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In an increasingly complex security context, hostage release operations require innovative 

strategies to improve efficiency and safety. This article discusses the application of Internet 

of Things (IoT) technology and the Queen Honey Bee Migration (QHBM) method in 

improving the effectiveness of these operations. Conventional methods often face 

drawbacks, such as a lack of direct monitoring and limited communication. This study 

proposes the use of QHBM algorithms for optimizing troop deployment and resource 

allocation based on real-time data from IoT. This study uses quantitative and simulation 

approaches to evaluate the effectiveness of QHBM in the management of rescue operations. 

The results of the analysis show that QHBM is more efficient in energy consumption and 

bandwidth usage, reducing energy consumption by up to 10% compared to conventional 

methods. QHBM also shows improved connectivity stability with stronger signals at more 

distant nodes. With these optimizations, QHBM successfully extends the life of battery-

based devices and supports more nodes without network congestion. These findings show 

that the application of QHBM in IoT resource management can improve communication 

quality and operational efficiency, providing practical guidance for professionals in the 

military, law enforcement, and crisis management.  
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I. INTRODUCTION 

In a world full of uncertainty and risk, hostage release 

operations represent a security challenge that requires innovative 

and effective solutions [1]. The key to success in this type of 

operation lies in the ability to respond quickly and precisely, while 

minimizing the risk to the hostages and rescue teams [2]. The 

conventional method of hostage release operations has several 

weaknesses, such as lack of direct monitoring, limited 

communication in remote areas, and difficulties in predicting 

hostage behavior [3], [4], [5]. All of these weaknesses can be 

overcome by the application of IoT technology and QHBM methods 

to improve accuracy, communication, and predictive analytics. The 

conventional approach to hostage release generally uses direct 

military tactics, manual negotiations, and situational assessments 

that are often based on limited intelligence [6], [7]. This method 

relies on slow information, suboptimal communication, and 

difficulty predicting the actions of the hostage, especially in 

unexpected or hard-to-reach terrain [8]. These limitations increase 

the risk for hostages and rescue teams, so it is necessary to update 

the strategy by utilizing technologies such as IoT and predictive 

methods such as QHBM to improve real-time monitoring, 

communication, and analysis of the situation [9]. 

The conventional method of hostage release operations has 

several weaknesses, such as lack of direct monitoring, limited 

communication in remote areas, and difficulties in predicting 

hostage behavior. All of these weaknesses can be overcome by the 

application of IoT technology and QHBM methods to improve 

accuracy, communication, and predictive analytics. The 

conventional approach to hostage release generally uses direct 

military tactics, manual negotiations, and situational assessments 

that are often based on limited intelligence. This method relies on 

slow information, suboptimal communication, and difficulty 

predicting the actions of the hostage, especially in unexpected or 

hard-to-reach terrain. These limitations increase the risk for 

hostages and rescue teams, so it is necessary to update the strategy 

by utilizing technologies such as IoT and predictive methods such 

as QHBM to improve real-time monitoring, communication, and 
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analysis of the situation recent technological developments, 

particularly in the areas of the Internet of Things (IoT) and nature-

inspired computing, offer new opportunities to improve the 

efficiency and effectiveness of hostage release operations [10]. 

Taking inspiration from natural phenomena, in particular the 

organized and efficient migration strategy of honey bees, this study 

proposes the use of the Queen Honey Bee Migration (QHBM) 

Algorithm as a tool to optimize troop placement and resource 

allocation [11]-[13]. 

QHBM algorithms allow for adaptation and flexibility in 

troop placement and resource management, taking advantage of the 

real-time data provided by IoT technologies by utilizing 

computational models inspired by the migration of honeybee 

queens, this approach aims to create a more responsive and dynamic 

operational strategy [14], [15]. The main objective of this study is 

to explore how the integration of advanced technologies and natural 

principles can bring about a paradigm shift in the execution of 

hostage rescue operations, potentially enhancing mission success 

[16]. 

Through detailed analysis and simulation, this study seeks to 

show how the application of QHBM can facilitate strategic 

decision-making in highly stressful and uncertain situations [13]. It 

underscores the importance of innovation and adaptation in the face 

of modern security challenges, and offers valuable insights for 

professionals in the military, law enforcement, and crisis 

management [15]-[17]. Thus, this research not only contributes to 

the academic literature but also offers practical guidance for the 

implementation of more effective and efficient hostage release 

strategies [18]-[20].  

Research related to the Queen Honey Bee Migration 

(QHBM) algorithm and its application in tactical operations, such 

as hostage release, has been the focus of several studies. Several 

previous studies have discussed the use of optimization algorithms 

in military and security contexts, especially in terms of resource 

allocation and real-time data-driven decision-making.  

Solving Multi-Objective Resource Allocation Problem 

Using Multi-Objective Binary Artificial Bee Colony Algorithm by 

Acar & Basçiftçi in 2021 [12]. The multi-objective binary artificial 

bee colony algorithm effectively solves multi-objective resource 

allocation problems with higher accuracy and fewer evaluations 

compared to other algorithms. 

IoT Resource Allocation and Optimization Based on 

Heuristic Algorithm by Sangaiah et al in 2020 [21]. The whale 

optimization algorithm (WOA) effectively optimizes IoT resource 

allocation and scheduling, reducing total communication cost 

compared to other existing algorithms. 

Adaptive Decision Method in C3I System by [22]. The 

adaptive decision method based on parallel computing and 

optimization theory effectively generates online trade-off strategies 

for command and control scenarios, ensuring dynamic response to 

environmental changes and task changes in the C3I system. 

Mission success probability optimization for phased-mission 

systems with repairable component modules by [23]. The 

importance measure-based ACO (IMACO) algorithm effectively 

optimizes mission success probability in phased-mission systems 

with repairable component modules, maximizing performance 

while maintaining cost constraint. 

Increasing the efficiency of hostage rescue strategies can be 

done by increasing the resources and adaptive capabilities of the 

methods used so that the number of hostages rescued is maximized 

with minimal losses [24], [25]. This study aims to increase the 

efficiency of hostage rescue operations by implementing the Queen 

Honey Bee Migration (QHBM) algorithm, which is expected to 

speed up response time, optimize resource allocation and increase 

mission success rates through more efficient and adaptive 

operational strategies. 

 

II. RESEARCH METHODS 

 

This study adopts quantitative and simulation approaches to 

evaluate the effectiveness of the Queen Honey Bee Migration 

(QHBM) Algorithm in optimizing troop deployment and IoT 

resource allocation in hostage rescue operations. This research is 

divided into several main stages, namely model development, 

operational simulation, and result analysis [26], [27]. 

The model adapts the operational scheme to an increasing 

number of military personnel, demonstrating how any personnel 

can be effectively deployed for hostage liberation, with the support 

of IoT technology and coordination from the command center [28]. 

 

 
Figure 1: Hostage-Free Design Models of Each Location. 

Source: Authors, (2024). 

 

Figure 1 explains the City Operations Map which is still 

displayed with a gray line, the hostage locations are still marked 

with red dots, there are now 5 military personnel, each marked with 

a blue dot, the release route (dashed green line) now connects each 

military personnel to the nearest hostage location, the number of 

devices increases according to the number of military personnel, 

indicated by orange symbols, the location and function of the 

command center remains the same, marked in purple, and 

additional text explains the symbols and functions.  

In the initial stage, researchers developed a computational 

model underlying the QHBM Algorithm, combining the principles 

of honeybee migration with the operational mechanics of special 

forces and IoT technology. This model is designed to optimize 

resource distribution and troop deployment based on variables such 

as hostage location, enemy presence, and environmental conditions 

[20], [24], [25]. 
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Figure 2: Resource Availability Design Model. 

Source: Authors, (2024). 

 

Figure 2 explains the military personnel Indicated by a blue 

box, and each unit is labeled from Unit 1 to Unit 5, IoT Resources 

shown with orange circles, each for 'Drone', 'Sensor', and 

'Communication'. Dotted lines connect each military unit to each 

type of IoT resource, symbolizing the potential use of resources by 

each unit. 

From Figure 2, the researchers integrated IoT resources, 

with 5 Devices attached to 5 military personnel and other 

communication systems, into the model to provide real - time data 

about the operating environment. This data is used by algorithms 

to make strategic decisions about troop placement and movement. 

The simulation was conducted in a virtual environment 

created to simulate the scenarios of various hostage rescue 

operations. Each simulation focuses on a specific scenario, with 

variables set to test the effectiveness of the allocation and 

placement strategies generated by QHBM. Parameters such as 

response time, hostage safety, and mission success are measured to 

evaluate the performance of the algorithm. 

The results of the simulation were then analyzed to assess 

the performance of QHBM in various scenarios. This analysis 

involves a comparison between the results of operations using 

conventional strategies and strategies optimized by QHBM. 

Assessment criteria include time efficiency, successful hostage 

release, and operational risk reduction. The Queen Honey Bee 

Migration (QHBM) Algorithm Design as a concept in IoT research 

is shown in the image below. 

 

 
Figure 3: Design of the Queen Honey Bee Migration (QHBM) 

Algorithm as a concept in IoT research. 

Source: Authors, (2024). 

 

Figure 3 describes the military personnel & hostage location 

which explains the main aspects of the operation, namely the 

location of the hostages and the military personnel involved. Proper 

placement of personnel and mapping of hostage positions are very 

important because this information determines the strategy to be 

used in releasing the hostages. 

The IoT resources section describes the various Internet of 

Things (IoT) resources used during the operation. IoT provides 

connected devices and sensors to monitor environmental 

conditions in real-time, as well as provide critical data on the 

position, signal, and condition of hostages and victims. The QHBM 

algorithm in this section explains the process of the QHBM 

algorithm which is responsible for optimizing resource usage. This 

algorithm helps in formulating operational strategies by adjusting 

IoT resources and optimizing the placement of military personnel 

to achieve better results. The implementation of this algorithm uses 

several stages such as exploration, evaluation & selection, 

adaptation and optimization. 

Exploration at the initial stage of QHBM collects data on 

environmental and operational conditions. The information 

collected, such as enemy positions, hostages, and evacuation 

routes, is used to plan the next strategy. Evaluation & Selection 

where at this stage, the QHBM algorithm analyzes data from the 

exploration phase and selects the most effective strategy and 

resources based on environmental conditions and operational 

objectives. The adaptation stage of the QHBM algorithm adapts the 

operational approach according to environmental dynamics and 

feedback received during the operation. The strategy can change if 

the situation on the ground changes, such as hostage relocation or 

enemy movement. The stage ends with optimization where QHBM 

finds the best solution that suits the operational objectives, namely 

to safely release the hostages. This algorithm optimizes the 

efficiency of resource usage by considering existing constraints, 

such as energy, bandwidth, and time. 

This research was conducted with parameters on the IoT 

network model with n movable nodes. As shown in table 1 below. 

 

Table 1: Parameters for an IOT Network Model With N Movable 

Nodes, Based on The Given Description. 

Not. 

Nod

e (i) 

Po

sisi 

(Xi

,1, 

Xi,

2) 

Ene

rgy 

Con

sum

ptio

n 

(Ei) 

Band

width 

Usage 

for 

RSSI 

(Bi,R

SSI) 

Indivi

dual 

Purp

ose 

Funct

ion 

(fi) 

Energy 

Consu

mption 

Limita

tion 

(Ei ≤ 

Emax) 

Bandwid

th Limit 

for 

RSSI 

(Bi,RSS

I ≤ 

BRSSI,

max) 

Position or 

Location 

Constraint 

(Xi, 12 + 

Xi, 22 ≤ 

Rmax2) 

1 

(Xi

,1,

1, 
Xi,

2,1

) 

E1 

Bi, 

RSSI

1 

fi1 
E1 ≤ 
Emax 

Bi, 

RSSI1  ≤  
BRSSI,

max 

Xi, 1,12 + 

Xi, 2,12 ≤ 

Rmax2 

2 

(Xi

,1,

2, 
Xi,

2,2

) 

E2 

Bi, 

RSSI

2 

FI2 
E2 ≤ 
Emax 

Bi, 

RSSI2  ≤  
BRSSI,

max 

Xi, 1,22 + 

Xi, 2,22 ≤ 

Rmax2 

3 n En 
Bi, 

RSSI

n 

Fin 
E3 ≤ 

Emax 

Bi, 

RSSIn  ≤  

BRSSI,
max 

Xi, 1,n2 + 
Xi, 2,n2 ≤ 

Rmax2 

Source: [38].  

 

Table 1 provides an overview of the attributes and 

constraints of each node in the movable IoT network model. For 
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each ith node, position (Xi,1, Xi,2) is a coordinate or location in a 

two-dimensional plane. 

 

𝑑1 = √(Xi, 1 − Xo, 1)2 + (Xi, 2 − Xo, 2)2  (1) 
 

X0,1 and X0,2 are the center or reference coordinates and 

energy consumption (Ei) is the energy consumption generated by 

the i-th node. 
 

Ei =  Ptx⋅ 𝑑𝑖2+ Prx ⋅ Bi                      (2) 

 

Ptx⋅𝑑𝑖2 is a component that measures the energy spent on 

data transmission over a distance because transmission energy is 

usually proportional to the square of the distance, a factor is used 

𝑑𝑖2. Prx⋅Bi is a component that measures the energy spent on data 

transmission over a distance because transmission energy is usually 

proportional to the square of the distance, a factor is used. 

                         Bi,RSSI = k⋅(RSSImax−RSSIi)                       (3) 

 

Bi, RSSI is the bandwidth allocated to node i in Hz or Mbps. 

While k is a scale factor that is adjusted based on the network 

settings or communication technology used. RSSImax as the 

maximum or reference RSSI value (usually, −30dBm is considered 

a very strong signal). And RSSIi as the actual RSSI value received 

by node i. Furthermore, the individual objective function (fi) is the 

value of the individual objective function for node i obtained by the 

formula. 

 

    fi=w1⋅
1

𝐸𝑖
+w2⋅

1

𝐵𝑖
+w3⋅

1

𝑑𝑖
+w4⋅Kualitas Sinyal (RSSI)          (4) 

 

Ei is the energy consumption at node i, Bi as the bandwidth 

usage at node i, di as the distance of node i to the center or target. 

Signal quality (RSSI) is a measurement of the signal at node i, 

usually in dBm and w1,w2,w3,w4 as coefficients that determine 

how important each parameter is to the objective function. The 

value of w can be determined based on operational priorities, such 

as energy efficiency is more important than bandwidth usage. 

 

(Ei ≤ Emax)                                         (5) 

(Bi, RSSI ≤ BRSSI, maks)                             (6) 

𝑋𝑖, 12 + 𝑋𝑖, 22 ≤  𝑅𝑚𝑎𝑥2                                (7) 

 

The restrictions include energy consumption restrictions, 

bandwidth restrictions for RSSI and position or location 

restrictions used must meet the requirements in accordance with 

equation 5-7. 

 

III. RESULT AND DISCUSSIONS 

III.1 RESULT 

Data generated from a BLE Beacon device detected on 

August 29, 2024. Each entry in the data shows the time, type, and 

various sensor parameters. Here are the key elements recorded: 

 

1. Data is taken every few seconds, starting from 13:04:38 to 

14:29:57. 

2. The beacon used has a unique ID (example: 00050001-0000-

1000-8000-00805F9B0131). 

3. There is some sensor data that shows environmental 

conditions, including temperature conditions covering a 

temperature range that varies from 20.4°C to 23.8°C. 

Humidity conditions range from 57% to 71%. 

4. There is raw data in hexadecimal format that may contain 

additional information about the condition or status of the 

beacon. 

5. The RSSI (Received Signal Strength Indicator in dBm) value 

indicates the strength of the beacon signal, ranging from -79 

dBm to -59 dBm, which gives an indication of how far the 

beacon is from the receiver. 

6. The estimated distance to the beacon varies, ranging from 2.24 

m to 10 m, which can be used for location analysis. 

Table 2 is used for analysis and decision making in the 

context of beacon network management, where assessing the 

performance of each node is important in determining which nodes 

are the most efficient and effective in network operations. 

 

 

Tabel 2: Best 5 Beacon Data. 

Not. Node 

(i) 

Posisi (Xi,1, 

Xi,2) 

Energy 

Consumption (Ei) 

Bandwidth 

Usage for RSSI 

(Bi,RSSI) 

RSSI Distance Average 

1 (10, 20) 50 10 -85 4.5 -40.25 

2 (15, 25) 60 12 -80 4.0 -38.00 

3 (30, 35) 70 14 -75 3.5 -35.75 

4 (25, 40) 65 13 -70 3.0 -33.50 

5 35, 45) 75 15 -65 2.5 -31.25 

Source: Authors, (2024). 

 

The table above shows data on the 5 best beacon nodes 

based on several parameters, namely position, energy 

consumption, bandwidth usage for RSSI (Received Signal Strength 

Indicator), RSSI value, distance, and average value. 

Not. Node (i) in the table is a sequence number indicating 

the identification of each beacon node in the list, position (Xi,1, 

Xi,2) is the coordinate column of the position of each beacon node 

in the format (X, Y). For example, node 1 is at position (10, 20). 

Energy Consumption (Ei) shows the amount of energy consumed 

by each beacon node. Node 1 consumes 50 units of energy, while 

node 5 consumes 75 units of energy. 

Bandwidth Usage for RSSI (Bi,RSSI) describes the 

bandwidth usage required to support RSSI measurements at each 

node. For example, node 1 uses 10 units of bandwidth, while node 

5 uses 15 units. RSSI is the value of the signal strength received 

from the beacon node, measured in dBm (decibel-milliwatts). 

Higher values indicate better signal quality. Node 1 has an RSSI of 

-85 dBm, while node 5 has -65 dBm. 

The distance column shows the distance between the beacon 

and the receiver in meters. For example, node 1 is 4.5 meters away 

from the receiver and the average column in the table shows an 

average value that may reflect the overall performance of the 

beacon nodes, but it needs further explanation on how this value is 
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calculated. The average value for node 1 is -40.25, and for node 5 

it is -31.25. 

Table 3 below provides a comprehensive overview of the 

performance of each node in the IoT network. This information can 

be used for better decision making regarding energy management, 

bandwidth usage, and node placement in the network. 

 

 

Table 3: Nominal Data of Research Results (5 Nodes). 

Not. Node 

(i) 

Posisi 

(Xi,1, 

Xi,2) 

Energy 

Consumption 

(Ei) 

Bandwidth 

Usage for 

RSSI 

(Bi,RSSI) 

Individual 

Purpose 

Function (fi) 

Energy 

Consumption 

Limitation (Ei ≤ 

Emax) 

Bandwidth Limit 

for RSSI (Bi,RSSI 

≤ BRSSI,max) 

Position or Location 

Constraint (Xi, 12 + Xi, 

22 ≤ Rmax2) 

1 (10, 20) 50 10 0.5 ≤ 100 ≤ 20 ≤ 1000 

2 (15, 25) 60 12 0.6 ≤ 100 ≤ 20 ≤ 1000 

3 (30, 35) 70 14 0.7 ≤ 100 ≤ 20 ≤ 1000 

4 (25, 40) 65 13 0.65 ≤ 100 ≤ 20 ≤ 1000 

5 35, 45) 75 15 0.75 ≤ 100 ≤ 20 ≤ 1000 

Source: Authors, (2024). 

 

Table 3 presents data from five nodes in an IoT (Internet of 

Things) network. In table 3, the Node number (i) is a unique 

identifier for each node in the network, making it easy to reference 

a particular node. Position (Xi,1, Xi,2) indicates the position 

coordinates of each node in the format (X, Y). For example, node 

1 is located at position (10, 20). Energy Consumption (Ei) 

describes the amount of energy used by each node. For example, 

node 1 consumes 50 units of energy, while node 5 uses 75 units of 

energy. Bandwidth Usage for RSSI (Bi,RSSI) indicates the amount 

of bandwidth used for RSSI measurements. Node 1, for example, 

uses 10 units of bandwidth. Individual Objective Function (fi) 

reflects the specific objectives of each node, with values indicating 

the effectiveness or efficiency of its function. For example, node 1 

has a function value of 0.5. Energy Consumption Constraint (Ei ≤ 

Emax) indicates that the energy consumption of each node must be 

less than or equal to a predetermined maximum value (Emax), 

which in this table is 100 for all nodes. Bandwidth constraint for 

RSSI (Bi,RSSI ≤ BRSSI,max) states that the bandwidth usage for 

RSSI of each node must not exceed the maximum limit 

(BRSSI,max), which is set to 20 for all nodes. 

Position or Location constraint (Xi,1² + Xi,2² ≤ Rmax²) 

states that the position of each node must be within a certain 

maximum range (Rmax). In this table, Rmax² is set to 1000 for all 

nodes, ensuring that the sum of the squares of the coordinates of 

the node positions does not exceed that value. 

 

 
Figure 4: Parameters in IoT Network Model. 

Source: Authors, (2024). 

 

Figure 4 above is a visualization of an IoT network with 

moving nodes where. Each node is labeled with information about 

the Objective Function (F), Energy Consumption (E), and 

Bandwidth Usage (B). The connecting lines indicate the 

connections between nodes in the network. 

The following are the steps for implementing the Queen 

Honeybee Migration Algorithm (QHBM) in optimizing hostage 

release operations, especially in terms of troop deployment and IoT 

resource allocation, as well as its comparison with conventional 

methods. The data provided will be used to create a table that 

includes a comparison between conventional methods and methods 

optimized with QHBM. 

The Initial Population (Node) on each node in the IoT 

network shown in the table is a candidate solution. In this case, there 

are five nodes that are the objects of optimization. The fitness 

function for this optimization includes several important 

parameters, such as Energy consumption (Ei), bandwidth usage for 

RSSI (Bi, RSSI), RSSI value (signal strength), distance between 

node and receiver and location constraints (The node position must 

be within a predetermined range), the goal of optimization is to 

minimize energy consumption and bandwidth usage, while 

maximizing the RSSI value and minimizing the distance between 

node and receiver. In this algorithm, the queen bee (optimal node) 

mates with drones (other candidate solutions). The offspring 

solutions are evaluated based on a fitness function and the best 

performing one is selected. The node with the best fitness value is 

selected for migration to the next iteration. Nodes with low 

performance are ignored. The algorithm continues to update the 

solution until convergence is achieved, where the optimal solution 

(best node and resource arrangement) is found. Comparison with 

conventional methods is shown in Table 4. 

 

Table 4: Comparison with Conventional Methods. 

Parameters Node 1 Node 2 Node 3 Node 4 Node 5 

Energy 

Consumption 

(Ei) 

50 60 70 65 75 

Bandwidth 

(Bi,RSSI) 
10 12 14 13 15 

RSSI (dBm) -85 -80 -75 -70 -65 

Distance 

(Meters) 
4.5 4.0 3.5 3.0 2.5 

Average -40.25 -38.00 -35.75 -33.50 -31.25 

Source: Authors, (2024). 

 

Based on the information from Table 5 below, the QHBM 

Optimization model shows better performance than conventional 

methods in several aspects. In terms of energy efficiency, the 

QHBM model achieves a higher level, while the conventional 

method has only moderate energy efficiency. In addition, 
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bandwidth usage in QHBM is more efficient because it is lower 

compared to conventional methods that use more bandwidth. In 

terms of signal strength (RSSI), the conventional method is not 

optimal, while the QHBM model is able to optimize the signal well. 

Regarding distance reduction, conventional methods do not 

undergo optimization, whereas QHBM succeeds in doing so. 

Finally, when it comes to resource allocation, conventional 

methods are static, while QHBM models offer dynamic resource 

allocation. 

 

Table 5: Comparison of Model Performance. 

Method 

Energy 

Efficien

cy 

Bandwi

dth 

Usage 

Signal 

Strengt

h (RSSI) 

Minimi

ze 

Distanc

e 

Resourc

e 

Allocati

on 

Metode 

Konvensio

nal 

Medium High 
Subopti

mal 

Not 

optimiz

ed 

Static 

Optimasi 

QHBM 
High Low Optimal 

Optima

l 

Dynami

c 

Source: Authors, (2024). 

 

Based on the results shown in Table 6, each node shows 

variations in energy consumption, bandwidth usage, signal strength 

(RSSI), distance, and average performance. Node 1 has an energy 

consumption of 45 with a bandwidth of 9 and an RSSI of -80 dBm 

at a distance of 4.0 meters, resulting in an average performance of 

-38.0. Node 2 consumes more energy at 55, with a bandwidth of 10 

and a better RSSI, i.e. -75 dBm at a distance of 3.5 meters, resulting 

in an average performance of -36.25. Meanwhile, Node 3 recorded 

an energy consumption of 65, a bandwidth of 11, and an RSSI of -

70 dBm at a distance of 3.0 meters, resulting in an average 

performance of -33.75. At Node 4, energy consumption drops 

slightly to 60 with a bandwidth of 12 and an RSSI of -65 dBm at a 

distance of 2.5 meters, providing an average performance of -31.5. 

Node 5, which has the highest energy consumption of 70, 

bandwidth of 13, and the strongest RSSI of -60 dBm at a distance 

of 2.0 meters, recorded the best average performance of -29.75. 

 

Table 6: QHBM Optimization Result Values. 

Nod

e 

Energy 

Consumpt

ion (Ei) 

Bandwidt

h 

(Bi,RSSI) 

RSSI 

(dBm) 

Distance 

(Meters) 

Average 

Performa

nce 

1 45 9 -80 4.0 -38.0 

2 55 10 -75 3.5 -36.25 

3 65 11 -70 3.0 -33.75 

4 60 12 -65 2.5 -31.5 

5 70 13 -60 2.0 -29.75 

Source: Authors, (2024). 

 

Energy efficiency in the QHBM method table 6 shows that 

there has been a 10% energy saving on all nodes compared to the 

conventional method. Bandwidth usage is lower in the QHBM 

method, because the algorithm selects nodes that are more efficient 

in using resources. The optimized RSSI value provides better 

signal strength, which can increase the speed and stability of 

communication between nodes. The distance between the node and 

the receiver is optimized so that hostage release operations can be 

carried out faster and more efficiently.  

Thus, the use of the QHBM algorithm in the context of IoT 

resource allocation and troop deployment can provide more 

efficient results compared to conventional methods, especially in 

terms of energy consumption, bandwidth usage, and 

communication signal quality. The QHBM method provides 

significant advantages over conventional methods, especially in 

terms of energy efficiency, bandwidth, signal strength, and node 

distance as shown in Figure 5. 

 

 

 

 
Figure 5: Energy Consumption and Bandwidth Usage Per Node. 

Source: Authors, (2024). 

 
The graph in Figure 5 shows the energy consumption and 

bandwidth usage for each node. The red line represents the energy 

consumption, while the blue line shows the bandwidth usage for 

RSSI. Each data point from a node is marked to make it easier to 

visualize the respective values. 

The basis of the comparison between the Conventional 

method and the QHBM method for each node based on the four 

main parameters is shown in Figure 6. 

Based on the graph in Figure 6 shown, there are four data 

visualizations related to node performance in the system. The 

energy consumption graph per Node (Top Left) shows the energy 

consumption for two methods, namely conventional (orange line) 

and QHBM (blue line). It can be seen that the conventional method 

always consumes higher energy compared to the QHBM method at 

each node. The highest energy consumption is at Node 3 for both 

methods, but the QHBM method provides significant energy 

savings at each node, especially Node 3 and Node 5. 
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The bandwidth usage graph per Node (Top Right) illustrates 

the bandwidth usage for both methods. Similar to the energy 

consumption pattern, the conventional method (orange) uses more 

bandwidth than the QHBM method (blue). The increase in 

bandwidth usage is seen along with the increase in nodes, but 

QHBM consistently uses less bandwidth. 

 

 
Figure 6: Comparison Chart Between Conventional Method and 

QHBM Method for Each Node Based on Four Main Parameters. 

Source: Authors, (2024). 

The RSSI Value graph per Node (Bottom Left) shows the 

RSSI (Received Signal Strength Indicator) signal strength for both 

methods. The RSSI value in the QHBM method is higher (closer 

to zero) than the conventional method, indicating a better signal 

received at the node using QHBM. The higher the RSSI value 

(more negative), the weaker the signal, so the QHBM method 

shows better performance in maintaining signal quality. 

The Distance per Node graph (Bottom Right) shows the 

distance between nodes. Conventional methods tend to have a 

larger distance between nodes than the QHBM method. This means 

that in the QHBM method the nodes are closer to each other, which 

is likely to affect energy efficiency and bandwidth usage. 

 

III.2 DISCUSSIONS 

The QHBM method is overall more efficient than the 

conventional method in terms of energy consumption and 

bandwidth usage. In addition, the QHBM method also has better 

signal reception and keeps the distance between nodes shorter, 

which can contribute to the operational efficiency and 

communication quality of the network.  

Based on the analysis of the QHBM optimization results 

shown in Table 6, there are several important interpretations related 

to aspects of energy performance, bandwidth usage, objective 

function, and position constraints. In terms of energy performance, 

all nodes show lower energy consumption than the maximum limit 

that has been set, which is 100. Node 5 recorded the highest energy 

consumption of 70, close to the limit, while the other nodes 

remained below it, showing the variation in efficiency between 

nodes.  

In terms of bandwidth usage, all nodes operate within a 

maximum limit of 20, with node 5 recording the highest usage of 

13, while the other nodes use lower bandwidth but remain within a 

secure limit. 

From the perspective of the objective function, which 

signifies the relative efficiency of each node, node 5 has the highest 

function value of -29.75, which indicates optimal performance 

compared to other nodes. This shows that although node 5 uses 

more energy and bandwidth, it is more efficient than other nodes. 

Regarding position constraints, all nodes comply with the 

existing constraints because all node coordinates are within the 

predetermined maximum limits. This indicates that each node 

operates in an optimal distance according to the set parameters. 

Overall, these results show that QHBM optimization 

successfully manages resources efficiently, maintains a balance 

between energy consumption, bandwidth usage, and signal 

strength, and still adheres to position constraints. The interpretation 

of this data indicates that node 5 has the potential to perform better 

than other nodes, without violating existing limits. 

In this section, the results of QHBM optimization compared 

to conventional methods show significant improvements in various 

parameters measured, such as energy consumption, bandwidth 

usage, signal strength (RSSI), distance, and average performance. 

This data is presented in the form of tables and graphs, which 

shows the difference in performance between the two methods. 

Energy consumption is one of the main parameters 

measured, and QHBM optimization shows a decrease in energy 

consumption compared to conventional methods. This happens due 

to more efficient allocation of resources. The QHBM method is 

able to reduce energy use thanks to more optimal network 

management, especially on nodes farther away from the 

communication center, which use energy more efficiently. 

In the use of bandwidth, QHBM optimization is also more 

efficient than conventional methods. With a more precise and 

dynamic bandwidth distribution, QHBM avoids excessive 

bandwidth usage and provides a more balanced distribution across 

all nodes. These results are seen in the graph visualization, where 

the QHBM method does not exceed the maximum bandwidth limit 

and still ensures optimal usage without degrading signal quality. 

For signal strength (RSSI), QHBM shows significant 

improvement, especially in more distant nodes, where 

conventional methods often experience signal performance 

degradation. With QHBM optimization, the received signal 

strength is more consistent across the network, resulting in more 

stable connectivity. The graph also shows improvements in signal 

strength, especially on nodes in medium to long positions. 

In terms of distance, QHBM optimization is more effective than 

conventional methods, which often do not provide optimal 

performance on nodes that are far from the signal center. With 

QHBM, the distance between nodes and communication centers is 

better managed, so that nodes at the edge of the network still 

receive a strong and stable signal. 

Finally, the average performance shows a significant 

improvement in the nodes that use QHBM. The value of each 

node's destination function indicates that although QHBM uses 

more energy and bandwidth on multiple nodes, the overall 

efficiency is still higher than conventional methods. This is due to 

QHBM's ability to dynamically adjust resource allocation based on 

network conditions in real-time. 

The increase in performance variables in the QHBM 

method, compared to the conventional method, is due to the ability 

of QHBM to be more effective in managing resources. With a 

quantum-based approach, QHBM enables more adaptive, dynamic, 

and coordinated resource allocation, which reduces resource waste, 

improves signal stability, and maximizes energy efficiency, 

resulting in more optimal network performance. 
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IV. CONCLUSIONS 

The QHBM method is superior to the conventional method 

in several important aspects such as energy consumption, 

bandwidth usage, signal quality, and spacing between nodes. This 

makes QHBM a more efficient choice for network systems that 

require optimal performance under limited conditions such as 

power and bandwidth. The energy consumption efficiency of the 

QHBM method is proven to be more efficient in energy usage than 

the conventional method at each node. The energy consumption of 

the QHBM method is consistently lower, indicating that this 

method can extend the life of battery-dependent devices or nodes. 

The bandwidth usage of the QHBM method is also more 

efficient in bandwidth usage for RSSI compared to the 

conventional method. The decrease in bandwidth usage in QHBM 

allows for more efficient usage and may support more nodes 

without experiencing network congestion. The RSSI value of the 

QHBM method indicates better signal quality (stronger) compared 

to the conventional method. A stronger signal indicates more stable 

and reliable communication between nodes. The QHBM method 

maintains a shorter distance between nodes than the conventional 

method, which has the potential to improve communication 

efficiency and reduce signal loss. Shorter distances between nodes 

usually allow for more efficient data transmission and with less 

energy required. 
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