
Journal of Engineering and Technology for Industrial Applications

ITEGAM-JETIA

Manaus, v.11 n.51, p. 72-79. January/February., 2025.

DOI: https://doi.org/10.5935/jetia.v11i51.1415

RESEARCH ARTICLE OPEN ACCESS

Journal homepage: www.itegam-jetia.org

ISSN ONLINE: 2447-0228

SOLVING NON-BINARY CONSTRAINTS SATISFACTION PROBLEMS

USING GHD AND RESTART

Fatima Ait Hatrit1 and Kamal Amroun2

1,2Université de Bejaia, Faculté des Sciences Exactes, Laboratoire d'Informatique Médicale et des Environnements Dynamiques et intelligents

(LIMED), Algeria.

1http://orcid.org/0000-0002-0072-1348 , 2http://orcid.org/0000-0002-4259-2783

Email: fatima.aithatrit@univ-bejaia.dz, kamal.amroun@univ-bejaia.dz

ARTICLE INFO ABSTRACT

Article History

Received: November 19, 2024

Revised: December 20, 2024

Accepted: January 15, 2025

Published: January 30, 2025

The non-binary instances of the Constraint Satisfaction Problem (CSP) could be efficiently

solved if their constraint hypergraphs have small generalized hypertree widths. Several

algorithms based on Generalized Hypertree Decomposition (GHD) have been proposed in

the literature to solve instances of CSPs. One of these algorithms, called Forward Checking

based on Generalized Hypertree Decomposition (FC-GHD+NG+DR), combines the

advantages of an enumerative search algorithm with those of Generalized Hypertree

Decomposition. However, like all structural decomposition methods, FC-GHD+NG+DR

depends on the order in which the clusters are processed. In this paper, we propose a new

version of the FC-GHD+NG+DR algorithm with a restart technique that allows changing

the order of the nodes of GHD to improve performance. The experiments carried out are

very promising, particularly on the satisfiable instances where we achieved better results

using the restart method in 52.63% of the modified Renault satisfiable benchmarks and an

average time resolution of ≈ 0 for the normalized Pret and normalized Dubois benchmarks.

Keywords:

Constraint Satisfaction Problems,

Generalized Hypertree

Decomposition,

Restart-FC-GHD+NG+DR,

Solving.

Copyright ©2025 by authors and Galileo Institute of Technology and Education of the Amazon (ITEGAM). This work is licensed

under the Creative Commons Attribution International License (CC BY 4.0).

I. INTRODUCTION

Constraint Satisfaction Problems (CSPs) are a fundamental

class of problems in artificial intelligence and operations research.

They involve a set of variables, each associated with a domain of

possible values, and a set of constraints that restrict the

simultaneous assignment of these values. Solving CSPs requires

finding an assignment that satisfies all constraints. These problems

are widely applied in domains such as activity planning and

scheduling problems [1] and allocation problem [2]. CSPs also

play a pivotal role in computational complexity research, serving

as a foundation for classifying the complexity of problems in

algebraic and logical frameworks [3], [4].

Despite their importance, CSPs are inherently challenging

due to their NP-complete nature, often requiring an exhaustive

search of the solution space. The standard method for solving CSPs

is backtracking, which systematically explores a search tree to find

solutions. While backtracking guarantees correctness, its

exponential time complexity in the worst case makes it impractical

for large or complex problem instances.

To address these limitations, researchers have developed

structural decomposition methods, which aim to divide a CSP into

smaller, independent sub-problems. Techniques such as bounded

fractional hypertree width [5] and hybrid width parameters [6]

have proven effective in reducing computational complexity.

Generalized Hypertree Decomposition (GHD)-based algorithms

are particularly noteworthy, leveraging problem structure to guide

the exploration of solution spaces [7-9]. Among these, the Forward

Checking guided by GHD, FC-GHD algorithm has been widely

studied. Extensions such as FC-GHD+NG (exploiting structural

NoGoods) and FC-GHD+NG+DR (introducing dynamic subtree

reordering) have significantly improved its performance [7].

Another promising strategies for enhancing CSP solvers is

exploiting data mining techniques for compressing table

constraints [10], the use of restart methods, which periodically

restart the search process after a certain number of failures. These

methods adaptively manage variable and node ordering, as shown

in [11], where restart sequences were used to optimize the selection

of heuristics.

Inspired by the success of FC-GHD+NG+DR, we propose

the Restart-FC-GHD+NG+DR algorithm, which dynamically

adjusts cluster orders based on the number of backtracks

generated. This approach mitigates excessive backtracking,

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 72-79, January/February., 2025.

reduces unnecessary exploration, and improves solver efficiency,

especially for complex and large-scale CSP instances.

Our contribution builds on the theoretical foundations of structural

decomposition methods by integrating restart strategies to enhance

adaptability and efficiency. The proposed algorithm optimizes the

order of clusters dynamically, offering significant improvements

in computational performance for diverse applications. Moreover,

this work lays the foundation for integrating machine learning

techniques into structural decomposition methods, enabling future

solvers to predict optimal cluster orders based on problem

characteristics, thereby further improving efficiency and

adaptability.

The rest of the paper is organized as follows: Section II

presents the technical background; Section III introduces the

Restart-FC-GHD+NG+DR method; Section IV presents the

experimental results; and Section V concludes the paper.

II. BACKGROUND

The notion of Constraint Satisfaction Problem (CSP) has

been formally defined by [12]. A CSP instance is defined as a

triplet 𝑃 = ⟨𝑋, 𝐷, 𝐶⟩. Where 𝑋 = {𝑋𝑖 , . . . , 𝑋𝑛} is a finite set of 𝑛

variables and 𝐷 = {𝐷𝑖 , . . . , 𝐷𝑛} is a set of finite domains. Each

variable 𝑋𝑖 takes its value from its domain 𝐷𝑖 . 𝐶 = {𝐶1, … , 𝐶𝑚} is

a set of 𝑚 constraints. A constraint 𝐶𝑖 ∈ 𝐶 on an ordered subset of

variables, 𝐶𝑖 = (𝑋𝑖1
, … , 𝑋𝑖𝑎𝑖

) (𝑎𝑖 is called the arity of the constraint

𝐶𝑖), is defined by an associated relation 𝑅𝑖 ∈ Ʀ of allowed

combinations of values for the variables in 𝐶𝑖. Note that we take

the same notation for the constraint 𝐶𝑖 and its scope. Binary CSPs

are those defined where each constraint involves only two

variables, that is ∀i ∈ {1, . . . , m}, |𝐶𝑖| = 2. Constraints of arity

greater than 2 are called non binary or n-ary. A CSP with at least

one n-ary constraint is called non binary or n-ary CSP. A tuple 𝑡 ∈

𝑅𝑖 is a list of values (𝑣𝑖1
, … , 𝑣𝑖𝑎𝑖

) where:

𝑎𝑖 = |𝐶𝑖| ∶ 𝑣𝑖𝑗
∈ 𝐷𝑖𝑗

 ∀𝑗 ∈ {1, … , 𝑎𝑖} (1)

A solution to a CSP is an assignment of values to all the

variables in 𝑋 such that for each constraint 𝐶𝑖 the assignment

restricted to 𝐶𝑖 belongs to Ri. The constraint hypergraph associated

with a CSP instance 𝑃 = ⟨𝑋, 𝐷, 𝐶⟩ is the hypergraph Ң = ⟨𝑉, 𝐸⟩
where the set of vertices 𝑉 is the set of variables 𝑋 and the set of

hyperedges 𝐸 are the set of constraint scopes in 𝐶. For any

hyperedge ℎ ∈ 𝐸, we denote by 𝑣𝑎𝑟(ℎ) the set of vertices of ℎ and

for any subset of hyperedges 𝐾 ⊆ 𝐸

𝑣𝑎𝑟(𝐾) = ⋃ 𝑣𝑎𝑟(ℎ) (2)
ℎ∈𝐾 .

We denote by 𝑣𝑎𝑟(Ң) the set of vertices 𝑉 and by

𝑒𝑑𝑔𝑒𝑠(Ң) the set of ℎ𝑦𝑝𝑒𝑟𝑒𝑑𝑔𝑒𝑠 𝐸. (We use the term 𝑣𝑎𝑟

because the vertices of the hypergraph correspond to the variables

of the CSP).

Definition 1: Hypertree

Let Ң = ⟨𝑉, 𝐸⟩ be a hypergraph. A hypertree [13] for Ң is a

triple ⟨𝑇, 𝜒, 𝜆⟩ where 𝑇 = (𝑁, 𝐹) is a rooted tree, and 𝜒 and 𝜆 are

labelling functions which associate each vertex 𝑝 ∈ 𝑁 with two

sets 𝜒(𝑝) ⊆ 𝑉 and 𝜆(𝑝) ⊆ 𝐸. If 𝑇′ = (𝑁′, 𝐹′) is a subtree of 𝑇 we

define:

 𝜒(𝑇′) = ⋃ 𝜒(𝑣)𝑣∈𝑁′ (3)

We denote the set of vertices 𝑁 of 𝑇 by 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇) and

the root of 𝑇 by 𝑟𝑜𝑜𝑡 (𝑇). 𝑇𝑝 denotes the subtree of 𝑇 rooted at the

node 𝑝 and 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝) is the parent node of 𝑝 in 𝑇.

Definition 2: Hypertree Decomposition

A Hypertree Decomposition [14] of a hypergraph Ң =
 ⟨𝑉, 𝐸⟩ is a hypertree 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ which satisfies the following

conditions:

i. For each edge ℎ ∈ 𝐸, there exists 𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇) such

that:

𝑣𝑎𝑟(ℎ) ⊆ 𝜒(𝑝) (4)

ii. For each vertex 𝑣 ∈ 𝑉, the set

{𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑇)|𝑣 ∈ 𝜒(𝑝)} (5)

induces a connected subtree of 𝑇;

iii. For each vertex

𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇), 𝜒(𝑝) ⊆ 𝑣𝑎𝑟(𝜆(𝑝)) (6)

iv. For each

𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇), 𝑣𝑎𝑟(𝜆(𝑝)) ∩ 𝜒(𝑇𝑝) ⊆ 𝜒(𝑝) (7)

The width of a hypertree 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ is equal to

𝑚𝑎𝑥 𝑝∈𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑇)|𝜆(𝑝)|.The hypertree-width (ℎ𝑤(Ң)) of a

hypergraph Ң is the minimum width over all its hypertree

decompositions.

A hyperedge ℎ of a hypergraph Ң = ⟨𝑉, 𝐸⟩ is strongly

covered in 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ if there exists 𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇) such

that the vertices of ℎ are contained in 𝜒(𝑝) and ℎ ∈ 𝜆(𝑝).

 A hypertree decomposition 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ of a

hypergraphҢ is complete if every hyperedge ℎ of Ң is strongly

covered in 𝐻𝐷.

A hypertree 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ is called a Generalized

Hypertree Decomposition (GHD) [15], [16] if the conditions (i),

(ii) and (iii) of Definition 2 hold. The width of a Generalized

Hypertree Decomposition 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ is equal to

𝑚𝑎𝑥 𝑝∈𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑇)|𝜆(𝑝)|. The generalized-hypertree-

width (𝑔ℎ𝑤(Ң)) of a hypergraph Ң is the minimum width over all

its generalized hypertree decompositions.

Remark 1. The terms node and vertex will be used

interchangeably to refer to a vertex of 𝑇.

Example 1. Let 𝑃 = ⟨𝑋, 𝐷, 𝐶⟩ be a CSP instance defined as

follows.
 𝑋 = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10, 𝑋11, 𝑋12, 𝑋13, 𝑋14, 𝑋15, 𝑋16, 𝑋17} is

the set of variables,



 𝐷 = {𝐷1, . . . , 𝐷17} where 𝐷𝑖 = {0,1} is the domain of

the variable 𝑋𝑖 ∀𝑖 ∈ {1, . . . ,17},

 𝐶 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8, 𝐶9, 𝐶10} is the set of

constraints.

Figure 1 is the constraint hypergraph associated with P

and Figure 2 is one of its Generalized hypertree decompositions.

The width of the decomposition is 3.

Page 73

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 72-79, January/February., 2025.

Figure 1: The constraint hypergraph of the CSP instance of

Example 1.

Source: Authors, (2025).

Figure 2: A 3-width generalized hyper tree decomposition of the

constraint hyper graph of Example1.

Source: Authors, (2025).,333333

Definition 3: Nogood

A Nogood [17] is an inconsistent partial assignment that cannot be

extended to a global solution. A minimal Nogood is any Nogood

that is not itself composed of another Nogood.

Definition 4: Subproblem

Let ni be a node of a GHD. The subproblem [7] associated with ni

is a CSP < Xni , Dni , Cni > where Xni = χni , Dni is the set of

domains defined in the original CSP for the variables in Xni and

Cni = λni . Pni (8)

Is denotes the subproblem associated with 𝑛𝑖 and 𝑠𝑜𝑙(𝑃𝑛𝑖) denotes

the current solution of 𝑃𝑛𝑖 .

II.1 THE FC-GHD+NG+DR ALGORITHM

The FC-GHD+NG+DR algorithm [7] searches for a

solution for the subproblem associated with the root node and it

tries to extend this solution to the other subproblems induced by

the nodes of the GHD in a depth-first manner. If a subproblem Pni

has no solution, then FC-GHD+NG+DR, reorders the subtrees

rooted at children of the current node, backtracks to the

subproblem 𝑃𝑛𝑗
 such that 𝑛𝑗 is the parent node of 𝑛𝑖 in 𝑇, it

computes another solution for 𝑃𝑛𝑗
and continues from there. FC-

GHD+NG+DR is described by (Algorithm 5).

It takes as input a complete 𝐺𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ associated

with a CSP instance 𝑃 = ⟨𝑋, 𝐷, 𝐶⟩. The nodes of 𝑇 are organized

in a list 𝜎 according to the depth-first (preorder) traversal. The

subproblems are solved sequentially by the function 𝑆𝑜𝑙𝑣𝑒_𝑠𝑢𝑏𝑝𝑏

according to 𝜎. If 𝑃𝑛𝑖 has a (another) solution then the procedure

𝐹𝑖𝑙𝑡𝑒𝑟 − 𝑁𝐺 (Algorithm 4) checks the consistency of the

constraints at descendant nodes of 𝑛𝑖. If all these constraints are

satisfied and if the current solution is not a Nogood, then all the

constraint relations at each child node of 𝑛𝑖 are filtered and the

subproblem associated with the next node in 𝜎 is processed. In the

negative case, another solution is computed for 𝑃𝑛𝑖 if it exists.

If there is no (other) solution for 𝑃𝑛𝑖 , then FC-

GHD+NG+DR calls the procedure 𝐵𝑎𝑐𝑘𝑇𝑟𝑎𝑐𝑘 − 𝐷𝑅 (Algorithm

3) for restoring the tuples removed by the process of filtering,

recording a Nogood using the procedure 𝑅𝑒𝑐𝑜𝑟𝑑_𝑛𝑜𝑔𝑜𝑜𝑑

(Algorithm 1), reordering sub-trees with procedure

𝑅𝑒𝑜𝑟𝑑𝑒𝑟_ℎ𝑦𝑝𝑒𝑟𝑡𝑟𝑒𝑒 (Algorithm 2) such that all nodes of the sub-

tree rooted at 𝑛𝑖 are inserted between 𝑃𝑎𝑟𝑒𝑛𝑡(𝑛𝑖) and the nodes

following 𝑛𝑖 in 𝜎 noted by 𝑆𝑢𝑐𝑐(𝑃𝑎𝑟𝑒𝑛𝑡(𝑛𝑖)) and to backtrack

to 𝑃𝑎𝑟𝑒𝑛𝑡(𝑛𝑖). FC-GHD+NG+DR stops in two cases:

1. All the subproblems are successfully solved, and then a

global solution for the whole CSP instance is computed (line 16).

2. There is no other solution for the subproblem associated

with the root node and then the CSP instance is unsatisfiable.

Figure 3: Record_nogood Procedure.

Source: [7].

Figure 4: Procedure Reorder_hypertree.

Source: [7].

Page 74

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 72-79, January/February., 2025.

Figure 5: Procedure Backtrack-DR.

Source: [7].

Figure 6: Procedure Filter-NG.

Source: [7].

Figure 7: FC-GHD+NG+DR Algorithm.

Source: [7].

III. RESTART-FC-GHD+NG+DR

In this section, we present 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 +
𝐷𝑅 which is a new version of FC-GHD+NG+DR. As all the

structural methods, FC-GHD+NG+DR depends in the quality of

the decomposition and in the first node (root) considered to process

the GHD decomposition. Since finding an appropriate root for

processing a GHD is a very hard task [18], we propose to introduce

the restart technique in order to consider another root for the

hypertree, for this we consider all possible orders (with respect to

depth first traversal-pre-order). So, the set of possible order s

obtained are represented by 𝑂𝑅𝐷𝐸𝑅𝑆, they are partitioned into

many subsets 𝜎1 , . . . , 𝜎𝑟 such that 𝜎1 ∪. . .∪ 𝜎𝑟 = 𝑂𝑅𝐷𝐸𝑅𝑆 where

𝑟 is the number of orders. For the purpose of improving the

performances, we introduce the restart techniques to the 𝐹𝐶 −
𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅. The main steps of this techniques are:

1. Select the initial order 𝜎1 ∈ 𝑂𝑅𝐷𝐸𝑅𝑆 and initiate the

resolution with 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅;

2. At each time the number of backtracks reaches a threshold

𝑙𝑖𝑚𝑖𝑡_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 which is updated at each iteration by a constant

factor 𝑝𝑎𝑟𝑎𝑚, we apply a restart;

3. Restart allows us to choose another order from the set of

𝑂𝑅𝐷𝐸𝑅𝑆 already defined, and restart the resolution.

III.1 ALGORITHM

𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 is formally described

by Algorithm 6.

Figure 8: Restart-FC-GHD+NG+DR Algorithm.

Source: Authors, (2025).

It takes as input a complete GHD associated with the CSP,

and returns a solution of the CSP if it exists. First, (line 1) the

algorithm commences by establishing an initial order 𝜎1 =
(𝑛1 , . . . , 𝑛𝑒) where 𝑛1 is the root node. This order is obtained with

respect to the depth-first search strategy. At each node 𝑛1 the

algorithm tries to solve the associated sub-problem 𝑃𝑛𝑖 using the

function 𝑆𝑜𝑙𝑣𝑒𝑠𝑢𝑏𝑝𝑏(𝑃𝑛𝑖) (line 7). If 𝑃𝑛𝑖 has a solution, we use

the procedure 𝐹𝑖𝑙𝑡𝑒𝑟 − 𝑁𝐺 (line 24) to filter the relations of

constraints at the 𝜆 label of each child node of 𝑛𝑖, then solves the

Page 75

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 72-79, January/February., 2025.

next subproblems 𝑃𝑛𝑗 associated with the node 𝑛𝑗 . In cases where

𝑃𝑛𝑖 is inconsistent and 𝑛𝑖 is the first node, then the problem 𝑃 has

no solution (line 11). Otherwise, it involves increment the number

of backtracks 𝑛𝑏_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 and checks the 𝑙𝑖𝑚𝑖𝑡_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠

(lines 14, 15). If the number of backtracks does not exceed the

𝑙𝑖𝑚𝑖𝑡_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠, it performs a backtrack (line 16) in order to

compute another solution for the subproblem associated with the

node 𝑃𝑎𝑟𝑒𝑛𝑡(𝑛𝑖); otherwise, it restarts (line 18), where the

algorithm considers an new root for the GHD and adopts with a

new order 𝜎2 = (𝑛2 , . . . , 𝑛𝑒) according to the depth-first strategy.

Example2. Consider the GHD in Figure 2.

Initially the order 𝜎 is defined as follows: 𝜎𝑗 =

(𝑛1, 𝑛2 , 𝑛3 , 𝑛4 , 𝑛5, 𝑛6) with 𝑛1as root of the hypertree. We

consider the 𝑙𝑖𝑚𝑖𝑡_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 = 3.

First, we start the resolution with the first subproblem 𝑃𝑛1

associated with the node 𝑛1 which is considered as a root of the

hypertree. If 𝑃𝑛1 has no solution then we stop the resolution and

the problem 𝑃 has no solution, else we filter all the constraints in

the 𝜆 label of each child of node 𝑛1 (𝑛2 and 𝑛3) and then we move

to the next node 𝑛2, we look for 𝑠𝑜𝑙(𝑃𝑛2) which is compatible with

𝑠𝑜𝑙 (𝑃𝑛1). If 𝑃𝑛2 is consistent, we filter all the constraints in the 𝜆

label of each child of the node 𝑛1 (𝑛2 and 𝑛3). Else,

𝑛𝑏_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 is incremented and a backtracking occurs from 𝑛2

to 𝑛1 (if 𝑙𝑖𝑚𝑖𝑡_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 is not reached) to calculate another

solution for𝑃𝑛1 if it exists. When the solution computed to 𝑃𝑛1 is

consistent we move to 𝑃𝑛2 . If the solution 𝑠𝑜𝑙(𝑃𝑛2) is inconsistent,

𝑛𝑏_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 is incremented to 2 and a backtracking occurs

from 𝑛2 to 𝑛1 , then it generates another solution to 𝑃𝑛1 if it exists.

If the solution 𝑠𝑜𝑙(𝑃𝑛2) is consistent then move to the next

subproblem.

At this stage, if 𝑃𝑛3 or another 𝑃𝑛𝑖 is inconsistent, the

𝑛𝑏_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 is incremented and if 𝑙𝑖𝑚𝑖𝑡_𝐵𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠, it

restarts from the new root 𝑛2 of the order 𝜎2 =
(𝑛2, 𝑛3 , 𝑛4 , 𝑛5 , 𝑛6, 𝑛1) (see Figure 9).

Figure 9: The GHD of Example 1 after reordering nodes.

Source: Authors, (2025).

IV. EXPERIMENTS

This section presents the experiments carried out in order

to evaluate the performances of the 𝑅𝑒𝑠𝑡𝑎𝑟𝑡𝐹𝐶 − 𝐺𝐻𝐷 +
𝑁𝐺 + 𝐷𝑅 method. 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 − 𝐹𝐺𝐷 + 𝑁𝐺 + 𝐷𝑅 has

been implemented in MPI C++ and run on a Core (TM) 2 Duo

CPU T5670 @ 1.80 GHZ with 2GB of RAM under Linux

Debian. The tests have been executed on benchmarks selected

for the CSP Solver international Competitions CPAI’08 and

CPAI’09.1.

For each instance, the time out (TO) is fixed to 1,800

seconds. The Memory Out (MO) is fixed to 2GB.

For computing the GHD Decomposition we used the Bucket

Elimination (BE) algorithm [19] which is one of the best

algorithms giving nearly optimal generalized hypertree

decompositions within a reasonable CPU time [19]2

In all the following tables of results, |𝑋| is the number of

variables, |𝐶| is the number of constraints, 𝑤 is the width of the

GHD decomposition returned by BE and 𝑡𝑖𝑚𝑒 is the CPU run

time needed to solve the instance of the considered series. The

results in bold are the lowest (best) of each row. All CPU times

are given in seconds.

They include the time for computing a GHD using BE

(unless otherwise stated), in addition to the time for completing

the GHD and solving the problem. In all the tables, the symbol ’/’
indicates unknown values.Note that the reported times for each

instance are average runtime sover 5 executions because of the

random nature of the BE algorithm, giving possible different

GHD decompositions for one given instance. For this study, we

have used the following benchmarks: Renault series, Renault

Modified series, Pret series, Dubois series and VarDimacs which

are described in Subsection 4.1.

IV.1 DESCRIPTION OF BENCHMARKS

Structured Instances: Both the Renault series and the

Renault-mod series consist of multiples instances related to the

Renault Megane configuration problem. These instances are

represented in different forms:

Page 76

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 72-79, January/February., 2025.

 Renault Series: contains 2 structured instances coming

from the original Renault Megane configuration problem

appearing under two forms: normalized and simple form. Both

instances involve large constraint relations of high arity and the

largest relation contains 48,721 tuples.

 Renault-mod Series: this class (Modified Renault)

contains 50 structured instances involving domains with up to 42

possible values. The largest constraint relation contains 48,721

tuples.

Quasi random instances (random plus a small structure):

 Boolean instances (each variable domain is {0,1}):

o Pret series: contains 8 instances encoding 2-coloring

problems forced to be unsatisfiable with either 60 or 150 variables.

The maximum arity of the constraints is 3 (3-SAT) and each

constraint relation contains 4 tuples.

o Dubois series: contains 13 randomly generated

unsatisfiable 3-SAT instances. For each instance, each constraint

relation contains 4 tuples.

o VarDimacs series: comes from the original Sat

formalization of Circuit fault analysis: Bridge Fault (BF): 4

unsatisfiable instances, and from the well-known Pigeon-hole

problem: 5 unsatisfiable instances. The maximum arity of the

constraints is greater than 2 and the largest constraint relation

contains 1,023 tuples (normalized-hole-10_ext).

IV.2 COMPARING 𝑹𝑬𝑺𝑻𝑨𝑹𝑻 − 𝑭𝑪 − 𝑮𝑯𝑫 + 𝑵𝑮 + 𝑫𝑹

WITH 𝑭𝑪 − 𝑮𝑯𝑫 + 𝑵𝑮 + 𝑫𝑹

This subsection gives the comparative results of Restart-

FC-GHD+NG+DR and FC-GHD+NG+DR on all the considered

series.

IV.2.1 on normalized renault

Table 1 presents the comparison results of FC-

GHD+NG+DR and Restart-FC GHD+NG+DR on the two

instances of Renault series. The two algorithms have almost

similar performances with little advantage to Restart-FC-

GHD+NG+DR. The two instances of Renault series are very

structured and come from real applications. This explains the good

time results of the two methods.

Table 1: Comparison between FC-GHD+NG+DR and Restart-

FC-GHD+NG+DR: Renault series.

Problems

normalized

Size
𝑾

𝐅𝐂 − 𝐆𝐇𝐃
+ 𝐍𝐆 + 𝐃𝐑

𝐑𝐞𝐬𝐭𝐚𝐫𝐭 − 𝐅𝐂
− 𝐆𝐇𝐃 + 𝐍𝐆
+ 𝐃𝐑

|𝑿| |𝑪| 𝒓 Time Time

renault ext 101 134 48,721 3 0.83 0.6

renault-mgd

ext
101 113 48,721 2 0.96 0.7

Source: Authors, (2025).

IV.2.2 On Modified Renault.

Table 2 presents the comparison results of the two

algorithms on the Renault-mod series. It shows that 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 −
𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 clearly improves 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 +
𝐷𝑅 in terms of CPU time for both consistent and inconsistent

instances. We can observe that the 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 is

better than the 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 one on few instances. This is due to the

restart technique which needs more deeper study in order to fix the

𝑙𝑖𝑚𝑖𝑡_𝑏𝑎𝑐𝑘𝑡𝑎𝑟𝑎𝑐𝑘𝑠.

Table 2: Comparison between FC-GHD+NG+DR and Restart-FC-

GHD+NG+DR on Renault-mod series.

Proble

ms

normal

ized

Renaul

t-mod

Size
𝑾

𝑭𝑪
− 𝑮𝑯𝑫
+ 𝑵𝑮
+ 𝑫𝑹

𝑹𝒆𝒔𝒕𝒂𝒓𝒕
− 𝑭𝑪
− 𝑮𝑯𝑫
+ 𝑵𝑮 + 𝑫𝑹

Consistenc

y

|𝑿| |𝑪| 𝒓 Time Time

-0_ext 111 154 48,721 4 1.32 0.86 Consistent

-1_ext 111 154 48,721 3 7.73 18.87 Inconsistent

-2_ext 111 154 48,721 5 1.59 1.21 Consistent

-3_ext 111 154 48,721 3 6.02 5.98 Inconsistent

-4_ext 111 154 48,721 4 1.49 1.11 Consistent

-5_ext 111 154 48,721 3 13.97 40.72 Inconsistent

-6_ext 111 154 48,721 3 0.85 0.83 Inconsistent

-7_ext 111 154 48,721 4 1.93 3.07 Consistent

-8_ext 111 154 48,721 3 0.83 0.80 Inconsistent

-9_ext 111 154 48,721 3 1.09 1.08 Consistent

-10_ext 111 154 48,721 3 7.57 7.22 Inconsistent

-11_ext 111 154 48,721 3 1.28 1.25 Consistent

-12_ext 111 154 48,721 3 32.04 107.73 Inconsistent

-13_ext 111 154 48,721 3 1.03 1.00 Consistent

-14_ext 111 154 48,721 3 6.91 18.04 Inconsistent

-15_ext 111 154 48,721 3 4.36 12.60 Inconsistent

-16_ext 111 154 48,721 3 11.58 11.19 Inconsistent

-17_ext 111 154 48,721 3 2.11 1.84 Inconsistent

-18_ext 111 154 48,721 3 206.13 1.69 Inconsistent

-19_ext 111 154 48,721 3 1.06 0.95 Inconsistent

-20_ext 111 154 48,721 3 9.71 9.74 Inconsistent

-21_ext 111 154 48,721 3 52.02 421.08 Inconsistent

-22_ext 111 154 48,721 3 26.45 28.05 Inconsistent

-23_ext 111 154 48,721 4 2.21 1.82 Inconsistent

-24_ext 111 154 48,721 4 3.37 3.29 Inconsistent

-25_ext 111 154 48,721 3 40.01 107.94 Inconsistent

-26_ext 111 154 48,721 3 MO MO Inconsistent

-27_ext 111 154 48,721 3 2.14 1.96 Inconsistent

-28_ext 111 154 48,721 3 74.04 76.61 Inconsistent

-29_ext 111 154 48,721 4 14.18 13.82 Inconsistent

-30_ext 111 154 48,721 3 4.78 10.45 Inconsistent

-31_ext 111 154 48,721 3 1.65 1.63 Consistent

-32_ext 111 154 48,721 4 5.09 14.41 Consistent

-33_ext 111 154 48,721 5 12.40 12.41 Inconsistent

-34_ext 111 154 48,721 4 6.13 9.76 Consistent

-35_ext 111 154 48,721 3 19.72 50.41 Inconsistent

-36_ext 111 154 48,721 4 21.08 45.90 Consistent

-37_ext 111 154 48,721 4 11.02 27.67 Inconsistent

-38_ext 111 154 48,721 4 1.70 2.58 Consistent

-39_ext 111 154 48,721 4 51.71 638.17 Inconsistent

-40_ext 108 149 48,721 3 553.60 1560.17 Inconsistent

-41_ext 108 149 48,721 4 7.59 18.18 Consistent

-42_ext 108 149 48,721 3 1.17 1.10 Inconsistent

-43_ext 108 149 48,721 3 1.85 1.45 Consistent

-44_ext 108 149 48,721 4 1.03 0.93 Consistent

-45_ext 108 149 48,721 4 19.89 44.54 Consistent

-46_ext 108 149 48,721 4 5.86 5.44 Consistent

-47_ext 108 149 48,721 4 1.19 0.74 Inconsistent

-48_ext 108 149 48,721 4 47.01 84.04 Consistent

-49_ext 108 149 48,721 4 24.38 85.57 Consistent

Source: Authors, (2025).

Page 77

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 72-79, January/February., 2025.

IV.2.3 On Pret Series and Dubois Series

Tables 3 and 4 show the comparison results of the two

algorithms on the Boolean Pret and Dubois series. On these series,

𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 and 𝐹𝐶 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅

solve all instances in short time. On Pret series, the average

runtimes of the two algorithms 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 and

𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 are 0.007 and ≈ 0 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

respectively. On Dubois series, their average runtimes

are 0.0035 and ≈ 0 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 respectively.

Table 3: Comparison between FC-GHD+NG+DR and Restart-

FC-GHD+NG+DR on Pret series.
Proble

ms

normal

ized

pret

Size

𝑾

𝐅𝐂 − 𝐆𝐇𝐃
+ 𝐍𝐆
+ 𝐃𝐑

𝐑𝐞𝐬𝐭𝐚𝐫𝐭 − 𝐅𝐂
− 𝐆𝐇𝐃 + 𝐍𝐆
+ 𝐃𝐑

Consistenc

y

|𝑿| |𝑪| 𝒓 Time Time

-60-

25_ext
60 40 4 5 0.36 ≃0 Inconsistent

-60-
40_ext

60 40 4 5 0.008 ≃0 Inconsistent

-60-

60_ext
60 40 4 5 0.01 ≃0 Inconsistent

-60-
75_ext

60 40 4 5 0.01 ≃0 Inconsistent

-150-

25_ext

15

0

10

0
4 5 0.05 ≃0 Inconsistent

-150-
40_ext

15
0

10
0

4 5 0.17 ≃0 Inconsistent

-150-

60_ext

15

0

10

0
4 5 0.37 ≃0 Inconsistent

-150-
75_ext

15
0

10
0

4 5 0.023 ≃0 Inconsistent

Source: Authors, (2025).

Table 4: Comparison between FC-GHD+NG+DR and Restart-

FC-GHD+NG+DR on Duboi.
Proble

ms

normali

zed

Dubois

Size 𝑾
𝐅𝐂 − 𝐆𝐇𝐃
+ 𝐍𝐆 + 𝐃𝐑

𝐑𝐞𝐬𝐭𝐚𝐫𝐭 − 𝐅𝐂
− 𝐆𝐇𝐃 + 𝐍𝐆
+ 𝐃𝐑

Consistency

|𝑿| |𝑪| 𝒓 Time Time

-20_ext 60 40 4 2 0.043 ≃0 Inconsistent

-21_ext 63 42 4 2 0.005 ≃0 Inconsistent

-22_ext 66 44 4 2 0.004 ≃0 Inconsistent

-23_ext 69 46 4 2 0.005 ≃0 Inconsistent

-24_ext 72 48 4 2 0.005 ≃0 Inconsistent

-25_ext 75 50 4 2 0.005 ≃0 Inconsistent

-26_ext 78 52 4 2 0.006 ≃0 Inconsistent

-27_ext 81 54 4 2 0.006 ≃0 Inconsistent

-28_ext 84 56 4 2 0.006 ≃0 Inconsistent

-29_ext 87 58 4 2 0.007 ≃0 Inconsistent

-30_ext 90 60 4 2 0.006 ≃0 Inconsistent

-50_ext 150 100 4 2 0.011 ≃0 Inconsistent

100_ext 300 200 4 2 0.049 ≃0 Inconsistent

Source: Authors, (2025).

IV.2.4 On VarDimacs Series

Finally, Table 5 presents the behavior of the two algorithms

on VarDimacs series. 𝐹𝐶 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 and 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 −
𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 succeed to solve four instances. The average

runtime of the two algorithms is 4.01 and 130,75 seconds

respectively. But we have better results with 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 −
𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 except for the instance normalized bf-0432-

007_ext.

Table 5: Comparison between FC-GHD+NG+DR and Restart-

FC-GHD+NG+DR on Pret series.

Problems

normalized
Size

𝑾

𝐅𝐂
− 𝐆𝐇𝐃
+ 𝐍𝐆
+ 𝐃𝐑

𝐑𝐞𝐬𝐭𝐚𝐫𝐭
− 𝐅𝐂
− 𝐆𝐇𝐃
+ 𝐍𝐆
+ 𝐃𝐑

Consistency

|𝑿| |𝑪| 𝒓 Time Time

-bf-0432-

007_ext
970 1,943 31 29 35.15 129.87 Consistent

-bf-1355-
075_ext

1,818 2,049 5 5 9.74 0.81 Consistent

-bf-1355-

638_ext
532 339 31 2 0.18 ≃0 Consistent

-bf-2670-
001_ext

1,244 1,354 31 7 0.31 0.29 Inconsistent

Source: Authors, (2025).

V. CONCLUSIONS

In this work, we have presented a new method called

Restart-FC-GHD+NG+DR, which combines the FC-

GHD+NG+DR algorithm, exploiting GHD, with a restart strategy

to solve non-binary CSPs. Our experiments on benchmark of

literature have demonstrated the efficiency of the proposed

algorithm, particularly on consistent instances. The results show

significant improvements over the FC-GHD+NG+DR algorithm,

with a 52.62% better performance on modified Renault consistent

instances and near-zero execution time for the Normalized Dubois

and Normalized Pret series. This confirms the algorithm's potential

in enhancing CSP-solving strategies. This approach offers

significant contributions, the method advances CSP-solving by

addressing limitations of traditional algorithms, introducing a

dynamic, restart-based approach that adapts to various problem

structures. It opens new research avenues by integrating machine

learning for adaptive reordering, encouraging cross-disciplinary

applications in fields like artificial intelligence, operations

research, and network optimization. However, some limitations

remain, such as managing the limit_backtaracks more effectively,

as excessive backtracking can still increase execution time.

Additionally, enhancing the algorithm's handling of inconsistent

problem instances is necessary to avoid exploring all possible

orders, which would further improve computational efficiency.

For future work, we plan to integrate machine learning and deep

learning techniques to dynamically reorder the nodes of the GHD

decomposition.

VI. AUTHOR’S CONTRIBUTION

Conceptualization: Fatima Ait Hatrit, Kamal Amroun

Methodology: Fatima Ait Hatrit, Kamal Amroun

Investigation: Fatima Ait Hatrit, Kamal Amroun

Discussion of results: Fatima Ait Hatrit, Kamal Amroun

Writing – Original Draft: Fatima Ait Hatrit, Kamal Amroun

Writing – Review and Editing: Fatima Ait Hatrit, Kamal

Amroun Resources: Fatima Ait Hatrit, Kamal Amroun

Supervision: Fatima Ait Hatrit, Kamal Amroun

Approval of the final text: Fatima Ait Hatrit, Kamal Amroun

VIII. REFERENCES

[1] S. Choudhury, J. K. Gupta, M. J. Kochenderfer, D. Sadigh, and J. Bohg,

« Dynamic multi-robot task allocation under uncertainty and temporal
constraints », Auton Robot, vol. 46, no 1, p. 231‑247, janv. 2022, doi:

10.1007/s10514-021-10022-9.

Page 78

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 72-79, January/February., 2025.

[2] A Constraint Programming Approach to Simultaneous Task Allocation and
Motion Scheduling for Industrial Dual-Arm Manipulation Tasks ».

https://ieeexplore.ieee.org/document/8794022

[3] M. Bodirsky, P. Jonsson, B. Martin, A. Mottet, and Ž. Semanišinová,

« Complexity Classification Transfer for CSPs via Algebraic Products », 7 juin

2024, arXiv: arXiv:2211.03340. http://arxiv.org/abs/2211.03340

[4] M. Grohe, V. Guruswami, D. Marx, and S. Živný, « The Constraint Satisfaction

Problem: Complexity and Approximability (Dagstuhl Seminar 22201) », Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:

10.4230/DAGREP.12.5.112.

[5] H. Chen, G. Gottlob, M. Lanzinger, and R. Pichler, « Semantic Width and the

Fixed-Parameter Tractability of Constraint Satisfaction Problems », 28 juillet 2020,

arXiv: arXiv:2007.14169. http://arxiv.org/abs/2007.14169

[6] R. Ganian, S. Ordyniak, and S. Szeider, « A Join-Based Hybrid Parameter for

Constraint Satisfaction », 29 juillet 2019, arXiv: arXiv:1907.12335. Consulté le: 16
novembre 2024. http://arxiv.org/abs/1907.12335

[7] Z. Habbas, K. Amroun, and D. Singer, « A Forward-Checking algorithm based
on a Generalised Hypertree Decomposition for solving non-binary constraint

satisfaction problems », Journal of Experimental & Theoretical Artificial

Intelligence, vol. 27, no 5, p. 649‑671, sept. 2015, doi:
10.1080/0952813X.2014.993507.

[8] Z. Younsi, K. Amroun, F. Bouarab-Dahmani, and S. Bennai, « HSJ-Solver: a
new method based on GHD for answering conjunctive queries and solving

constraint satisfaction problems », Appl Intell, vol. 53, no 13, p. 17226‑17239, juill.

2023, doi: 10.1007/s10489-022-04361-y.

[9] G. Gottlob, C. Okulmus, and R. Pichler, « Fast and parallel decomposition of

constraint satisfaction problems », Constraints, vol. 27, no 3, p. 284‑326, juill. 2022,
doi: 10.1007/s10601-022-09332-1.

[10] S. Bennai, K. Amroun, and S. Loudni, « Exploiting Data Mining Techniques
for Compressing Table Constraints », in 2019 IEEE 31st International Conference

on Tools with Artificial Intelligence (ICTAI), nov. 2019, p. 42‑49. doi:

10.1109/ICTAI.2019.00015.

[11] F. Koriche, C. Lecoutre, A. Paparrizou, and H. Wattez, « Best Heuristic

Identification for Constraint Satisfaction », in 31st International Joint Conference
on Artificial Intelligence (IJCAI’22), in Proceedings of the Thirty-First

International Joint Conference on Artificial Intelligence (IJCAI-22). Vienne,
Austria: International Joint Conferences on Artificial Intelligence Organization,

juill. 2022, p. 1859‑1865. doi: 10.24963/ijcai.2022/258.

[12] U. Montanari, « Networks of constraints: Fundamental properties and

applications to picture processing », Information Sciences, vol. 7, p. 95‑132, janv.

1974, doi: 10.1016/0020-0255(74)90008-5.

[13] K. Amroun, Z. Habbas, and W. Aggoune-Mtalaa, « A compressed Generalized

Hypertree Decomposition-based solving technique for non-binary Constraint
Satisfaction Problems », AIC, vol. 29, no 2, p. 371‑392, mars 2016, doi:

10.3233/AIC-150694.

[14] E. C. Freuder, « A sufficient condition for backtrack-bounded search », J.

ACM, vol. 32, no 4, p. 755‑761, oct. 1985, doi: 10.1145/4221.4225.

[15] I. Adler, G. Gottlob, and M. Grohe, « Hypertree width and related hypergraph

invariants », European Journal of Combinatorics, vol. 28, no 8, p. 2167‑2181, nov.

2007, doi: 10.1016/j.ejc.2007.04.013.

[16] G. Gottlob, N. Leone, and F. Scarcello, « Robbers, marshals, and guards: game

theoretic and logical characterizations of hypertree width », in Proceedings of the
twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, in PODS ’01. New York, NY, USA: Association for Computing

Machinery, mai 2001, p. 195‑206. doi: 10.1145/375551.375579.

[17] P. Jégou and C. Terrioux, « Hybrid backtracking bounded by tree-

decomposition of constraint networks », Artificial Intelligence, vol. 146, no 1, p.
43‑75, mai 2003, doi: 10.1016/S0004-3702(02)00400-9.

[18] P. Jégou, P. Gou, and C. Terrioux, « Combining Restarts, Nogoods and
Decompositions for Solving CSPs », in ECAI 2014, IOS Press, 2014, p. 465‑470.

doi: 10.3233/978-1-61499-419-0-465.

[19] A. Dermaku, T. Ganzow, G. Gottlob, B. McMahan, N. Musliu, and M. Samer,
« Heuristic Methods for Hypertree Decomposition », in MICAI 2008: Advances in

Artificial Intelligence, A. Gelbukh et E. F. Morales, Éd., Berlin, Heidelberg:

Springer, 2008, p. 1‑11. doi: 10.1007/978-3-540-88636-5_1.

Page 79

