSort algorithm showing the 

partitioning process and recursion to sort a list of numbers. 

Source: Authors, (2025). 

II.2 DIJKSTRA'S ALGORITHM 

Dijkstra's algorithm is a fundamental graph search 

algorithm designed to determine the shortest path between nodes 

in a weighted graph. The algorithm operates by iteratively 

exploring neighboring nodes and updating the estimated distance 

to the destination node. A priority queue, often implemented as a 

minimum heap, is used to select the node with the smallest known 

distance for expansion. This approach ensures that the shortest path 

is identified efficiently. 

The time complexity of Dijkstra’s algorithm depends on the 

data structure used for the priority queue. When using a binary 

heap, the algorithm runs in O((|V| + |E|) log V), where |V| is the 

number of vertices and |E| is the number of edges in the graph. If a 

Fibonacci heap is used, the complexity can be reduced to O(|E| + 

|V| log |V|) [7]. Dijkstra's algorithm is widely applicable, including 

in network routing protocols, geographic information systems, and 

robotics for pathfinding. 

It is important to note that Dijkstra’s algorithm can only be 

used on graphs that have non-negative edge weights. For graphs 

containing negative edge weights, the Bellman-Ford algorithm or 

other techniques may be used [8], [9].  

 

 
Dijkstra(graph, source): 

    for each v of V: 

        dist[v] ← ∞     

    dist[source] ← 0 

    priority_queue ← [source] 
  
    while priority_queue is not empty: 
        u ← node with smallest dist in priority_queue 

        Remove u from priority_queue 
         
        for each neighbor v of u: 
            if dist[u] + weight(u, v) < dist[v]: 
                dist[v] ← dist[u] + weight(u, v) 
                Add v to priority_queue 

    return dist 
 

Figure 2: Illustration of Dijkstra's algorithm determining the 

shortest path in a weighted graph, focusing on updating distances 

and selecting nodes using a priority queue. 

Source: Authors, (2025). 

 

II.3 FAST FOURIER TRANSFORM 

The Fast Fourier Transform (FFT) is a powerful algorithm 

for computing the Discrete Fourier Transform (DFT), which 

decomposes a signal into its constituent frequency components. 

The FFT is invaluable in various signal processing applications, 

including filtering, data compression, and spectral analysis. In 

image processing, FFT is employed for tasks such as convolution, 

filtering, and edge detection. 

The efficiency of FFT arises from its recursive structure, 

which reduces the computational complexity from O(n²) for the 

naive DFT algorithm to O(n log n). This reduction is achieved by 

recursively dividing the DFT computation into smaller, more 

manageable subproblems. The FFT’s ability to handle large 

datasets with reduced computational requirements makes it a 

crucial tool in both theoretical and applied signal processing [10]. 
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FFT(A): 

    n ← length(A) 
    if n = 1: 
        return A 
     
    w_n ← e^(2πi/n)  // nth root of unity 

    A_even ← FFT(A[0], A[2], ..., A[n-2]) 
    A_odd  ← FFT(A[1], A[3], ..., A[n-1]) 
     
    for k = 0 to n/2 - 1: 
        w ← w_nk 

        A[k] ← A_even[k] + w * A_odd[k] 
        A[k + n/2] ← A_even[k] - w * A_odd[k] 
     
    return A 

Figure 3: Diagram of the FFT decomposition process, showing 

how the input sequence is divided into even and odd components 

and processed recursively. 

Source: Authors, (2025). 

 

II.4 RIVEST-SHAMIR-ADLEMAN ALGORITHM 

The Rivest-Shamir-Adleman (RSA), algorithm is a widely 

adopted public-key cryptosystem that provides a secure method for 

encrypting and decrypting information over public channels. The 

security of RSA is based on the mathematical difficulty of factoring 

large composite numbers. The algorithm involves generating a pair 

of keys: a public key used for encryption and a private key used for 

decryption. Encryption is performed by raising the message to the 

power of the public key exponent, modulo the product of two large 

prime numbers.  

Decryption, on the other hand, is carried out using the 

corresponding private key.  The computational complexity of RSA 

encryption and decryption is dominated by the modular 

exponentiation step, which has a time complexity of O((log n)³), 

where n is the size of the modulus (product of the two primes). 

The strength of RSA lies in the size of the keys and the 

computational challenge associated with factoring the product of 

large primes. RSA is extensively used in various security protocols, 

including SSL/TLS for secure web communications and digital 

signatures for authentication and data integrity [11].  

 
RSA Key Generation: 

    Choose two large primes p and q 
    n ← p * q 
    φ(n) ← (p - 1) * (q - 1) 

 
    Choose e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1 
    Compute d such that (d * e) % φ(n) = 1 
    Public key = (e, n) 
    Private key = (d, n) 

 
 RSA Encryption(m, e, n): 
    c ← (m^e) % n 

    return c 

 
 RSA Decryption(c, d, n): 
    m ← (c^d) % n 
    return m 

 

Figure 4: Representation of the RSA algorithm, detailing key 

generation, encryption, and decryption of a message using 

modular arithmetic. 

Source: Authors, (2025). 

 

 

III. RELATED WORKS 

Some work has already been done to measure the 

performance of Android applications, such as the one by [12], 

which made comparisons of applications running on an Android 

emulator under a Linux x86 system. The study concluded that 

native applications can be up to 30 times faster than a Java 

application executing the same algorithm, and this time can be 

improved up to 10 times if the Java application uses JNI. However, 

since the tests were executed on an emulator, the results may not 

fully reflect the reality of an embedded system. Additionally, the 

experiments were limited to calculations with mathematical 

integers, which may not be sufficient to capture the performance 

difference. 
 

According to [13] executed 11 algorithms for the 

comparison between a pure Java application running a shared 

library via the virtual machine and one running the same library via 

JNI on specific hardware. In their results, they found that, overall, 

an application using JNI performs 34.20% better than one using the 

virtual machine. However, in 3 out of the 11 tests, the Java 

application performed better. Notably, the author developed their 

own task execution timer within their Java application, allowing a 

biased result when the system decides that this is not a priority task.  
 

This paper is based on the work of [14], in which they used 

6 algorithms and compared the results between a native application 

and a Java application with JNI. In contrast to what might be 

expected, their results indicated that the algorithms called via JNI 

were faster than those in the native application, except for Dijkstra's 

algorithm. The authors concluded that native applications were 

slower due to the native Android library, GNU C, and the 

compilation done with the GNU Compiler, in comparison with the 

bionic C/C++ library used in the development of the native layer 

of their JNI application. 
 

A limitation in the authors' methodology is that each 

algorithm was executed 15 times, but it is not clear if there was 

variation in the inputs, as the result graphs are almost constant, with 

some slight variations that may be related to other processes that 

the operating system was running at the time. Another limitation is 

how the test timing was implemented, which was done via software 

within their target (system). Since Android is not a real-time 

operating system, this method of timing may lead to biased results 

when the system determines that certain tasks are not a priority. 

 

IV. MATERIALS AND METHODS 

In this work, we developed a pipeline for evaluating the 

execution time of native and Java applications using a timer 

external to the device running the application. We chose to use an 

external timer instead of one programmed within the applications 

to avoid potential bias caused by the system's task scheduling 

during the timing of execution. By doing so, we isolated the timer 

as an external device solely responsible for measuring the time of 

each execution. 

Figure 5 provides a detailed view of the developed 

pipeline. 
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Figure 5: Developed pipeline for algorithm evaluation: the JNI 

application tests are initiated via LCD, while the native 

application tests are started through the Android Debug Bridge 

(ADB); When the target begins executing the algorithm, it 

triggers the external timer, and at the end of the test, it stops the 

timer. 

Source: Authors, (2025). 

 

The standard way to access a native application on an 

Android device is through the command line, as it is executed by 

an external machine referred to as the Host, via ADB. The method 

used to access the Java application is through a graphical interface, 

where the Target utilizes an LCD screen to display the options of 

algorithms to be executed. 

When the Host machine or the LCD requests the execution 

of an algorithm, a sequence of executions is called according to the 

chosen algorithm. For instance, if the Quicksort algorithm tests are 

triggered via the LCD, at that moment, tests with 8 different input 

sizes are programmed, and each of these sizes will be executed 100 

times. In other words, the counting is done 800 times in this 

example of sequence of executions. 
When the test initialization is requested, the Target verifies 

if the timer is available to start the countdown. If it is not available, 

Target waits for its release; if it is available, it triggers the timer, 

initiating the countdown and starting the execution of an algorithm. 

When an algorithm completes its execution, the application 

triggers the timer again, ending the countdown, and at this moment, 

the timer sends the test result to the Host and notifies the Target 

that is available to count again. 
For the test execution, the hardware chosen was Raspberry 

Pi 4B, and the operating system used was Android 13. To measure 

the time, an external device (Arduino Micro) controlled via 

General Purpose Input/Output (GPIO) by Target was utilized.  
In the following subsections, we will explain each of the 

modules presented in Figure 5. 
 

IV.1 HOST 

For the host machine, represented in Figure 5 as 'Host', was 

used a computer with Ubuntu 20.04.6 LTS 64-bit system. The Host 

has two tasks in the developed pipeline, executing tests of the 

Android Native Layer via ADB and receiving the times of each 

test, both native and JNI, through Universal Asynchronous 

Receiver/Transmitter (UART) communication. 

 

IV.2 TIMER 

The execution time is calculated using an external hardware, 

represented in Figure 5 as 'Timer (Arduino)'. The Timer receives a 

pulse on a GPIO to indicate the start of an execution. During the 

execution, it signals that it is busy counting through another GPIO. 

When the execution is completed, another pulse is sent to the same 

GPIO, indicating that the counting can stop. Upon receiving the 

second pulse on the first GPIO, the Arduino writes the execution 

time in microseconds to the serial port, which will be received by 

the Host. Due to the external communication, this method takes 

some time that should be disregarded in the algorithm results, 

referred to as the 'communication offset' between the Target and 

the Timer. 

 
IV.3 TARGET 

The test target, represented in Figure 5 as 'Target (Raspberry 

Pi)', used Android version 13 ported to the Raspberry Pi 4B [15]. 

This platform featured the Broadcom BCM2711 SoC, with 4 ARM 

Cortex-A72 64-bit cores running at 1.8GHz and 8GB of RAM [16]. 

For cross-compilation, the Low Level Virtual Machine (LLVM) 

compiler infrastructure, which is the standard in current versions of 

the Android Open Source Project, (AOSP) was used in conjunction 

with Clang, the C/C++ compiler present in LLVM, both of which 

were included in the Android NDK (Native Development Kit). The 

version of the Android NDK used was r17c [17]. To access the 

interface of the JNI application, a 7-inch LCD screen with a 

resolution of 1024x600 pixels was utilized, and to execute the 

program of the native layer, the Host was used. 

As the timer is an external hardware that communicates with 

Android via GPIO, it was necessary to develop a native library to 

access it. This library defines a class, called Timer, that 

encapsulates the management of GPIO in 3 methods that: 
 

1) Indicate whether the timer is available. 

2) Trigger and stop the timer. 

3) Reset the test counting. 

 

 
Figure 6: Circuit connections between the target and timer. 

Source: Authors, (2025). 
 

Figure 6 represents the circuit connection between the 

Target and the timer. To make external hardware accessible to the 

Java application layer on Android, a Hardware Abstraction Layer 

(HAL) must be created. To access the timer, the implemented HAL 

utilizes the Timer library mentioned in the previous paragraph and 

creates a service in the Android framework, enabling access 

through the JNI application. 
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IV.4 TARGET ALGORITHM LIBRARY 

For the test execution on the target, we selected some well-

established algorithms, such as Quicksort, Dijkstra, Fast Fourier 

Transform (FFT), and the Rivest-Shamir-Adleman (RSA) 

algorithm, which were implemented in a single library and 

statically compiled along with the executed binaries. Here is a brief 

description of the algorithms and how they were executed in this 

work: 

 Quicksort, from the automation category, is an algorithm 

for sorting arrays. We executed arrays of lengths 1000, 2000, 4000, 

6000, 8000, 10000, 12000, and 14000. For each array length, we 

performed 100 tests with the worst-case scenario for the algorithm, 

including arrays that are already sorted or have all elements equal. 

 Dijkstra's algorithm, from the networks category, 

calculates the minimum cost between the vertices of a graph. 

Weighted graphs were run with vertex numbers of 200, 400, 600, 

800, 1000, 1200 and 1400, and for each number of vertices 100 

different randomly generated graphs with connections and weights 

were tested. 

 Fast Fourier Transform (FFT), from the 

telecommunication category, decomposes a polynomial signal into 

the frequency domain. We executed inputs with power of 2, which 

indicates the degree of the polynomial signal to be transformed. 

The exponents used in the tests were 14, 15, 16, 17, 18, 19, and 20. 

 The Rivest-Shamir-Adleman (RSA) algorithm, from the 

cybersecurity category, encrypts messages using a private and 

public key generated from prime numbers. With a fixed key, we 

encrypted and decrypted texts of lengths 2000, 4000, 6000, 8000, 

10000, 12000, and 14000, with any ASCII character. For each 

length, we tested 100 different strings generated randomly. 

IV.5 NATIVE APPLICATION 

A Native Application is a type of application that uses 

native libraries, i.e. libraries that can communicate directly with the 

system. The Native Application is a type of application that makes 

use of native libraries, meaning libraries that can communicate 

directly with the system. As Android is a Linux-based system, this 

type of application is developed in C/C++, and after compilation, a 

single binary file is generated that can be executed using the 

command line provided by adb. Figure 7 represents the binary of 

the application with algorithm library compiled together with it. 

 

 
Figure 7: Representation of the native application compiled 

together with the algorithm library. 

Source: Authors, (2025). 

IV.6 JAVA APPLICATION USING JNI 

Android applications developed in Java and Kotlin are the 

main ways for users to interact with a device, using a graphical 

interface. When compiled, the Java application generates a 

bytecode, which, differently from native applications that are 

executed directly by the system, requires a virtual machine to 

translate it. The virtual machine used by Android is called the 

Android Runtime (ART). Due to the distinct execution and 

compilation of Java and C/C++, the developed method for 

communication between these two types of languages is the Java 

Native Interface (JNI), which integrates a Java method to access 

functions from a shared native library. Figure 8 illustrates the flow 

of access by the Java application to the shared library, which, in 

this case, contains the functions from the algorithm library to be 

executed. 

 

 
Figure 8: Representation of the communication flow between a 

Java application and a shared native library using JNI.  

Source: Authors, (2025). 

 
V. RESULTS AND DISCUSSIONS 

The results were collected from the sequence of executions 

for each algorithm and plotted in graphs for better visualization. 

First, it was necessary to calculate the average of the 

communication offset between the applications and the Timer. This 

value is subtracted from the algorithm results to obtain a value that 

closely approximates the real execution time. 

 
V.1 ESTIMANION OF THE COMMUNICATION OFFSET 

BETWEEN THE SYSTEM AND THE TIMER 

Figure 9 shows the difference between the communication 

offsets for each application and the external timer. This means that 

the Timer is called without any algorithm running, resulting in only 

the time taken for the pulse to be sent twice – once to start the 

counting and another to stop it. The x-axis represents the number 

of executions, and the y-axis represents the time obtained in each 

repetition. The average of these times gives the value of the 

communication offset, which will be subtracted from the execution 

time of the algorithms. 
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Figure 9: Overhead due to Communication in Java Applications 

(100 Runs).  

Source: Authors, (2025). 

 

 
Figure 10: Variation in FFT Algorithm Execution Time for 100 

Tests with 216. Inputs. 

Source: Authors, (2025). 

 

As shown, the native application had an average offset of 

199.68ms, while the Java application had an average offset of 

200.65ms. This small difference is possibly related to the layers 

that the system needs to pass to communicate with a JNI 

application. 

 
V.2 CALCULATION OF ALGORITHM EXECUTION TIMES 

Figure 11 presents the execution times of various algorithms 

for different input sizes. The x-axis represents the input size, while 

y-axis shows the execution time (excluding communication 

overhead). Each column displays the average execution time across 

100 test runs for a specific input size, measured for both the native 

application and the JNI implementation. 

Error bars indicate the standard deviation of these execution 

times. Figure 11a illustrates that the native application consistently 

outperforms JNI across all input sizes. Notably, the native 

application’s execution time is between 3% (6,000 inputs) and 20% 

(2,000 inputs) faster than JNI. 

 

 
Figure 11a: Result obtained with the Quick Sort algorithm for 

input vectors with sizes ranging between 2000 and 14000.  

Source: Authors, (2025). 

 

Similar trends are observed in Figure 11b. The native 

application generally executes faster than JNI, with an average 

difference of 4% to 5.5%. In rare instances where JNI is faster, the 

maximum advantage is around 1.4% compared to the native 

application’s average execution time. 

 

 
Figure 11b: Result obtained with the Dijkstra algorithm for 

graphs with number of vertices varying between 200 and 1400.  

Source: Authors, (2025). 

 

Figure 11c depicts the performance of the RSA algorithm. 

The native application demonstrates consistent speedup compared 

to JNI for all input sizes. However, the performance gap narrows 

with increasing input size. The native application exhibits a 

maximum efficiency gain of 6.5% (2,000 inputs) and a maximum 

of 0.7% (1,200 inputs) over JNI. 
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Figure 11c: Result obtained with the RSA algorithm for input 

vectors with sizes between 2000 and 14000.  

Source: Authors, (2025). 

 

In the analysis of the FFT algorithm, it was necessary to 

make a scale break as shown in Figure 11d, as the time variation 

according to the inputs was high, varying from 8.4 ms for 214 

inputs and 2194 ms for 220 inputs. The native application is faster 

than JNI at most input sizes, with the average ranging between 3% 

and 12%. However, in cases where the JNI application is faster, 

there is a large variation, being 5% to 15% faster than the native 

one, on average executions. 

 

 
Figure 11d: Results of running the FFT algorithm on vectors size 

214to 220.  

Source: Authors, (2025). 

 

VI. ANALYSIS OF RESULTS 

Our experiments show that native applications generally 

outperform Java applications using JNI, as shown in the graphs of 

Figure 11. This advantage stems from the way each application 

interacts with the system. Native applications have built-in 

algorithm libraries allowing their code to run directly with the 

system without needing translation. In contrast, Java applications 

using JNI require an extra layer of communication. This translation 

process through JNI adds some overhead, slowing down the 

execution. 

These factors not only make native applications faster but 

also less prone to execution time variations. Figure 10 illustrates 

this point for the FFT algorithm with a 216 input. The native 

application’s execution time remains consistent, while the Java 

application’s time fluctuates more. Although the Java application 

might be faster in rare moments, the native application is generally 

faster and more reliable. 

These variations explain the rare instances where the Java 

application surpassed the native application. Specifically, this 

occurred with the Dijkstra algorithm for graphs with 600 vertices 

and de FFT algorithm for a 215 input. The reason for these 

variations lies in Android. Since Android is a Linux-based system, 

it doesn’t guarantee real-time performance. This means that in 

some situations, the system might prioritize other tasks, causing 

temporary slowdowns for the Java application. However, these 

slowdowns shouldn’t be a common occurrence. 

 

VII. CONCLUSIONS AND FUTURE WORKS 

This article provides a comprehensive comparison between 

the performance of native C/C++ applications and Java 

applications utilizing a shared library accessed via the Java Native 

Interface (JNI) from the Android Native Development Kit (NDK). 

Both applications were compiled using the same toolkit to ensure 

a level playing field for comparison. 

The experimental results demonstrate a consistent 

performance advantage for the native C/C++ application across all 

tested algorithms. Specifically, the performance improvements 

were significant, with the native application outperforming the Java 

application by up to 20% for the Quicksort algorithm. For 

Dijkstra’s algorithm, the performance gain was 5.5%, while for the 

Fast Fourier Transform (FFT), the improvement was 12%. The 

RSA algorithm showed a performance enhancement of 6.5%. 

These results underscore the efficiency of native code execution, 

particularly in scenarios where computational intensity is high. 
However, it is worth noting that for very small input sizes, 

the execution times for both types of applications were relatively 

faster and exhibited greater susceptibility to system variations. In 

these cases, there were instances where the Java application 

achieved faster execution times, influenced by system fluctuations 

and variations in processing load. 
When comparing the results of this study with those 

reported by Kim, Cho, Kim, Hwang, Yoon, and Jeon [14], it is 

evident that the complete migration of AOSP to using the Bionic 

library and the LLVM compilation toolkit has significantly 

optimized the performance of native applications. This transition 

has resulted in native applications consistently outpacing Java 

applications that use JNI. The improvements in the Bionic library 

and LLVM toolchain have contributed to this enhanced 

performance by optimizing low-level operations and compilation 

processes. 
Looking ahead, future research will explore additional 

performance comparisons by examining Java/native 

communication via JNI against communication using Binder Inter-

Process Communication (IPC). Binder IPC, introduced in Android 

10, represents a paradigm shift in the Hardware Abstraction Layer 

(HAL) development compared to the traditional JNI standard. This 

investigation will aim to assess how Binder IPC influences 

performance and efficiency in comparison to JNI, providing further 

insights into optimizing communication strategies within Android 

apqplications. 
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