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The proposed study is a machine learning application using a Neural Network for the 

prediction and identification of the thickness of aluminum placed over a steel plate. Two 

thousand and five hundred datasets with the eddy current method of different aluminum 

plate thicknesses above a steel plate and working frequencies of EC-sensor were generated 

using experimentally validated analytical models in our previous research. The data has 

three input parameters (normalized resistance, normalized reactance, and frequency) and 

one output (thickness). The ANN architecture involves careful consideration of the 

number of hidden layers and neurons within the model. The acquired data was split into 

two sections: the first section was used to train and test the selected model, and the second 

section was used to test the model on untrained data to demonstrate its high accuracy. The 

results obtained, as mentioned in the article, prove the validity and sensibility of the 

chosen model.  
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I. INTRODUCTION 

Industrial components commonly surface treated through 

the application of engineering coatings, conferring new functional 

properties to the material surface like hardness, electrical 

conductivity, and thermal insulation...etc. The material 

composition of coatings, and desired properties such as thickness 

and adhesion to substrates, is controlled by specific deposition 

techniques and processes, i.e., PVD, CVD, electroplating, thermal 

spray, and others.  Regardless of the selected process, rigorous 

control over coating quality is essential to ensure that the treated 

surfaces meet specified standards. When the coating parameters 

such as thickness is out of required specifications; the performance 

will be then negatively altered.  Hence, the ability of the assessment 

of coating properties by the mean of non-destructive method offers 

a crucial importance for many industrial sectors such as aerospace, 

energy. In fact, Non-destructive evaluation techniques are based on 

determining the inherent physical and mechanical characteristics of 

a material without damaging or affecting its intended functionality, 

and subsequently using the resulted data to decide and predict its 

performance in the suitable applications [1].  

Eddy current testing (NDE-EC) among other is a highly 

sensitive and less costly non-destructive evaluation technique 

compared to other methods. It is widely used particularly to detect 

geometric defects of material. Several experimental works have 

established that NDE-EC is a robust and reproductible technique to 

measure and reveal cracks, corrosion failure and thickness of 

protective coatings [2–8] .  

NDE-EC modeling is also an additional study that can aid to 

better understanding the corresponding electrical and magnetic 

phenomena. Many research efforts have focused on the modeling 

and simulation of NDE-EC. Commonly the modeling study is 

associated with an inversion problem analysis in order  to 

characterize or identify either the physical or geometric properties 

of the materials, or to optimize the inspection process [9], [10]. 

Design, development, and optimization of eddy current as non-

destructive evaluation (NDE-EC) have been successfully 

developed through analytical  [2], [3], [6–8], [11], [12] and 
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numerical modeling [4], [5], [10], [13–16] based on 

electromagnetic systems.  

The principle of thickness measurement by NDE-EC, is 

based on induced voltage or impedance change in a coil which is 

positioned above the plate to be measured. When alternating 

current is added at different frequencies in the coil an eddy-current 

is generated at different depths of the conductive plate providing  a 

beneficial electromagnetic parameter information to measure and 

evaluate the thickness [2],[4], [5–8],[11],[12],[14],[16],[17]. 

According to Huang et al,  NDE-EC is a relevant 

experimental  technique to determine thin coatings thickness by the 

placement of  the impedance of a coil probe above a coated 

multilayered plate using the swept-frequency eddy current testing 

method [14]. The studied phenomenon was described theoretically 

by Dodd and Deeds in [18], [3], [19] being a solution of the 

analytical expression of the coil impedance. Whereas, the 

optimization can be conducted by some methods such as artificial 

intelligence optimization to iteratively determine the thickness of 

coating layer based on the coil impedance.  

Several artificial intelligence algorithms such as artificial 

neural networks (ANN)  have proven successfully a good  

capability of managing, modeling, forecasting [20], [21], and 

predicting various aspects in electromagnetic, mechanical, and 

geometrical characterization, [22], [23].  

As a data-driven computational model, artificial neural 

networks (ANN) can learn from given examples and ascertain the 

relationship between inputs and outputs without passing by a 

physical model, which can decrease the strong need for further 

extensive research. 

The present work is a complementary study to the previous 

one of   [24]. Where, they had experimentally validated analytical 

models developed by Dodd and Deeds and Theodoulidis et al [19], 

[25]. In fact, the main objective is firstly modeling of eddy current 

sensor-based system that allows thickness measurement of an 

aluminum layer in multilayer material in accurate and fast way the 

thickness of the aluminum plate (coating) placed on steel substrate 

over a wide range of frequencies. Secondly, the investigation of 

future values prediction for an aluminum plate thickness by ANN 

model.  Where, training and testing datasets were initially produced 

using the previously validated models [24]. 

 An artificial neural network (ANN) model has been 

created using the acquired datasets. Our artificial neural network 

(ANN) design considers the optimum arrangement of hidden layers 

and neurons in the model. The obtained data was divided into two 

parts: the initial part was used for training and evaluating the 

selected model, while the next one was used to evaluate the model's 

performance on untrained data, demonstrating its accuracy in the 

forecast of thickness. The collected results demonstrate the selected 

model's accuracy and sensitivity. 

II. DATASET PREPARATION 

Our study assumes that the provided problem is an 

axisymmetric eddy current. We adapt the system utilized in 

previous works (Figure 1) [3], [24]. A cylindrical coil of 

rectangular cross-section serves as the excitation source, positioned 

above a two-layer material where the first layer is a conductive 

material (aluminum) and the bottom layer is a ferromagnetic 

material (steel). Once more, the computation of the coil impedance 

changes induced by eddy current in the multilayer conductor is of 

primary concern [3], [24].  

 

 
Figure1: Issue description. 

Source: Authors, (2024). 

 

The material to be evaluated has fixed physical parameters: 

two homogeneous layers of constant electric conductivity (σ) and 

relative magnetic permeability (μr). The distance between the coil 

and the material (lift-off) is fixed at 0.01 mm. It indicates how 

much the induced eddy currents alter the coil impedance and how 

much the coil is electromagnetically coupled to the material. The 

coil, top, and bottom layers extend to infinity in the third coordinate 

(z). The thickness of the first layer is changed from 0.01 to 0.25 

mm, and the thickness of the steel layer is fixed to 5mm. 

Tables 1 and 2 summarise the physical and geometrical properties 

of the material and coil used, respectively. 

Table 1: The physical and geometrical properties of the material. 

Multilayer 

material 

Electrical 

conductivity 

(MS/m) 

Relative 

magnetic 

permeability 

Thickness 

of plate 

(mm) 

First layer 

(Aluminum) 

35.5 1 From 0.01 

to 0.25 

Second layer 

(Steel) 

4.2 50 10 

Source : Authors, (2024). 

 

Table 2: Geometrical properties of the coil. 

Coil parameter  

Outer diameter 19.4 mm 

Inner diameter 10 mm 

Height 4 mm 

Lift-off 0.01 mm 

Number of spires 406 

Source: Authors, (2024). 

 

Dodd and Deeds formulation [18] and the developed model 

by [3], [19] give an electromagnetic analytical solution to this 

problem.  The magnetic vector potential A formulation in all 

regions satisfies the equation (1):  

                              (

𝜕2𝐴

𝜕𝑟2
+

1

𝑟

𝜕𝐴

𝜕𝑟
−

𝐴

𝑟2
+

𝜕2𝐴

𝜕𝑧2
=

(𝑗𝜔𝜇𝑟𝜇0𝜎)2𝐴 − 𝜇0𝐼𝛿(𝑟1𝑟0)𝛿(𝑧1𝑧0)

)           (1) 
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δ is the penetration depth and I is the coil current, The total 

impedance of the coil is the sum of the individual coil impedance 

Z0 and the change in impedance Z produced by the conductive 

layer system. This change in impedance is a result of the presence 

of eddy currents within the system, which can be explained using 

the superposition principle. Having obtained the equation for Z0, 

equation (2) our task now is to calculate the value of ∆Z. 

(

∆𝑍 = ∆𝑅 − 𝑗∆𝑋 = (𝑅𝑐 − 𝑅0) + 𝑗(𝑋𝑐−𝑋0)

=
𝑗2𝜋𝜔𝑖0

𝑟2
∫ ∫ 𝐴(𝑒𝑐) (𝑟1𝑍)𝑑𝑟𝑑𝑧 

𝑧2

𝑧1

𝑟2

𝑟1

)          (2) 

Equations (3) and (4) are used to compute the normalized 

resistance and reactance of the sensor for a range of frequencies 

and thicknesses of the aluminum layer as shown in Figure 2 and 3. 

Figure 4 illustrate the impedance normalised plane. 

 

𝑅𝑛 =
𝑅𝑐 − 𝑅0

𝑋0

                                          (3) 

 

𝑋𝑛 =
𝑋𝑐

𝑋0

                                               (4) 

 

Rn and Xn are respectively the normalized resistance and 

normalized reactance. Rc and Xc are respectively the resistance and 

reactance of the eddy current sensor. R0 and X0 are respectively the 

sensor resistance and reactance sensor resistance without existence 

of material. 

By varying the thickness of the first layer and the signal 

frequency by powering the sensor in an interval of 100 Hz up to 10 

kHz with a step of 100 Hz, we obtained one hundred data points 

for each thickness. Furthermore, the thickness variation was from 

0.01 mm to 0.25 mm with a step of 0.01 mm. In the end, we 

obtained data from 25 samples of the thickness of the first layer, 

and each one has 100 frequency calculations. At the end, three 

variables are in the input layer and a single output layer, each 

containing 2500 samples. The analytic model defined the 

normalized resistance and reactance, which proved the 

experimental solution to this problem in [24]. 

 

 
Figure 2: Normalized resistance. 

Source: Authors, (2024). 

 
Figure 3: Normalized reactance. 

Source: Authors, (2024). 

 
Figure 4: Impedance plane diagram. 

Source: Authors, (2024). 

 

III. ARTIFICIAL NEURAL NETWORK 

This section delves into the development and training of an 

Artificial Neural Network (ANN) model for precise coating 

thickness prediction in eddy current testing scenarios. The ANN 

model is structured with an input layer, one or more hidden layers, 

and an output layer. The dataset is crucial for training the model to 

find relationships between input variables (normalized resistance, 

reactance, frequency) and output variables (thickness of the 

aluminum layer). 

The ANN architecture involves careful consideration of the 

number of hidden layers and neurons within the model. Iterative 

testing determines that the optimal performance is achieved with 

12 neurons in a hidden layer. The activation functions, specifically 

the sigmoid function in hidden layers and a linear function in the 

output layer, contribute to the model's capacity to learn complex 

relationships within the data. Figure (5) show the implemented 

ANN model's structure. The input layer of the Artificial Neural 

Network (ANN) is composed of essential parameters, including the 

responses of the coil at various frequencies. These variables play a 

pivotal role in providing the necessary input for the network to 

evaluate and predict the output layer, which presents the thickness 

of the coating layer. The ANN comprises 12 hidden layers, each 

contributing to the network's ability to capture intricate patterns 
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inherent in structural responses. The activation functions are 

employed in these layers to introduce non-linearities crucial for 

accurate prediction. The training process involves using a neural 

fitting application, where 85% of the dataset is randomly selected 

for training the model. The iterative nature of this process allows 

the model to adjust its internal parameters to minimize the mean 

square error (MSE), optimizing its ability to predict coating 

thickness accurately. 

 

 
Figure 5: The implemented ANN model's structure. 

Source: Authors, (2024). 

 

Fine-tuning hyperparameters is a crucial step in enhancing 

the model's performance, including optimizing the learning rate 

and batch size to achieve the best convergence during training. 

After training, the model's performance is rigorously tested on the 

remaining 15% of the dataset. Evaluation metrics such as R-

squared (R2) and Mean Squared Error (MSE) provide insights into 

how well the model generalizes to new, unseen data. 

The loss function of the regression ANN models was the mean 

square error (MSE), as expressed as follow: 

 

𝑀𝑠𝑒 =
1

𝑛
∑(𝑇ℎ𝑠 − 𝑇ℎ𝑝)2

𝑛

1

                               (5) 

Were: 

𝑇ℎ𝑠 is simulated thickness values and 𝑇ℎ𝑝 is Predicted thickness 

values. 

IV. RESULTS AND DISCUSSIONS 

The regression ANN model was used to predict the 

thickness of the first layer of a multilayer material, which is an 

aluminum thin plate over a thick steel plate.  

The network is a two-layer feedforward network with a sigmoid 

transfer function in the hidden layer and a linear transfer function 

in the output layer. The layer size value defines the number of 

hidden neurons, which have 12 neurons. You can see the network 

architecture in Figure 6. The network plot updates to reflect the 

input data. In this study, the data has three inputs (features) and one 

output. To show that it is feasible to apply a well-trained ANN 

model to untrained datasets, we only used the data from the 

thickness plate ranging from 0.01 mm to 0.2 mm for training and 

testing the selected ANN in our study. The remaining data was 

obtained for test the untrained data. 

The training performance of our neural network model is 

displayed in Figure 7, which also shows the mean squared errors 

(MSE) for the training and test data throughout the epochs. 

 
Figure 6: ANN Structure. 

Source: Authors, (2024). 

 

The vertical axis shows the mean square error, and the 

horizontal axis shows the number of epochs. The blue line, which 

rapidly decreases until stabilizing, represents the error on the 

training set. The red line represents the error on the test set. The 

black horizontal dotted line denotes the highest performance during 

training, and the blue circle denotes the optimal performance, 

which arrived at epoch 815 with an MSE of 5.2282e-10. This 

shows that the model performed exceedingly well on the test data, 

and the model has successfully learned the training dataset. 

 
Figure 7: ANN performance. 

Source: Authors, (2024). 

 

To further substantiate the training performance, Figure 8 

displays the error histogram plot for the training dataset. It displays 

data points known as outliers or those whose fits are noticeably 

poorer than those of the majority of the data. In our training model, 

there are no outliers in the data because the majority of the data lies 

on the zero-error line, and all errors fall between -5.1e-5 and 6.73e-

5, which supports the performance results in Figure 7. The artificial 

neural network's performance is evaluated by calculating the 

variance between the test dataset's true values and the network's 

predicted values. The correlation between the first layer's 

anticipated and simulated thicknesses is displayed in Figure 9. The 

training and testing datasets had 1700 and 300 instances, 

respectively. For the training and testing datasets, the 

corresponding R2 values were 1, and the regression lines had slopes 
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of (1×Target+1.5e-7) and (1×Target+2.7e-6), respectively. 

Regression line slopes and R2 values were both near 1.0, 

suggesting that the results that were predicted by the regression 

ANN model matched well with the analytical simulation results. 

 

 
Figure 8: ANN histogram regression. 

Source: Authors, (2024). 

 

. 

Figure 9: ANN regression. 

Source: Authors, (2024). 

 

After determining the most effective data processing 

approach, it became imperative to validate the applicability of the 

well-trained Artificial Neural Network (ANN) model to datasets 

that were not part of the initial training. All other input datasets that 

did not participate in the training and testing of the ANN model, 

which is the data obtained from the thicknesses of the first plate 

from 0.21 mm to 0.25 mm, were chosen.  The simulated and 

predicted thicknesses of five cases of untrained inputs are 

illustrated in Figure 10 and Figure 11.  

 

 
Figure 10: Regression of untrained predicted thicknesses. 

Source: Authors, (2024). 

 

 
Figure 11: Results obtained for untrained data. 

Source: Authors, (2024). 

V. CONCLUSIONS 

Two thousand and five hundred datasets with the eddy 

current method of different aluminum plate thicknesses above a 

steel plate and working frequencies of EC-sensor were generated 

using experimentally validated analytical models in our previous 

research. The values of the thickness measurement of the first layer 
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predicted by the ANN model were almost identical with the 

simulated results. 

Under the different thicknesses of the plate and working 

frequency of the sensor, the R2 and MSE of the testing dataset were 

1 and ,5.22e-10 respectively. The practicality of implementing the 

proficiently trained ANN model on untrained datasets was 

successfully demonstrated with R2 equal to 0.99996. The model 

parameters, such as the number of neurons in the hidden layer and 

the choice of the activation function, have been systematically 

studied, and the developed ANN model gave quite good prediction 

results. In this study, we avoided those errors by searching for the 

optimal number of neurons and trying training with Bayesian 

regularization. 
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