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The non-binary instances of the Constraint Satisfaction Problem (CSP) could be efficiently 

solved if their constraint hypergraphs have small generalized hypertree widths. Several 

algorithms based on Generalized Hypertree Decomposition (GHD) have been proposed in 

the literature to solve instances of CSPs. One of these algorithms, called Forward Checking 

based on Generalized Hypertree Decomposition (FC-GHD+NG+DR), combines the 

advantages of an enumerative search algorithm with those of Generalized Hypertree 

Decomposition. However, like all structural decomposition methods, FC-GHD+NG+DR 

depends on the order in which the clusters are processed. In this paper, we propose a new 

version of the FC-GHD+NG+DR algorithm with a restart technique that allows changing 

the order of the nodes of GHD to improve performance. The experiments carried out are 

very promising, particularly on the satisfiable instances where we achieved better results 

using the restart method in 52.63% of the modified Renault satisfiable benchmarks and an 

average time resolution of ≈ 0 for the normalized Pret and normalized Dubois benchmarks. 
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I. INTRODUCTION 

Constraint Satisfaction Problems (CSPs) are a fundamental 

class of problems in artificial intelligence and operations research. 

They involve a set of variables, each associated with a domain of 

possible values, and a set of constraints that restrict the 

simultaneous assignment of these values. Solving CSPs requires 

finding an assignment that satisfies all constraints. These problems 

are widely applied in domains such as activity planning and 

scheduling problems [1] and allocation problem [2]. CSPs also 

play a pivotal role in computational complexity research, serving 

as a foundation for classifying the complexity of problems in 

algebraic and logical frameworks [3], [4].  

Despite their importance, CSPs are inherently challenging 

due to their NP-complete nature, often requiring an exhaustive 

search of the solution space. The standard method for solving CSPs 

is backtracking, which systematically explores a search tree to find 

solutions. While backtracking guarantees correctness, its 

exponential time complexity in the worst case makes it impractical 

for large or complex problem instances. 

To address these limitations, researchers have developed 

structural decomposition methods, which aim to divide a CSP into 

smaller, independent sub-problems. Techniques such as bounded 

fractional hypertree width [5] and hybrid width parameters [6] 

have proven effective in reducing computational complexity. 

Generalized Hypertree Decomposition (GHD)-based algorithms 

are particularly noteworthy, leveraging problem structure to guide 

the exploration of solution spaces [7-9]. Among these, the Forward 

Checking guided by GHD, FC-GHD algorithm has been widely 

studied. Extensions such as FC-GHD+NG (exploiting structural 

NoGoods) and FC-GHD+NG+DR (introducing dynamic subtree 

reordering) have significantly improved its performance [7]. 

Another promising strategies for enhancing CSP solvers is 

exploiting data mining techniques for compressing table 

constraints [10], the use of restart methods, which periodically 

restart the search process after a certain number of failures. These 

methods adaptively manage variable and node ordering, as shown 

in [11], where restart sequences were used to optimize the selection 

of heuristics.  

Inspired by the success of FC-GHD+NG+DR, we propose 

the Restart-FC-GHD+NG+DR algorithm, which dynamically 

adjusts cluster orders based on the number of backtracks 

generated. This approach mitigates excessive backtracking, 
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reduces unnecessary exploration, and improves solver efficiency, 

especially for complex and large-scale CSP instances. 

Our contribution builds on the theoretical foundations of structural 

decomposition methods by integrating restart strategies to enhance 

adaptability and efficiency. The proposed algorithm optimizes the 

order of clusters dynamically, offering significant improvements 

in computational performance for diverse applications. Moreover, 

this work lays the foundation for integrating machine learning 

techniques into structural decomposition methods, enabling future 

solvers to predict optimal cluster orders based on problem 

characteristics, thereby further improving efficiency and 

adaptability. 

The rest of the paper is organized as follows: Section II 

presents the technical background; Section III introduces the 

Restart-FC-GHD+NG+DR method; Section IV presents the 

experimental results; and Section V concludes the paper. 

 

II. BACKGROUND  

The notion of Constraint Satisfaction Problem (CSP) has 

been formally defined by [12]. A CSP instance is defined as a 

triplet 𝑃 = ⟨𝑋, 𝐷, 𝐶⟩. Where 𝑋 = {𝑋𝑖 , . . . , 𝑋𝑛} is a finite set of 𝑛 

variables and 𝐷 = {𝐷𝑖 , . . . , 𝐷𝑛} is a set of finite domains. Each 

variable 𝑋𝑖 takes its value from its domain 𝐷𝑖 . 𝐶 = {𝐶1, … , 𝐶𝑚} is 

a set of 𝑚 constraints. A constraint 𝐶𝑖 ∈ 𝐶 on an ordered subset of 

variables, 𝐶𝑖 = (𝑋𝑖1
, … , 𝑋𝑖𝑎𝑖

) (𝑎𝑖 is called the arity of the constraint 

𝐶𝑖), is defined by an associated relation 𝑅𝑖 ∈ Ʀ of allowed 

combinations of values for the variables in 𝐶𝑖. Note that we take 

the same notation for the constraint 𝐶𝑖 and its scope. Binary CSPs 

are those defined where each constraint involves only two 

variables, that is ∀i ∈ {1, . . . , m}, |𝐶𝑖| = 2. Constraints of arity 

greater than 2 are called non binary or n-ary. A CSP with at least 

one n-ary constraint is called non binary or n-ary CSP. A tuple 𝑡 ∈

𝑅𝑖 is a list of values (𝑣𝑖1
, … , 𝑣𝑖𝑎𝑖

) where: 

 

𝑎𝑖 = |𝐶𝑖| ∶ 𝑣𝑖𝑗
∈ 𝐷𝑖𝑗

 ∀𝑗 ∈ {1, … , 𝑎𝑖}                       (1) 

 

A solution to a CSP is an assignment of values to all the 

variables in 𝑋 such that for each constraint 𝐶𝑖 the assignment 

restricted to 𝐶𝑖 belongs to Ri. The constraint hypergraph associated 

with a CSP instance 𝑃 = ⟨𝑋, 𝐷, 𝐶⟩ is the hypergraph Ң = ⟨𝑉, 𝐸⟩ 
where the set of vertices 𝑉 is the set of variables 𝑋 and the set of 

hyperedges 𝐸 are the set of constraint scopes in 𝐶. For any 

hyperedge ℎ ∈ 𝐸, we denote by 𝑣𝑎𝑟(ℎ) the set of vertices of ℎ and 

for any subset of hyperedges 𝐾 ⊆ 𝐸  

 

𝑣𝑎𝑟(𝐾) = ⋃ 𝑣𝑎𝑟(ℎ)                             (2)
ℎ∈𝐾 .

 

 

We denote by 𝑣𝑎𝑟(Ң) the set of vertices 𝑉 and by 

𝑒𝑑𝑔𝑒𝑠(Ң) the set of ℎ𝑦𝑝𝑒𝑟𝑒𝑑𝑔𝑒𝑠 𝐸. (We use the term 𝑣𝑎𝑟 

because the vertices of the hypergraph correspond to the variables 

of the CSP). 

Definition 1: Hypertree  

Let Ң = ⟨𝑉, 𝐸⟩ be a hypergraph. A hypertree [13] for Ң is a 

triple ⟨𝑇, 𝜒, 𝜆⟩ where 𝑇 = (𝑁, 𝐹) is a rooted tree, and 𝜒 and 𝜆 are 

labelling functions which associate each vertex 𝑝 ∈  𝑁 with two 

sets 𝜒(𝑝) ⊆ 𝑉 and 𝜆(𝑝) ⊆ 𝐸. If 𝑇′ = (𝑁′, 𝐹′) is a subtree of 𝑇 we 

define: 

 𝜒(𝑇′) =  ⋃  𝜒(𝑣)𝑣∈𝑁′    (3) 

 

We denote the set of vertices 𝑁 of 𝑇 by 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇) and 

the root of 𝑇 by 𝑟𝑜𝑜𝑡 (𝑇). 𝑇𝑝 denotes the subtree of 𝑇 rooted at the 

node 𝑝 and 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝) is the parent node of 𝑝 in 𝑇. 

 

Definition 2: Hypertree Decomposition 

A Hypertree Decomposition [14] of a hypergraph Ң =
 ⟨𝑉, 𝐸⟩ is a hypertree 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ which satisfies the following 

conditions: 

i. For each edge ℎ ∈ 𝐸, there exists 𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇) such 

that: 

 

𝑣𝑎𝑟(ℎ) ⊆ 𝜒(𝑝)                                                 (4) 
 

ii. For each vertex 𝑣 ∈ 𝑉, the set  

 
{𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑇)|𝑣 ∈ 𝜒(𝑝)}                       (5) 

 

induces a connected subtree of 𝑇; 

iii. For each vertex 

 

𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇), 𝜒(𝑝) ⊆ 𝑣𝑎𝑟(𝜆(𝑝))                          (6) 

 

iv. For each 

 

𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇), 𝑣𝑎𝑟(𝜆(𝑝)) ∩ 𝜒(𝑇𝑝) ⊆ 𝜒(𝑝)          (7) 

 

The width of a hypertree 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ is equal to 

𝑚𝑎𝑥 𝑝∈𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑇)|𝜆(𝑝)|.The hypertree-width (ℎ𝑤(Ң)) of a 

hypergraph Ң is the minimum width over all its hypertree 

decompositions. 

A hyperedge ℎ of a hypergraph Ң = ⟨𝑉, 𝐸⟩ is strongly 

covered in 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ if there exists 𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇) such 

that the vertices of ℎ are contained in 𝜒(𝑝) and ℎ ∈ 𝜆(𝑝). 

 A hypertree decomposition 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩  of a 

hypergraphҢ is complete if every hyperedge ℎ of Ң is strongly 

covered in 𝐻𝐷.  

A hypertree 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ is called a Generalized 

Hypertree Decomposition (GHD) [15], [16] if the conditions (i), 

(ii) and (iii) of Definition 2 hold. The width of a Generalized 

Hypertree Decomposition 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ is equal to 

𝑚𝑎𝑥 𝑝∈𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑇)|𝜆(𝑝)|. The generalized-hypertree-

width (𝑔ℎ𝑤(Ң )) of a hypergraph Ң is the minimum width over all 

its generalized hypertree decompositions. 

 

Remark 1. The terms node and vertex will be used 

interchangeably to refer to a vertex of 𝑇. 

Example 1. Let 𝑃 = ⟨𝑋, 𝐷, 𝐶⟩ be a CSP instance defined as 

follows. 
 𝑋 = {𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10, 𝑋11, 𝑋12, 𝑋13, 𝑋14, 𝑋15, 𝑋16, 𝑋17} is 

the set of variables, 

  

 𝐷 =  {𝐷1, . . . , 𝐷17} where 𝐷𝑖 =  {0,1} is the domain of 

the variable 𝑋𝑖  ∀𝑖 ∈ {1, . . . ,17}, 

 𝐶 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶8, 𝐶9, 𝐶10} is the set of 

constraints. 
 

Figure 1 is the constraint hypergraph associated with P 

and Figure 2 is one of its Generalized hypertree decompositions. 

The width of the decomposition is 3. 
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Figure 1: The constraint hypergraph of the CSP instance of 

Example 1. 

Source: Authors, (2025). 
 

 
Figure 2: A 3-width generalized hyper tree decomposition of the 

constraint hyper graph of Example1. 

Source: Authors, (2025).,333333 

Definition 3: Nogood 

A Nogood [17] is an inconsistent partial assignment that cannot be 

extended to a global solution. A minimal Nogood is any Nogood 

that is not itself composed of another Nogood.     
 

Definition 4: Subproblem  

Let ni be a node of a GHD. The subproblem [7] associated with ni  

is a CSP < Xni , Dni  , Cni > where Xni = χni  , Dni is the set of 

domains defined in the original CSP for the variables in Xni and 

 

Cni  = λni . Pni                              (8) 

 

Is denotes the subproblem associated with 𝑛𝑖 and 𝑠𝑜𝑙(𝑃𝑛𝑖 ) denotes 

the current solution of 𝑃𝑛𝑖 . 
 

II.1 THE FC-GHD+NG+DR ALGORITHM 

The FC-GHD+NG+DR algorithm [7] searches for a 

solution for the subproblem associated with the root node and it 

tries to extend this solution to the other subproblems induced by 

the nodes of the GHD in a depth-first manner. If a subproblem Pni 

has no solution, then FC-GHD+NG+DR, reorders the subtrees 

rooted at children of the current node, backtracks to the 

subproblem 𝑃𝑛𝑗  
 such that 𝑛𝑗 is the parent node of 𝑛𝑖 in 𝑇, it 

computes another solution for 𝑃𝑛𝑗  
and continues from there. FC-

GHD+NG+DR is described by (Algorithm 5). 

It takes as input a complete 𝐺𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ associated 

with a CSP instance 𝑃 = ⟨𝑋, 𝐷, 𝐶⟩. The nodes of 𝑇 are organized 

in a list 𝜎 according to the depth-first (preorder) traversal. The 

subproblems are solved sequentially by the function 𝑆𝑜𝑙𝑣𝑒_𝑠𝑢𝑏𝑝𝑏 

according to 𝜎. If 𝑃𝑛𝑖 has a (another) solution then the procedure 

𝐹𝑖𝑙𝑡𝑒𝑟 − 𝑁𝐺 (Algorithm 4) checks the consistency of the 

constraints at descendant nodes of 𝑛𝑖. If all these constraints are 

satisfied and if the current solution is not a Nogood, then all the 

constraint relations at each child node of 𝑛𝑖  are filtered and the 

subproblem associated with the next node in 𝜎 is processed. In the 

negative case, another solution is computed for 𝑃𝑛𝑖 if it exists. 

If there is no (other) solution for 𝑃𝑛𝑖 , then FC-

GHD+NG+DR calls the procedure 𝐵𝑎𝑐𝑘𝑇𝑟𝑎𝑐𝑘 − 𝐷𝑅 (Algorithm 

3) for restoring the tuples removed by the process of filtering, 

recording a Nogood using the procedure 𝑅𝑒𝑐𝑜𝑟𝑑_𝑛𝑜𝑔𝑜𝑜𝑑 

(Algorithm 1), reordering sub-trees with procedure 

𝑅𝑒𝑜𝑟𝑑𝑒𝑟_ℎ𝑦𝑝𝑒𝑟𝑡𝑟𝑒𝑒 (Algorithm 2) such that all nodes of the sub-

tree rooted at 𝑛𝑖 are inserted between 𝑃𝑎𝑟𝑒𝑛𝑡(𝑛𝑖 ) and the nodes 

following 𝑛𝑖  in 𝜎 noted by 𝑆𝑢𝑐𝑐(𝑃𝑎𝑟𝑒𝑛𝑡(𝑛𝑖 )) and to backtrack 

to 𝑃𝑎𝑟𝑒𝑛𝑡(𝑛𝑖 ). FC-GHD+NG+DR stops in two cases: 

 

1. All the subproblems are successfully solved, and then a 

global solution for the whole CSP instance is computed (line 16). 

2. There is no other solution for the subproblem associated 

with the root node and then the CSP instance is unsatisfiable. 

 

 
Figure 3: Record_nogood Procedure. 

Source: [7]. 
 

 
Figure 4: Procedure Reorder_hypertree. 

Source: [7]. 
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Figure 5: Procedure Backtrack-DR. 

Source: [7]. 

 

 
Figure 6: Procedure Filter-NG. 

Source: [7]. 

 

 
Figure 7: FC-GHD+NG+DR Algorithm. 

Source: [7]. 

 

III. RESTART-FC-GHD+NG+DR 

In this section, we present 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 +
𝐷𝑅 which is a new version of FC-GHD+NG+DR. As all the 

structural methods, FC-GHD+NG+DR depends in the quality of 

the decomposition and in the first node (root) considered to process 

the GHD decomposition. Since finding an appropriate root for 

processing a GHD is a very hard task [18], we propose to introduce 

the restart technique in order to consider another root for the 

hypertree, for this we consider all possible orders (with respect to 

depth first traversal-pre-order). So, the set of possible order s 

obtained are represented by 𝑂𝑅𝐷𝐸𝑅𝑆, they are partitioned into 

many subsets 𝜎1 , . . . , 𝜎𝑟  such that 𝜎1 ∪. . .∪ 𝜎𝑟 = 𝑂𝑅𝐷𝐸𝑅𝑆 where 

𝑟 is the number of orders. For the purpose of improving the 

performances, we introduce the restart techniques to the 𝐹𝐶 −
𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅. The main steps of this techniques are: 

1. Select the initial order 𝜎1  ∈  𝑂𝑅𝐷𝐸𝑅𝑆 and initiate the 

resolution with 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅; 

2. At each time the number of backtracks reaches a threshold 

𝑙𝑖𝑚𝑖𝑡_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 which is updated at each iteration by a constant 

factor 𝑝𝑎𝑟𝑎𝑚, we apply a restart; 

3. Restart allows us to choose another order from the set of 

𝑂𝑅𝐷𝐸𝑅𝑆 already defined, and restart the resolution. 

III.1 ALGORITHM 

𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 is formally described 

by Algorithm 6.  

 

 
Figure 8: Restart-FC-GHD+NG+DR Algorithm. 

Source: Authors, (2025). 

 

It takes as input a complete GHD associated with the CSP, 

and returns a solution of the CSP if it exists. First, (line 1) the 

algorithm commences by establishing an initial order 𝜎1 =
(𝑛1 , . . . , 𝑛𝑒 ) where 𝑛1  is the root node. This order is obtained with 

respect to the depth-first search strategy. At each node 𝑛1  the 

algorithm tries to solve the associated sub-problem 𝑃𝑛𝑖  using the 

function 𝑆𝑜𝑙𝑣𝑒𝑠𝑢𝑏𝑝𝑏(𝑃𝑛𝑖 ) (line 7). If 𝑃𝑛𝑖  has a solution, we use 

the procedure 𝐹𝑖𝑙𝑡𝑒𝑟 − 𝑁𝐺 (line 24) to filter the relations of 

constraints at the 𝜆 label of each child node of 𝑛𝑖, then solves the 
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next subproblems 𝑃𝑛𝑗  associated with the node 𝑛𝑗 . In cases where 

𝑃𝑛𝑖  is inconsistent and 𝑛𝑖 is the first node, then the problem 𝑃 has 

no solution (line 11). Otherwise, it involves increment the number 

of backtracks 𝑛𝑏_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 and checks the 𝑙𝑖𝑚𝑖𝑡_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 

(lines 14, 15). If the number of backtracks does not exceed the 

𝑙𝑖𝑚𝑖𝑡_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠, it performs a backtrack (line 16) in order to 

compute another solution for the subproblem associated with the 

node 𝑃𝑎𝑟𝑒𝑛𝑡(𝑛𝑖); otherwise, it restarts (line 18), where the 

algorithm considers an new root for the GHD and adopts with a 

new order 𝜎2 = (𝑛2 , . . . , 𝑛𝑒) according to the depth-first strategy.  

 

Example2. Consider the GHD in Figure 2. 

Initially the order 𝜎 is defined as follows: 𝜎𝑗 =

(𝑛1, 𝑛2 , 𝑛3 , 𝑛4 , 𝑛5, 𝑛6) with 𝑛1as root of the hypertree. We 

consider the 𝑙𝑖𝑚𝑖𝑡_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 = 3. 
 

First, we start the resolution with the first subproblem 𝑃𝑛1  

associated with the node 𝑛1 which is considered as a root of the 

hypertree. If 𝑃𝑛1  has no solution then we stop the resolution and 

the problem 𝑃 has no solution, else we filter all the constraints in 

the 𝜆 label of each child of node 𝑛1 (𝑛2 and 𝑛3) and then we move 

to the next node 𝑛2, we look for 𝑠𝑜𝑙(𝑃𝑛2 ) which is compatible with 

𝑠𝑜𝑙 (𝑃𝑛1 ). If 𝑃𝑛2 is consistent, we filter all the constraints in the 𝜆 

label of each child of the node 𝑛1 (𝑛2 and 𝑛3). Else, 

𝑛𝑏_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 is incremented and a backtracking occurs from 𝑛2 

to 𝑛1 (if 𝑙𝑖𝑚𝑖𝑡_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 is not reached) to calculate another 

solution for𝑃𝑛1  if it exists. When the solution computed to 𝑃𝑛1  is 

consistent we move to 𝑃𝑛2  . If the solution 𝑠𝑜𝑙(𝑃𝑛2 ) is inconsistent, 

𝑛𝑏_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 is incremented to 2 and a backtracking occurs 

from 𝑛2  to 𝑛1 , then it generates another solution to 𝑃𝑛1 if it exists. 

If the solution 𝑠𝑜𝑙(𝑃𝑛2  ) is consistent then move to the next 

subproblem. 

At this stage, if 𝑃𝑛3  or another 𝑃𝑛𝑖  is inconsistent, the 

𝑛𝑏_𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠 is incremented and if 𝑙𝑖𝑚𝑖𝑡_𝐵𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘𝑠, it 

restarts from the new root 𝑛2  of the order 𝜎2 =
(𝑛2, 𝑛3 , 𝑛4 , 𝑛5 , 𝑛6, 𝑛1) (see Figure 9). 

 

 
Figure 9:  The GHD of Example 1 after reordering nodes. 

Source: Authors, (2025). 

 

IV. EXPERIMENTS 

This section presents the experiments carried out in order 

to evaluate the performances of the 𝑅𝑒𝑠𝑡𝑎𝑟𝑡𝐹𝐶 − 𝐺𝐻𝐷 +
𝑁𝐺 + 𝐷𝑅 method. 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 − 𝐹𝐺𝐷 + 𝑁𝐺 + 𝐷𝑅 has 

been implemented in MPI C++ and run on a Core (TM) 2 Duo 

CPU T5670 @ 1.80 GHZ with 2GB of RAM under Linux 

Debian. The tests have been executed on benchmarks selected 

for the CSP Solver international Competitions CPAI’08 and 

CPAI’09.1. 

For each instance, the time out (TO) is fixed to 1,800 

seconds. The Memory Out (MO) is fixed to 2GB.  

For computing the GHD Decomposition we used the Bucket 

Elimination (BE) algorithm [19] which is one of the best 

algorithms giving nearly optimal generalized hypertree 

decompositions within a reasonable CPU time [19]2 

In all the following tables of results, |𝑋| is the number of 

variables, |𝐶| is the number of constraints, 𝑤 is the width of the 

GHD decomposition returned by BE and 𝑡𝑖𝑚𝑒 is the CPU run 

time needed to solve the instance of the considered series. The 

                                                           
 

results in bold are the lowest (best) of each row. All CPU times 

are given in seconds. 

They include the time for computing a GHD using BE 

(unless otherwise stated), in addition to the time for completing 

the GHD and solving the problem. In all the tables, the symbol ’/’ 
indicates unknown values.Note that the reported times for each 

instance are average runtime sover 5 executions because of the 

random nature of the BE algorithm, giving possible different 

GHD decompositions for one given instance. For this study, we 

have used the following benchmarks: Renault series, Renault 

Modified series, Pret series, Dubois series and VarDimacs which 

are described in Subsection 4.1. 

 

IV.1 DESCRIPTION OF BENCHMARKS 

Structured Instances: Both the Renault series and the 

Renault-mod series consist of multiples instances related to the 

Renault Megane configuration problem. These instances are 

represented in different forms: 
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 Renault Series: contains 2 structured instances coming 

from the original Renault Megane configuration problem 

appearing under two forms: normalized and simple form. Both 

instances involve large constraint relations of high arity and the 

largest relation contains 48,721 tuples. 

 Renault-mod Series: this class (Modified Renault) 

contains 50 structured instances involving domains with up to 42 

possible values. The largest constraint relation contains 48,721 

tuples.  

Quasi random instances (random plus a small structure): 

 Boolean instances (each variable domain is {0,1}): 

o Pret series: contains 8 instances encoding 2-coloring 

problems forced to be unsatisfiable with either 60 or 150 variables. 

The maximum arity of the constraints is 3 (3-SAT) and each 

constraint relation contains 4 tuples. 

o Dubois series: contains 13 randomly generated 

unsatisfiable 3-SAT instances. For each instance, each constraint 

relation contains 4 tuples. 

o VarDimacs series: comes from the original Sat 

formalization of Circuit fault analysis: Bridge Fault (BF): 4 

unsatisfiable instances, and from the well-known Pigeon-hole 

problem: 5 unsatisfiable instances. The maximum arity of the 

constraints is greater than 2 and the largest constraint relation 

contains 1,023 tuples (normalized-hole-10_ext). 

 

IV.2 COMPARING 𝑹𝑬𝑺𝑻𝑨𝑹𝑻 − 𝑭𝑪 − 𝑮𝑯𝑫 + 𝑵𝑮 + 𝑫𝑹 

WITH 𝑭𝑪 − 𝑮𝑯𝑫 + 𝑵𝑮 + 𝑫𝑹 

This subsection gives the comparative results of Restart-

FC-GHD+NG+DR and FC-GHD+NG+DR on all the considered 

series.  

IV.2.1 on normalized renault  

Table 1 presents the comparison results of FC-

GHD+NG+DR and Restart-FC GHD+NG+DR on the two 

instances of Renault series. The two algorithms have almost 

similar performances with little advantage to Restart-FC-

GHD+NG+DR. The two instances of Renault series are very 

structured and come from real applications. This explains the good 

time results of the two methods. 

 

Table 1: Comparison between FC-GHD+NG+DR and Restart-

FC-GHD+NG+DR: Renault series. 

Problems 

normalized 

Size 
𝑾 

𝐅𝐂 − 𝐆𝐇𝐃
+ 𝐍𝐆 + 𝐃𝐑 

𝐑𝐞𝐬𝐭𝐚𝐫𝐭 − 𝐅𝐂
− 𝐆𝐇𝐃 + 𝐍𝐆
+ 𝐃𝐑 

|𝑿| |𝑪| 𝒓 Time Time 

renault ext 101 134 48,721 3 0.83 0.6 

renault-mgd 

ext 
101 113 48,721 2 0.96 0.7 

Source: Authors, (2025). 

IV.2.2 On Modified Renault. 

Table 2 presents the comparison results of the two 

algorithms on the Renault-mod series. It shows that 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 −
𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 clearly improves 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 +
𝐷𝑅 in terms of CPU time for both consistent and inconsistent 

instances. We can observe that the 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 is 

better than the 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 one on few instances. This is due to the 

restart technique which needs more deeper study in order to fix the 

𝑙𝑖𝑚𝑖𝑡_𝑏𝑎𝑐𝑘𝑡𝑎𝑟𝑎𝑐𝑘𝑠. 

Table 2: Comparison between FC-GHD+NG+DR and Restart-FC-

GHD+NG+DR on Renault-mod series. 

Proble

ms 

normal

ized 

Renaul

t-mod 

Size 
𝑾 

𝑭𝑪
− 𝑮𝑯𝑫
+ 𝑵𝑮
+ 𝑫𝑹 

𝑹𝒆𝒔𝒕𝒂𝒓𝒕
− 𝑭𝑪
− 𝑮𝑯𝑫
+ 𝑵𝑮 + 𝑫𝑹 

Consistenc

y 

|𝑿| |𝑪| 𝒓 Time Time 

-0_ext 111 154 48,721 4 1.32 0.86 Consistent 

-1_ext 111 154 48,721 3 7.73 18.87 Inconsistent 

-2_ext 111 154 48,721 5 1.59 1.21 Consistent 

-3_ext 111 154 48,721 3 6.02 5.98 Inconsistent 

-4_ext 111 154 48,721 4 1.49 1.11 Consistent 

-5_ext 111 154 48,721 3 13.97 40.72 Inconsistent 

-6_ext 111 154 48,721 3 0.85 0.83 Inconsistent 

-7_ext 111 154 48,721 4 1.93 3.07 Consistent 

-8_ext 111 154 48,721 3 0.83 0.80 Inconsistent 

-9_ext 111 154 48,721 3 1.09 1.08 Consistent 

-10_ext 111 154 48,721 3 7.57 7.22 Inconsistent 

-11_ext 111 154 48,721 3 1.28 1.25 Consistent 

-12_ext 111 154 48,721 3 32.04 107.73 Inconsistent 

-13_ext 111 154 48,721 3 1.03 1.00 Consistent 

-14_ext 111 154 48,721 3 6.91 18.04 Inconsistent 

-15_ext 111 154 48,721 3 4.36 12.60 Inconsistent 

-16_ext 111 154 48,721 3 11.58 11.19 Inconsistent 

-17_ext 111 154 48,721 3 2.11 1.84 Inconsistent 

-18_ext 111 154 48,721 3 206.13 1.69 Inconsistent 

-19_ext 111 154 48,721 3 1.06 0.95 Inconsistent 

-20_ext 111 154 48,721 3 9.71 9.74 Inconsistent 

-21_ext 111 154 48,721 3 52.02 421.08 Inconsistent 

-22_ext 111 154 48,721 3 26.45 28.05 Inconsistent 

-23_ext 111 154 48,721 4 2.21 1.82 Inconsistent 

-24_ext 111 154 48,721 4 3.37 3.29 Inconsistent 

-25_ext 111 154 48,721 3 40.01 107.94 Inconsistent 

-26_ext 111 154 48,721 3 MO MO Inconsistent 

-27_ext 111 154 48,721 3 2.14 1.96 Inconsistent 

-28_ext 111 154 48,721 3 74.04 76.61 Inconsistent 

-29_ext 111 154 48,721 4 14.18 13.82 Inconsistent 

-30_ext 111 154 48,721 3 4.78 10.45 Inconsistent 

-31_ext 111 154 48,721 3 1.65 1.63 Consistent 

-32_ext 111 154 48,721 4 5.09 14.41 Consistent 

-33_ext 111 154 48,721 5 12.40 12.41 Inconsistent 

-34_ext 111 154 48,721 4 6.13 9.76 Consistent 

-35_ext 111 154 48,721 3 19.72 50.41 Inconsistent 

-36_ext 111 154 48,721 4 21.08 45.90 Consistent 

-37_ext 111 154 48,721 4 11.02 27.67 Inconsistent 

-38_ext 111 154 48,721 4 1.70 2.58 Consistent 

-39_ext 111 154 48,721 4 51.71 638.17 Inconsistent 

-40_ext 108 149 48,721 3 553.60 1560.17 Inconsistent 

-41_ext 108 149 48,721 4 7.59 18.18 Consistent 

-42_ext 108 149 48,721 3 1.17 1.10 Inconsistent 

-43_ext 108 149 48,721 3 1.85 1.45 Consistent 

-44_ext 108 149 48,721 4 1.03 0.93 Consistent 

-45_ext 108 149 48,721 4 19.89 44.54 Consistent 

-46_ext 108 149 48,721 4 5.86 5.44 Consistent 

-47_ext 108 149 48,721 4 1.19 0.74 Inconsistent 

-48_ext 108 149 48,721 4 47.01 84.04 Consistent 

-49_ext 108 149 48,721 4 24.38 85.57 Consistent 

Source: Authors, (2025). 
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IV.2.3 On Pret Series and Dubois Series 

Tables 3 and 4 show the comparison results of the two 

algorithms on the Boolean Pret and Dubois series. On these series, 

𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 and 𝐹𝐶 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 

solve all instances in short time. On Pret series, the average 

runtimes of the two algorithms 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 and 

𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 − 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 are 0.007 and ≈ 0 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

respectively. On Dubois series, their average runtimes 

are 0.0035 and ≈  0 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 respectively. 

Table 3: Comparison between FC-GHD+NG+DR and Restart-

FC-GHD+NG+DR on Pret series. 
Proble

ms 

normal

ized 

pret 

Size 

𝑾 

𝐅𝐂 − 𝐆𝐇𝐃
+ 𝐍𝐆
+ 𝐃𝐑 

𝐑𝐞𝐬𝐭𝐚𝐫𝐭 − 𝐅𝐂
− 𝐆𝐇𝐃 + 𝐍𝐆
+ 𝐃𝐑 

Consistenc

y 

|𝑿| |𝑪| 𝒓 Time Time 

-60-

25_ext 
60 40 4 5 0.36 ≃0 Inconsistent 

-60-
40_ext 

60 40 4 5 0.008 ≃0 Inconsistent 

-60-

60_ext 
60 40 4 5 0.01 ≃0 Inconsistent 

-60-
75_ext 

60 40 4 5 0.01 ≃0 Inconsistent 

-150-

25_ext 

15

0 

10

0 
4 5 0.05 ≃0 Inconsistent 

-150-
40_ext 

15
0 

10
0 

4 5 0.17 ≃0 Inconsistent 

-150-

60_ext 

15

0 

10

0 
4 5 0.37 ≃0 Inconsistent 

-150-
75_ext 

15
0 

10
0 

4 5 0.023 ≃0 Inconsistent 

Source: Authors, (2025). 

 

Table 4: Comparison between FC-GHD+NG+DR and Restart-

FC-GHD+NG+DR on Duboi. 
Proble

ms 

normali

zed 

Dubois 

Size 𝑾 
𝐅𝐂 − 𝐆𝐇𝐃
+ 𝐍𝐆 + 𝐃𝐑 

𝐑𝐞𝐬𝐭𝐚𝐫𝐭 − 𝐅𝐂
− 𝐆𝐇𝐃 + 𝐍𝐆
+ 𝐃𝐑 

Consistency 

|𝑿| |𝑪| 𝒓  Time Time  

-20_ext 60 40 4 2 0.043 ≃0 Inconsistent 

-21_ext 63 42 4 2 0.005 ≃0 Inconsistent 

-22_ext 66 44 4 2 0.004 ≃0 Inconsistent 

-23_ext 69 46 4 2 0.005 ≃0 Inconsistent 

-24_ext 72 48 4 2 0.005 ≃0 Inconsistent 

-25_ext 75 50 4 2 0.005 ≃0 Inconsistent 

-26_ext 78 52 4 2 0.006 ≃0 Inconsistent 

-27_ext 81 54 4 2 0.006 ≃0 Inconsistent 

-28_ext 84 56 4 2 0.006 ≃0 Inconsistent 

-29_ext 87 58 4 2 0.007 ≃0 Inconsistent 

-30_ext 90 60 4 2 0.006 ≃0 Inconsistent 

-50_ext 150 100 4 2 0.011 ≃0 Inconsistent 

100_ext 300 200 4 2 0.049 ≃0 Inconsistent 

Source: Authors, (2025). 

 

IV.2.4 On VarDimacs Series 

Finally, Table 5 presents the behavior of the two algorithms 

on VarDimacs series. 𝐹𝐶 𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 and 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 −
𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 succeed to solve four instances. The average 

runtime of the two algorithms is 4.01 and 130,75 seconds 

respectively. But we have better results with 𝑅𝑒𝑠𝑡𝑎𝑟𝑡 − 𝐹𝐶 −
𝐺𝐻𝐷 + 𝑁𝐺 + 𝐷𝑅 except for the instance normalized bf-0432-

007_ext. 

Table 5: Comparison between FC-GHD+NG+DR and Restart-

FC-GHD+NG+DR on Pret series. 
 

 
 

Problems 

normalized  
Size 

𝑾 

𝐅𝐂
− 𝐆𝐇𝐃
+ 𝐍𝐆
+ 𝐃𝐑  

𝐑𝐞𝐬𝐭𝐚𝐫𝐭
− 𝐅𝐂
− 𝐆𝐇𝐃
+ 𝐍𝐆
+ 𝐃𝐑 

Consistency 

|𝑿| |𝑪| 𝒓 Time Time 

-bf-0432-

007_ext 
970 1,943 31 29 35.15 129.87 Consistent 

-bf-1355-
075_ext 

1,818 2,049 5 5 9.74 0.81 Consistent 

-bf-1355-

638_ext 
532 339 31 2 0.18 ≃0 Consistent 

-bf-2670-
001_ext 

1,244 1,354 31 7 0.31 0.29 Inconsistent 

Source: Authors, (2025). 

 

V. CONCLUSIONS 

In this work, we have presented a new method called 

Restart-FC-GHD+NG+DR, which combines the FC-

GHD+NG+DR algorithm, exploiting GHD, with a restart strategy 

to solve non-binary CSPs. Our experiments on benchmark of 

literature have demonstrated the efficiency of the proposed 

algorithm, particularly on consistent instances. The results show 

significant improvements over the FC-GHD+NG+DR algorithm, 

with a 52.62% better performance on modified Renault consistent 

instances and near-zero execution time for the Normalized Dubois 

and Normalized Pret series. This confirms the algorithm's potential 

in enhancing CSP-solving strategies. This approach offers 

significant contributions, the method advances CSP-solving by 

addressing limitations of traditional algorithms, introducing a 

dynamic, restart-based approach that adapts to various problem 

structures. It opens new research avenues by integrating machine 

learning for adaptive reordering, encouraging cross-disciplinary 

applications in fields like artificial intelligence, operations 

research, and network optimization. However, some limitations 

remain, such as managing the limit_backtaracks more effectively, 

as excessive backtracking can still increase execution time. 

Additionally, enhancing the algorithm's handling of inconsistent 

problem instances is necessary to avoid exploring all possible 

orders, which would further improve computational efficiency. 

For future work, we plan to integrate machine learning and deep 

learning techniques to dynamically reorder the nodes of the GHD 

decomposition. 
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