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Sign Language is the primary means of communication for the Deaf and Hard of Hearing 

community. These gesture-based languages combine hand signs with face and body gestures 

for effective communication. However, despite the recent advancements in Signal 

Processing and Neural Machine Translation, more studies overlook speech-to-sign language 

translation in favor of sign language recognition and sign language to text translation. This 

study addresses this critical research gap by presenting a novel transformer-based Neural 

Machine Translation model specifically tailored for real-time text-to-GLOSS translation. 

First, we conduct trials to determine the best optimizer for our task. The trials involve 

optimizing a minimal model, and our complex model with different optimizers; The findings 

from these trials show that both Adaptive Gradient (AdaGrad) and Adaptive Momentum 

(Adam) offer significantly better performance than Stochastic Gradient Descent (SGD) and 

Adaptive Delta (AdaDelta) in the minimal model scenario, however, Adam offers 

significantly better performance in the complex model optimization task. To optimize our 

transformer-based model and obtain the optimal hyper-parameter set, we propose a 

consecutive hyper-parameter exploration technique. With a 55.18 Recall-Oriented 

Understudy for Gisting Evaluation (ROUGE) score, and a 63.6 BiLingual Evaluation 

Understudy 1 (BLEU1) score, our proposed model not only outperforms state-of-the-art 

models on the Phoenix14T dataset but also outperforms some of the best alternative 

architectures, specifically Convolutional Neural Network (CNN), Long Short Term 

Memory (LSTM), and Gated Recurrent Unit (GRU). Additionally, we benchmark our model 

with real-time inference tests on both CPU and GPU, providing insights into its practical 

efficiency and deployment feasibility. 
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I. INTRODUCTION 

Sign languages, as visual-gestural forms of communication, 

are integral components of the linguistic landscape for the Deaf and 

Hard of Hearing (DHH) community. Unlike spoken languages, 

sign languages rely on visual and gestural elements, incorporating 

manual signs, body movements, and facial expressions to convey 

meaning. This unique modality enables individuals within the 

DHH community to express themselves with depth and nuance, 

offering a rich and diverse means of communication. The 

significance of visual-gestural languages becomes particularly 

evident when considering the limitations of traditional spoken 

languages in meeting the communication needs of the DHH 

community. Spoken languages heavily rely on auditory cues, 

making them less accessible for those with hearing impairments. In 

contrast, sign languages provide an inclusive and versatile medium 

that allows individuals to communicate effectively without 

dependence on auditory stimuli. Visual-gestural languages play a 

crucial role in facilitating social interactions, education, and 

professional engagement within the DHH community. The use of 

manual signs allows for the expression of abstract concepts, 

emotions, and complex ideas. Additionally, facial expressions and 

body language contribute to the linguistic richness of sign 

languages, enhancing the overall communicative experience. 

However, the broader societal landscape predominantly relies on 

spoken languages. This linguistic dissonance results in a noticeable 
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communication gap that Speech-to-Sign Language translation tools 

endeavor to address. However, for truly seamless interaction, real-

time translation is crucial. Consider a classroom environment 

where a lecture is being translated, a delay can disrupt the flow of 

information and hinder understanding. The imperative 

development and implementation of these tools, particularly those 

with real-time capabilities, play a crucial role in facilitating 

effective and inclusive communication between individuals who 

use spoken languages and those who depend on visual-gestural 

languages, as these tools play a pivotal role in harmonizing 

interactions, promoting accessibility across linguistic and cultural 

boundaries, ensuring equal access to information, opportunities, 

and social interactions. 

The evolution of machine translation has been a dynamic 

journey, progressing through various phases of development. It 

began with the early attempts of rule-based systems, as presented 

in [1], which explored the collaborative role of human translators 

and machines, emphasizing the synergy required for effective 

language translation in the early phases. These rule-based systems, 

however, faced challenges in capturing the complexities and 

nuances of language due to their reliance on predetermined 

linguistic rules. The subsequent transition to statistical methods 

marked a pivotal moment in machine translation’s evolution. 

Brown et al.’s groundbreaking work [2] introduced probabilistic 

models that significantly enhanced translation accuracy by 

addressing linguistic variations. This departure from rigid rules 

allowed the model to learn patterns and relationships from data, 

enabling more nuanced and context-aware translations. The 

paradigm shift continued with the advent of neural networks. Ref 

[3] presented a transformative neural machine translation model 

with attention mechanisms. Unlike traditional models, this 

approach allowed the model to selectively focus on distinct 

sections of the input sequence amid translation. This attention 

mechanism proved crucial in handling long sentences and 

capturing contextual information, leading to substantial 

improvements in translation quality. Building upon this, [4] 

introduced the transformer architecture, which further refined the 

attention mechanism. The transformer architecture replaced 

recurrent layers with self-attention mechanisms, enabling the 

model to consider dependencies across the entire input sequence 

simultaneously. This innovation significantly improved the 

efficiency of training and the model’s capacity to represent long-

range dependencies, setting new standards in machine translation 

performance. 

Sign language translation has followed a parallel evolution, 

incorporating diverse approaches to bridge the communication gap 

between spoken languages and visual-gestural languages. Early 

contributions include the work of According to [5], who presented 

a rule-based system for speech-to-sign language translation. Their 

focus on National Identification Document (NID) and Passport-

related content demonstrates the practical application of translation 

systems. Transitioning to an alternative approach, the Arabic 

context highlights a significant achievement. An interdisciplinary 

team, collaborating closely with deaf native signers and an Arabic 

Sign Language (ArSL) interpreter, developed an example-based 

machine translation (EBMT) system [6]. This system adeptly 

translates Arabic text into ArSL, aligning with the unique linguistic 

nuances and cultural context of the Arabic deaf and hearing-

impaired community. The choice of EBMT ensures adaptability to 

the intricate grammar, structure, and idioms inherent in ArSL. 

In contrast to traditional rule-based approaches, recent 

advancements delve into the integration of Neural Machine 

Translation (NMT), showcasing the evolving landscape of sign 

language translation. According to [7] present an innovative 

synthesis by seamlessly integrating NMT and Generative 

Adversarial Networks to produce sign language video sequences 

from spoken language sentences. This approach not only 

showcases the capabilities of text-to-gloss translation but also 

underscores the potential for video generation in sign language 

translation offering a fresh perspective independent of avatars and 

motion-capture-based methods. In a different vein, [8] focus on the 

bidirectional translation of sign language, proposing a deep 

learning approach based on GRU and Long Short-Term Memory 

(LSTM) models with attention mechanisms. Their work stands out 

by demonstrating superior performance on ASLG-PC12 and 

Phoenix-14T corpora, particularly with the GRU model using 

Bahdanau attention [3]. This highlights the effectiveness of their 

approach in capturing the linguistic structure and context of natural 

sign language sentences. For Sign Language Production (SLP), 

Saunders et al. [9] provide a progressive Transformers architecture 

that performs end-to-end translation of spoken language sentences 

into continuous 3D sign pose sequences. Their method addresses 

the need for architectures more appropriate for continuous sign 

sequence generation by applying a counter-decoding methodology. 

By providing benchmarks on the complex PHOENIX14T dataset 

and establishing a baseline for subsequent studies, Saunders et al. 

emphasize the importance of continuous sequence synthesis and 

lay the groundwork for further exploration in the field. 

These modern translation methods showcase a notable 

advancement over earlier techniques. However, several studies 

shed light on the critical role of hyper-parameter tuning in 

improving Transformer performance in low-resource neural 

machine translation (NMT) scenarios. In [10] Araabi and Monz run 

several experiments on subsets of the IWSLT14 training corpus, 

they highlight the influence of hyper-parameters on the 

performance of Transformer models under low-resource scenarios. 

This study underscores the importance of proper configuration, 

showing that optimizing Transformer hyper-parameters can lead to 

an improvement of up to 7.3 BLEU points in translation quality 

compared to using default settings. Additionally, [11] focus on 

deep Transformer optimization for translation tasks in low-

resource conditions, specifically for Chinese-Thai machine 

translation. Their exploration of various experiment settings, 

including the embedding size, dropout probability, and number of 

BPE merge operations, highlights the significance of choosing 

optimal configurations, even when dealing with low-resource 

scenarios. This research reinforces the notion that hyper-parameter 

optimization is critical to enhancing the performance of 

Transformer models across different language pairs and data 

conditions. 

Expanding on the existing body of research, and building on 

our previous work [12], our study investigates the intricacies of 

optimizing transformers for the real-time text-to-GLOSS 

translation task, marking the first comprehensive study in this 

domain. The exploration is initiated by crafting a minimal model 

for thorough optimizer screening, specifically Adaptive Delta 

(AdaDelta) [13], Stochastic Gradient Descent (SGD) [14], and 

Adaptive Moment Estimation (Adam) [15], Adaptive Gradient 

(AdaGrad) [16]. Subsequently, harnessing the potential of the best 

optimizers, we employ an innovative hyper-parameter exploration 

technique tailored for Transformers. This methodology enables us 

to discern the optimal architecture for sign language translation, 

thereby making a significant contribution to the field of NMT for 

sign language processing. 

Within this scope, the key contributions of this study are: 
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 We propose a novel hyper-parameter exploration 

technique for Transformer-based architectures on low-resource 

tasks, and use it to create a real-time text-to-GLOSS sequence-to-

sequence translation model. 

 We investigate the performance of AdaDelta, SGD, 

AdaGrad, and Adam optimizers on low-resource sequence-to-

sequence tasks and evaluate their performance on Transformer 

models. 

 We evaluate the proposed model’s performance on the 

PHOENIX-14T corpus, demonstrating superior performance using 

the Bi-Lingual Evaluation Understudy (BLEU), and the Recall-

Oriented Understudy for Gisting Evaluation (ROUGE) metrics. 

 We compare our model’s performance with other 

sequence-to-sequence architectures like GRU, CNN, and LSTM. 

 

 
Figure 1: Proposed pipeline for Text-to-GLOSS Neural Translation 

Source: Authors, (2025). 

 

I.1. PROPOSED METHODOLOGY 

In this section, we will present the resources necessary to 

understand our methodology approach and provide an overview of 

each of these elements. First, we will introduce our pipeline and 

describe each of the steps used to process the input text and 

generate the GLOSS output, then we will address the transformer 

architecture as it is a critical component of our architecture, then 

we will present the used optimizers in detail as they are a key 

element in producing a high fidelity translation model, then we are 

going to discuss the used performance metrics as it is extremely 

challenging to compare each model and optimizer’s performance 

without an adequate performance metric. 

 

II. REAL-TIME TEXT-TO-SIGN LANGUAGE GLOSS 

TRANSLATION PIPELINE USING TRANSFORMERS. 

Our real-time text-to-sign language GLOSS translation 

pipeline encompasses a series of essential steps to enable a 

seamless conversion of textual input into a sign language GLOSS 

representation. As can be seen in Figure 1, the process begins with 

input tokenization, which divides the source text into discrete units 

for processing. Subsequently, input embedding encodes these 

tokens into vector representations, while positional encoding 

introduces spatial information to maintain word order. 

The heart of the pipeline features the transformer 

architecture, consisting of an encoder that captures context and 

dependencies within the input text and a decoder that generates the 

corresponding sign language gloss. The SoftMax layer assigns 

probabilities to different gloss elements. Finally, detokenization 

reconstructs the output into a coherent GLOSS that represents the 

signed expression of the original text. 

 

Each of the pipeline steps involves the following: 
 

 Input Tokenization: The input text is divided into 

smaller units called tokens, which can be individual words or 

subwords. Tokenization is essential for representing text data in a 

format that the Transformer model can process. 

 Input Embedding: Each input token is mapped to a high-

dimensional vector representation called an embedding. The 

embedding layer helps the model to capture the semantic meaning 

of the tokens and their relationships within the input sequence. 

 Positional Encoding: Since the Transformer architecture 

does not have built-in mechanisms to handle the sequential order 

of the input tokens, Positional encoding serves to provide 

information about the token’s position in the sequence. By 

appending positional encoding to the input embeddings, the model 

is better able to comprehend the input data’s sequential structure. 

 Encoder: A series of transformer layers is used to process 

the input token embeddings with positional encodings. The input 

sequence is processed by the encoder, generating a sequence of 

continuous representations that capture the learned information for 

each token. 

 Decoder: A set of transformer layers is applied to the 

encoder’s output. The decoder’s role is to generate the output 

sequence, which in this case is the gloss. 

         Softmax: The output of the decoder is subjected to an 

activation function to obtain a probability distribution over the 

possible glosses. The equation of the softmax function is: 
 

softmax(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

                              (1) 

with 𝑧𝑖 the 𝑖𝑡ℎ element of the input vector, and 𝐾 the number of 

elements in the input vector. 

 Detokenization: Convert the predicted gloss back into text form. 

This is the reverse process of tokenization. 

 

II.1 TRANSFORMER-BASED MODEL ARCHITECTURE. 

Our text-to-GLOSS translation model, based on 

transformers, is inspired by the well-established encoder-decoder 

architecture commonly found in neural models for sequence 

transduction [17],[18]. This structural choice is vital for preserving 

the task’s sequential aspect, allowing the production of GLOSS 

outputs that are both coherent and contextually accurate. 

Incorporating a sophisticated attention mechanism, the two 

primary components of our model’s architecture are an encoder and 

a decoder. The encoder maps a sequence of input symbol 

representations (𝑥1, . . . , 𝑥𝑛) to an output sequence (𝑧1, . . . , 𝑧𝑛), 
while the output sequence (𝑦1 , . . . , 𝑦𝑛) is generated by the decoder 

in an autoregressive manner. This sequential generation preserves 

the integral temporal dependencies within the translation process, 
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ensuring that each output element is generated based on the 

symbols produced previously. 
 

 
Figure 2: Proposed transformer-based model architecture for text-

to-GLOSS translation. 

Source: Authors, (2025). 

 

Figure 2 shows the Transformer architecture, which is well-

known for its effectiveness in processing sequential data via a 

combination of layered self-attention and dense layers, providing a 

visual representation of both the encoder and decoder components. 

Consisting of N identical layers, each comprising two sub-layers, 

the encoder integrates a multi-head self-attention mechanism into 

its first sub-layer. The second sub-layer employs a position-wise 

fully connected feed-forward network. Each sub-layer is 

surrounded by a residual connection [19], and to ensure smooth 

information flow, layer normalization [20] is applied after the 

residual connection. Notably, an output dimension d is maintained 

across all sub-layers, aligning with the dimension of the embedding 

layer. Similarly, the decoder is structured with a stack of N identical 

layers, augmented by a multi-head attention sub-layer designed to 

handle the output of the encoder stack. This is followed by a 

residual connection and a normalization layer. Thus, the output of 

each sub-layer in the model can be expressed as: 

 
 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥) = (𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥))  (2) 

 

where Sublayer represents the function applied by the sub-

layer and LayerNorm denotes layer normalization. 

To maintain the autoregressive nature of the decoder, 

information flow from subsequent positions is prevented by 

masking the self-attention sub-layer. To achieve this, the output 

embeddings are shifted one position and masked to ensure only 

known outputs from preceding positions are used to predict the 

output at position i. 

The attention mechanism has become an integral part of 

sequence-to-sequence and transduction models. Attention allows 

modeling dependencies regardless of their distance in the input and 

output sequences. In our model, we use a combination of scaled 

dot-product and multi-head attention. The scaled dot-product 

attention computes the dot products of the query and keys, divides 

each by the square root of the dimension of the keys, and applies a 

SoftMax function to obtain the weights on the values. It is 

computed as follows: 

 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉  (3) 

 

where the values, keys, and queries are packed together into 

the V, K, and Q matrices accordingly. And 𝑑𝑘 is the dimension of 

the input keys (and queries). 

The multi-head attention mechanism on the other hand uses 

several parallel attention layers, with each attention layer (head) 

having its own set of queries, keys, and values. This is expressed 

by the equation: 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = Concat(head1, … , headℎ)𝑊
𝑂 (4) 

 

with head𝑖 = Attention(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉). Where Q, K, 

and V are the query, key, and value matrices respectively, ℎ is the 

number of attention heads, 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 , and 𝑊𝑖

𝑉 projections are the 

parameter matrices for the i-th attention head, and 𝑊𝑂 is the output 

projection matrix. 

 

II.2 MODEL OPTIMIZATION 

Optimizers are essential for training deep learning models, 

as they determine how the model’s parameters are updated based 

on the gradients of the loss function. A good optimizer can 

significantly improve the convergence speed and final performance 

of the model. In the context of transformers, which are complex 

and computationally intensive models, choosing the right optimizer 

is essential for efficient training and inference. 

 

 Stochastic Gradient Descent(SGD) [14]: is a widely 

used optimizer in deep learning. It updates the model’s parameters 

by taking small steps in the direction of the loss function’s negative 

gradient. The learning rate, which determines the step size, is a 

critical hyper-parameter that requires precise adjustment. The SGD 

algorithm utilizes the following equation to update the model’s 

parameters: 
 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
1

𝑛
∑ 𝛻𝜃
𝑛
𝑖=1 𝐿(𝑓(𝑥𝑖; 𝜃𝑡), 𝑦𝑖) (5) 

 

where 𝜃𝑡 represents the model parameters at iteration t, 𝜂 the 

learning rate, which indicates the step size in the parameter update, 

𝛻𝜃𝐿(𝑓(𝑥𝑖; 𝜃𝑡), 𝑦𝑖) the gradient of the loss function with respect to 

the model parameters at iteration t (evaluated on a batch of training 

examples (𝑥𝑖 , 𝑦𝑖)) 

 Adaptive Gradient (AdaGrad) [16]: is an optimizer that 

adapts the learning rate for each parameter based on its past 

gradients. It performs smaller updates for parameters that are 

frequently updated and larger updates for infrequently updated 

parameters. The AdaGrad algorithm updates the parameters 

according to the following equations: 

o The first step is to compute the gradient 𝑔𝑡 of the loss 

function with respect to the parameters 𝜃. 
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o Update the squared sum of the gradients: 𝐺𝑡 = 𝐺𝑡−1 + 𝑔𝑡
2 

o Update the parameters: 𝜃𝑡 = 𝜃𝑡−1 −
𝜂

√𝐺𝑡+𝜖
⋅ 𝑔𝑡 

where 𝐺𝑡 is the sum of the square gradients up to the iteration 

t, 𝜂 is the learning rate that controls the step size in the parameter 

update, and 𝜖 is a small constant added for numerical stability. 

 Adaptive Delta (AdaDelta) [13]: is a stochastic gradient 

descent method that extends AdaGrad and seeks to address its 

limitations. Like AdaGrad, AdaDelta maintains a per-parameter 

learning rate, but it also introduces a decay term that helps to 

prevent the learning rate from becoming too small. This decay term 

allows AdaDelta to adapt to changing data and model parameters. 

The AdaDelta algorithm functions as follows: First the 

accumulation variables 𝐸[𝑔2) and 𝐸[𝛥𝑥2) are initialized to zero; 

then to update each parameter 𝑥 at time t: 

o Compute the gradient 𝑔𝑡 

o perform a gradient accumulations step: 𝐸[𝑔2)𝑡 =
𝜌𝐸[𝑔2)𝑡−1 + (1 − 𝜌)𝑔𝑡

2 

o Computes the parameter update: 𝛥𝑥𝑡 = −
𝑅𝑀𝑆[𝛥𝑥)𝑡−1

𝑅𝑀𝑆[𝑔)𝑡
𝑔𝑡 

o Accumulates updates: 𝐸[𝛥𝑥2)𝑡 = 𝜌𝐸[𝛥𝑥2)𝑡−1 + (1 −
𝜌)𝛥𝑥𝑡

2 

o Apply the updates: 𝑥𝑡+1 = 𝑥𝑡 + 𝛥𝑥𝑡  

 where 𝑥𝑡 is the current value of the model’s parameters, 𝜌 

is the decay rate, 𝑔𝑡 is the gradient of the loss function in relation 

to the model parameters at time step 𝑡, 𝛥𝑥𝑡 is the update to the 

parameter, and 𝑅𝑀𝑆[⋅) is the root mean square of the values. 

 Adaptive Moment Estimation (Adam) [15]: combines 

the advantages of two popular optimizers: AdaGrad, which is 

advantageous in sparse gradient situations, and RMSProp, which 

excels in online and non-stationary settings. It uses the first and 

second moments of the gradients to adapt the learning rate for each 

parameter. The update rule for Adam is given by: 

o Compute the gradient 𝑔𝑡. 

o Update the first momentum estimate: 𝑚𝑡 = 𝛽1𝑚𝑡−1 +
(1 − 𝛽1)𝑔𝑡 

o Update the second momentum estimate: 𝑣𝑡 = 𝛽2𝑣𝑡−1 +
(1 − 𝛽2)𝑔𝑡

2 

o Correct the bias of the first moment estimate: �̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡 

o Correct the bias of the second moment estimate:𝑣𝑡 =
𝑣𝑡

1−𝛽2
𝑡 

o Update the parameters: 𝜃𝑡+1 = 𝜃𝑡 −
𝛼

√𝑣𝑡+𝜖
�̂�𝑡 

where 𝑚𝑡 and 𝑣𝑡 are the first and second moments of the 

gradients, respectively, �̂�𝑡 and 𝑣𝑡 are the bias-corrected estimates 

of the moments, 𝜃𝑡 is the current value of the model’s parameters, 

𝑔𝑡 is the gradient of the loss function with respect to the parameters 

at time step 𝑡, 𝛼 is the learning rate, 𝛽1 and 𝛽2 are the exponential 

decay rates for the moment estimates and 𝜖 is a small constant 

added for numerical stability. 
 

II.3 MODEL EVALUATION 

In the evaluation of the text-to-gloss transformer pipeline, 

we employed several metrics to assess the performance of the 

generated glosses. Each metric serves a specific purpose and 

provides valuable insights into different aspects of the generated 

text. The following metrics were used: 

 Perplexity: is a commonly used metric to measure the 

quality of language models. It measures the accuracy with which a 

model predicts a sample of text. More precisely, it measures how 

well a model predicts the following word in a series based on the 

preceding word sequence. Models demonstrating higher predictive 

capabilities over a text sample are characterized by a lower 

perplexity score. 

 Bi-Lingual Evaluation Understudy(BLEU) [21]: is a 

metric that measures the similarity between a generated text and 

one or more reference texts. It is often used in machine translation 

tasks but can also be applied to other text generation tasks such as 

text summarization, and image caption generation. BLEU scores 

range from 0 to 1 with a higher score indicating a better translation 

quality. The BLEU score also incorporates a brevity penalty to 

penalize translations that are shorter than the reference text. The 

driving factor behind the use of this penalty is that shorter 

translations in addition to being easier to generate are more likely 

to have a higher n-gram precision. 

 Recall Oriented Understudy for Gisting Evaluation 

(ROUGE) [22]: is a set of metrics used for evaluating automatic 

summarization of texts as well as machine translations. It evaluates 

the quality of summaries or translations by comparing them to a set 

of reference summaries. It measures the overlap between the 

generated summary and the reference summaries in terms of n-

gram matches and word sequences. ROUGE scores range from 0 

to 1, with higher scores indicating better performance. Out of the 

ROUGE score variations, we specifically use the ROUGE-L which 

uses the Longest Common Subsequence. 

II.4 REAL-TIME INFERENCE 

For seamless communication in real-time scenarios, 

achieving fast and efficient translation is crucial. We leverage 

CTranslate2 [23], a custom C++ Transformer-specific inference 

engine, to enable real-time deployment of our text-to-gloss 

translation model. CTranslate2 offers a significant advantage by 

having no runtime dependencies on TensorFlow or PyTorch. This 

eliminates potential compatibility issues and streamlines 

deployment. Additionally, CTranslate2 demonstrates optimized 

inference capabilities, including CPU and GPU support, leading to 

up to 4 times faster translation speeds compared to PyTorch [23]. 

This focus on real-time performance allows our model to be used 

in applications like live captioning and educational settings, 

providing greater inclusivity for the Deaf and hard-of-hearing 

community. 

 

III. EXPERIMENTAL RESULTS 

In this section, we present the results of our experiments, 

which demonstrate the effectiveness of the transformer in text-to-

gloss translation tasks and provide valuable insights into the 

performance of this model in this specific task. The results are 

organized as follows: In the first subsection we introduce the 

experimental setup used to run our experiments, then the dataset 

subsection will provide more details about the dataset used for 

training and benchmarking our models, and finally, a results 

subsection that presents our consecutive hyper-parameter 

exploration, followed by a model optimization section, before 

finally presenting the performance results we share the obtained 

optimal parameters of our final model. 

 

III.1 EXPERIMENTAL SETUP 

Our text-to-GLOSS transformer model was built using the 

open source OpenNMT toolkit [24] with a pytorch backend [25]. 

The experiments were performed on a PC with an Intel Core I5 
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Central Processing Unit, an Nvidia RTX 3060 Graphics Processing 

Unit, 16GB of Random-Access Memory, and an Ubuntu Operating 

System. 

 

Table 1: Text-to-Gloss Examples from the PHOENIX14T Dataset. 

Text GLOSS 

AM SAMSTAG IST ES WIEDER 

UNBESTÄNDIG  
SAMSTAG WECHSELHAFT 

AUCH AM SAMSTAG 

TEILWEISE FREUNDLICH . 

SAMSTAG AUCH 

FREUNDLICH 

SONST SCHEINT VERBREITET 

DIE SONNE . 
SONST REGION SONNE 

IM SÜEDOSTEN REGNET ES 

TEILWEISE LÄNGER . 
SUEDOST DURCH REGEN 

Source: Authors, (2025). 
 

Consistency in scoring methodologies is essential for 

establishing reliable benchmarks and facilitating meaningful 

comparisons between different models and research studies. The 

use of standardized scoring scripts helps to mitigate discrepancies 

in evaluation and ensures that the reported results are directly 

comparable. For this purpose, we specifically selected the Moses 

multi-bleu-detok.perl script for BLEU scoring, as it’s used 

extensively used to report BLEU scores in research. To ensure a 

uniform ROUGE scoring and an accurate ROUGE comparison 

with other studies, we used HuggingFace’s rouge scoring script 

which is a wrapper of Google Research’s native Python 

implementation of ROUGE scoring. 
 

III.2 DATASET 

The PHOENIX-14T parallel text-to-GLOSS corpus [26] 

was employed to assess the performance of our proposed model. It 

is developed at RWTH Aachen University in Germany by the 

Human Language Technology & Pattern Recognition Group as 

part of the RWTH-PHOENIX-Weather 2014 corpus [27]. 

 

Table 2: PHOENIX14T Dataset Distribution. 
 GLOSS TEXT 

 Train Dev Test Train Dev Test 

Sentences 7 096 519 642 7 096 519 642 

Words 67 781 3 745 4 257 99 081 6 820 7 816 

Vocabulary 1 066 393 411 2 887 951 1 001 

Source: Authors, (2025). 
 

The dataset encompasses German sign language 

interpretation in the form of high-quality video recordings sourced 

from daily weather forecasts and news from 2009 to 2011. 

Additionally, the original German speech has been transcribed 

using a combination of speech recognition and manual cleaning. 

Manual GLOSS notation for German Sign Language (DGS) is 

available for 386 editions of weather forecasts. Some examples of 

the parallel text GLOSS dataset are provided in Table 1, and 

detailed statistics of the dataset’s sentence, word, and vocabulary 

count are provided in Table 2. 

The PHOENIX14T dataset proves to be a valuable asset for 

our research for several compelling reasons. Firstly, it is a non-

synthetic dataset, offering accurate interpretations in German Sign 

Language (DGS) from professional interpreters. This authenticity 

is important for developing a high-performing system that can 

deliver accurate translations in uncontrolled environments. 

Additionally, the dataset is widely utilized in the sign language 

recognition and translation field, indicating its relevance and 

reliability for training text-to-GLOSS translation systems. 

Furthermore, its adoption facilitates the establishment of a 

standardized evaluation for our proposed architecture through a 

comparative analysis of our findings with state-of-the-art models. 

Despite its relatively small size, the dataset is comprehensive, 

offering a diverse range of linguistic and visual data for robust 

model training and evaluation. This further solidifies its suitability 

for the development of the text-to-GLOSS neural translation 

system. 

III.3 RESULTS 

III.3.1 Hyper-parameter Exploration 
 

In this subsection, we introduce a novel transformer-based 

text-to-GLOSS translation architecture, considering the challenges 

posed by the limited resource conditions of the task. Thanks to their 

ability to capture contextual information and model long-range 

dependencies, Transformers have demonstrated remarkable 

success in various natural language processing tasks, especially in 

NMT. However, while having considerable accomplishments in 

NMT, their optimal utilization in the text-to-GLOSS translation 

endeavor remains to be comprehensively explored. Achieving this 

potential requires thorough hyper-parameter optimization, a vital 

operation for achieving optimal performance in low-resource 

scenarios. 

Identifying the optimal Transformer architecture using grid 

search for a comprehensive exploration of hyper-parameters can be 

prohibitively expensive. Consequently, researchers resort to one of 

two techniques: a random hyper-parameter exploration [28] or an 

individual hyper-parameter grid search. While random search may 

yield superior hyper-parameter combinations, it typically incurs a 

greater time expense for a comprehensive exploration. 

Alternatively, grid search, for a single hyper-parameter at a time, 

only identifies the best value for the current hyper-parameter set, 

which is unaltered even after adjusting other hyper-parameters. 

This prompted us to adopt a consecutive hyper-parameter 

exploration approach. This method remedies the aforementioned 

downfalls by consecutively refining the model’s hyper-parameters 

and not only relying on one round of optimization. The hyper-

parameter range outlined in Table 3 is used to carry out this 

exploration. 
 

Table 3: Explored hyper-parameter space. 

Hyper-parameter Values 

Warmup steps 100 200 300 400 500 600 

Batch-size 256 512 1024 2048 4096 

Attention heads 1 2 4 8 

Number of layers 1 2 3 4 5 6 7 

Embedding dimension 32 64 128 

Feed-forward dimension 128 256 512 

Dropout 0.1 0.2 0.3 0.4 0.5 

Label smoothing 0.1 0.2 0.3 0.4 0.5 0.6 

Source: Authors, (2025). 

 

During the iterative process of consecutive hyper-parameter 

exploration, a methodological approach is applied to refine the 

transformer-based architecture. The methodology involves the 

careful selection of an initial set of hyper-parameters, followed by 

sequential optimization of each parameter. Each hyper-parameter 

is individually addressed while keeping the others constant, and the 

model’s performance on the selected dataset is assessed. The 

results of the first optimization cycle are used to modify the hyper-

parameter values. Iteratively fine-tuning the model for each hyper-

parameter separately until there are no more gains in improvement 
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to the model’s output. By using this strategy of exploring hyper-

parameters sequentially, it is possible to have a thorough grasp of 

how each hyper-parameter affects the performance of the model. 

This iterative approach enables the development of an optimal 

architecture, maximizing translation accuracy through the 

application of the most effective hyper-parameter set. 

 

III.3.2 Minimal Transformer Model Tuning 

 

To identify the most effective optimizer for our hyper-

parameter exploration, we compared four commonly used 

optimizers on an arbitrary minimal model. This model comprises a 

single layer, a feed-forward dimension of 256, an embedding 

dimension of 32, one attention head, a label smoothing of 0.6, and 

a dropout rate of 0.3. All optimizers were configured with the same 

learning rate of 1. 

 

 
Figure 3: Comparative performance of stochastic optimizers on train and test sets for the minimal transformer model. 

Source: Authors, (2025). 

 

As can be observed in Figure 3, SGD and AdaDelta had the 

worst performance, as they had the lowest train and test accuracy, 

and the highest train and test perplexity. A logarithmic scale is 

used on the perplexity plots to facilitate the visualization of their 

progress, which was particularly necessary due to their 

significantly poorer performance. Adam and AdaGrad had the 

best results with Adam taking the lead with a higher train accuracy 

and a lower train perplexity. And AdaGrad had a marginally 

higher test accuracy and lower test perplexity. 

 

Table 4: Comparison of ROUGE and BLEU scores for different 

optimizers on the minimal transformer model. 

OPTIMIZER ROUGE 

BLEU 

BLEU-1 BLEU-2 BLEU-3 BLEU-4 

ADADELTA 1.75 16.5 0.0 0.0 0.0 

SGD 12.08 22.7 4.8 3.3 0.0 

ADAGRAD 48.14 55.6 23.3 11.5 6.3 

ADAM 48.78 54.2 22.5 11.0 5.5 

Source: Authors, (2025). 

We report the best ROUGE and best BLEU-1 score 

accompanied by the corresponding BLEU-2, BLEU-3, and 

BLEU-4 scores of the resulting model’s performances for each 

optimizer in Table 4. SGD and AdaDelta have the poorest 

performance with AdaDelta having a BLEU-2, BLEU-3, and 

BLEU-4 score of 0, and SGD having a BLEU-4 of 0. 

This indicates that the model trained with the SGD 

optimizer struggles to generate 4-gram sequences that match a 4-

gram sequence existing in the testing corpus, while the same can 

be said about the model trained using the AdaDelta optimizer, but 

in addition to 4-grams, the AdaDelta model fails to get matching 

3-gram and 2-gram sequences too. 

AdaGrad takes the lead when it comes to BLEU scores 

with BLEU-1, BLEU-2, BLEU-3, and BLEU-4 of 55.6, 23.3, 

11.5, and 6.3 respectively, but Adam has an apparent advantage in 

terms of ROUGE scores with a 48.74 score. Stemming from these 

results, we decided to adopt the Adam optimizer for training our 

models and performing our hyper-parameters optimization. 
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Table 5: Dropout hyper-parameter exploration metrics. 

METRICS 
DROPOUT 

0.1 0.2 0.3 0.4 0.5 

BLEU-1 61.2 62.6 63.6 63.1 62.9 

STEP 700 700 1000 7600 1000 

ACCURACY 45.76 47.17 47.35 47.9 45.6 

ROUGE 54.41 53.79 55.18 52.78 55.55 

Source: Authors, (2025). 

 

III.3.3 Fine-tuning Our Proposed Transformer Model 

 
With the optimal optimizer identified in the first 

experiment, we shifted our focus to constructing our Transformer-

based text-to-GLOSS model, in this subsection, we shed light on 

the consecutive hyper-parameter exploration to then unveil our 

final architecture. Our consecutive hyper-parameter exploration 

was performed manually and using the BLEU-1 metric for scoring 

the models and picking the best hyper-parameter in each run. 

Table 5 presents the dropout BLEU-1 score of our last hyper-

parameter exploration run, in addition to the best BLEU-1 score 

of each dropout, the table also shows the step at which the score 

was obtained as well as the accuracy and the ROUGE score at that 

step. The table reveals that despite having a slightly lower 

accuracy on the test set, the dropout value of 0.3 yields the best 

BLEU-1 score of 63.6, and reaches its optimal performance in the 

1000th step. The results for the attention tuning run are also 

provided in Table 6, a similar trend can be observed in the 

attention heads tuning run where despite not having the best 

accuracy, the model with 2 attention heads still yields a better 

BLEU-1 score of 63.6 taking the lead in the attention tuning run, 

it’s best performance was achieved at the 1000th step, with an 

accuracy of 47.35. 

Table 6: Attention heads hyper-parameter exploration metrics. 

METRICS 
ATTENTION HEADS 

1 2 4 8 

BLEU-1 62.5 63.6 63.1 61.4 

STEP 800 1000 1500 2900 

ACCURACY 47.53 47.35 47.72 47.88 

ROUGE 54.22 55.18 54.56 53.96 

Source: Authors, (2025). 

 

The hyper-parameter optimization process took place until 

the model’s parameters settled at the same value. The final hyper-

parameter set is depicted in Table 7. The final model reached a 

training accuracy of 77.21, which translates to 47.35 test accuracy. 

It also reached BLEU scores of 63.6, 28.5, 15.2, and 9.0 in BLEU-

1, BLEU-2, BLEU-3, and BLEU-4 respectively, and a ROUGE 

score of 55.18. The best BLEU-1 score was obtained at the 1000th 

training step, while the best ROUGE score was obtained at the 

4900th step 

Once our best-performing parameters were reached, the 

final parameter set was used to perform an optimizer comparison. 

Figure 4 illustrates the achieved performance metrics of the final 

model using the four optimizers: Adam, AdaGrad, AdaDelta, and 

SGD. The optimizers had the same parameters as the first 

optimizers trial in conjunction with the model’s parameter set in 

Table 7. When it comes to the train set performance, Adam is 

clearly ahead of AdaGrad in both accuracy and perplexity. 

Furthermore, even with AdaGrad having a closer performance to 

Adam on the test set, Adam still takes the lead with a higher test 

accuracy, and a lower test perplexity. Both SGD and AdaDelta 

have significantly worse performance compared to Adam and 

AdaGrad over both the train and the test set. 

 

 
Figure 4: Comparative performance of stochastic optimizers on train and test sets for our proposed transformer model. 

Source: Authors, (2025). 
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Figure 5: Performance metrics evolution of our proposed transformer-based model for 

text-to-GLOSS translation during training. 

Source: Authors, (2025). 

 

Table 7: Optimal hyper-parameters for our proposed transformer 

model. 

Hyper-parameter Value 

Warmup steps 300 

Batch-size 4096 

Attention heads 2 

Number of layers 5 

Embedding dimension 64 

Feed-forward dimension 256 

Dropout 0.3 

Label smoothing 0.6 

Source: Authors, (2025). 

 

Table 8 presents the best ROUGE scores obtained from the 

experiment and the best BLEU-1 score with the corresponding 

BLEU-2 to 4 scores. From the results presented in the table, we can 

observe that the AdaDelta optimizer has the worst scores, with 0.09 

ROUGE and 0.0 in all BLEU scores. The SGD optimizer has 

slightly better scores with 4.10 ROUGE, 13.5 BLEU-1, and 0.0 

BLEU-2, BLEU-3, and BLEU-4. AdaGrad takes the second 

position with 50.72 ROUGE, 57.8 BLEU-1, 23.3 BLEU-2, 11.6 

BLEU-3, and 6.4 BLEU-4. Finally, the best-performing optimizer 

is Adam with a significantly better score than AdaGrad. It has a 

ROUGE score of 55.18, and its BLEU scores were 63.6, 28.5, 15.2, 

and 9.0 for the BLEU-1, BLEU-2, BLEU-3, and BLEU-4 

respectively. The results of the experiment clearly show that the 

Adam optimizer is significantly better for our specific use-case of 

text-to-GLOSS neural machine translation using a Transformer 

architecture. 

 

Table 8: Comparison of ROUGE and BLEU scores for different 

optimizers in our proposed transformer model. 

OPTIMIZER ROUGE 

BLEU 

BLEU-

1 

BLEU

-2 

BLEU

-3 

BLE

U-4 

ADADELTA 0.09 0.0 0.0 0.0 0.0 

SGD 4.10 13.5 0.0 0.0 0.0 

ADAGRAD 50.72 57.8 23.3 11.6 6.4 

ADAM 55.18 63.6 28.5 15.2 9.0 

Source: Authors, (2025). 

III.3.4 Performance Evaluation and Comparative Analysis 
 

Figure 5 shows the evolution of the ROUGE, BLEU, and 

BLEU-1 to 4 performance metrics for our proposed model with 

Adam optimizer on the test set during training. we can notice that 

the models improve the most in the first thousand or so training 

steps, then the performance only varies slightly in each evaluation, 

these variations are more pronounced in the BLEU scores than the 

ROUGE score.  

 

Table 9: Comparison of ROUGE and BLEU scores for different 

model architectures. 

ARCHITECTU

RE 

ROUG

E 

BLEU 

BLEU-

1 

BLEU

-2 

BLEU

-3 

BLEU

-4 

CNN 49.91 59.8 25.4 13.4 8.4 

LSTM 46.27 51.1 17.8 7.3 3.3 

GRU 25.90 31.0 5.7 0.9 0.2 

OUR 

PROPOSED 

MODEL 
55.18 63.6 28.5 15.2 9.0 

Source: Authors, (2025). 

 

To compare our system’s performance with other 

architectures, we built several models with different architectures. 

All the architectures were built using the default configuration of 

the OpenNMT-py for translation. Three architectures were 

constructed for this comparison: a CNN [29] model, an LSTM [30] 

model, and a GRU [31] model. All the models have two encoder 

layers, and two decoder layers, a hidden size of 500, and optimized 

using the SGD optimizer. The CNN has a kernel width of 3. Table 

9 presents the BLEU and ROUGE scores of all the evaluated 

methods, out of the three tested architectures, the CNN takes the 

first position with a ROUGE score of 49.91, and a BLEU-1, BLEU-

2, BLEU-3, and BLEU-4 of 59.8, 25.4, 13.4, and 8.4 respectively. 

However, the table clearly demonstrates the transformer 

architecture taking a lead in all scores with a 55.18 ROUGE score, 

and 63.6, 28.5, 15.2, and 9.0 for the BLEU-1, BLEU-2, BLEU-3, 

and BLEU-4 respectively. 
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Table 10: Comparison of ROUGE and BLEU scores for our 

proposed approach with state-of-the-art methods on PHOENIX14T 

corpus test set. 

METHODS 
ROUG

E 

BLEU 

BLEU

-1 

BLEU

-2 

BLEU

-3 

BLEU

-4 

RNN WITH 

LUONG 

ATTENTION 

[7] 

48.10 50.67 32.25 21.54 15.25 

GRU WITH 

BAHDANAU 

ATTENTION 

[8] 

42.96 43.90 26.33 16.16 10.42 

TRANSFORME

R [9] 
54.55 55.18 37.10 26.24 19.10 

OUR 

PROPOSED 

APPROACH 
55.18 63.6 28.5 15.2 9.0 

Source: Authors, (2025). 

 

In Table 10 our model’s performance is compared to 

previous studies. The PHOENIX-14T text-to-GLOSS dataset is 

used to obtain the results. To provide a comprehensive overview of 

the translation performance, both the best ROUGE score, and the 

BLEU-1 to BLEU-4 scores are provided. Additionally, the 

architecture of each system is provided. The highest BLEU score 

achieved by our model is 19.04. Given that the BLEU-1 score is 

employed in our hyper-parameter exploration, it exhibited the most 

significant performance improvement when compared to 

alternative systems. In regards to the BLEU-1 score, our model 

outperforms all other approaches with a significant increase of 19.7 

compared to [8], our model also outperforms the models suggested 

in [7] and [9] by 12.93 and 8.42, respectively. For BLEU-2, BLEU-

3, and BLEU-4 scores, our model’s performance is on par with the 

model in [8], with scores of 28.5, 15.2, and 9.0, respectively. Our 

system outperforms both the GRU with attention proposed in [8] 

and the Recurrent Neural Network (RNN) based architecture with 

attention proposed in [7], with ROUGE score increases of 12.22 

and 7.08, respectively. Our model also achieves a 0.63 

improvement in ROUGE score, marginally outperforming the 

Symbolic Transformer suggested in [9]. 

 

III.3.5 Performance Evaluation and Comparative Analysis. 

 
In this subsection we present the benchmarking results for 

our model’s inference using CTranslate2 on both CPU and GPU. 

We evaluate the model’s inference performance based on three 

metrics: time per token, sentence latency, and memory usage. 

Figure 6 illustrates the comparison of these metrics across bot GPU 

and CPU implementations. 

The results reveal that the average time per token on the 

CPU is 0.28 milliseconds, which is approximately three times 

lower than the 0.86 millisecond observed on the GPU. Similarly 

sentence latency on the CPU averages 1.69 milliseconds, whereas 

on the GPU it is approximately three times higher with 5.09 

milliseconds. Additionally, the CPU’s model memory usage is 

around 8.37 MB, which is slightly lower than the 10MB recorded 

on the GPU. These figures provide a clear comparison of the 

performance between CPU and GPU implementations of the model 

during inference. 

IV. DISCUSSION 

Our study aims to investigate the performance of optimizers 

in the context of finding the most optimal transformer architecture 

for the real-time text-to-GLOSS translation task. We hypothesize 

that by initially exploring optimizers using a minimal model and 

subsequently applying the insights gained to optimize a more 

complex transformer architecture, we can obtain more insights into 

optimizer performance in the text-to-GLOSS translation task 

across different scenarios. 

 

 
Figure 6: CPU and GPU performance metrics during model 

inference. 

Source: Authors, (2025). 

 

Our study employs a two-phase experimental approach. In 

the first phase, we conduct a comprehensive exploration of 

optimizers using a minimal transformer model. The goal is to 

identify the most effective optimizer through a comparative 

evaluation of AdaDelta, SGD, AdaGrad, and Adam. Accordingly, 

our model of choice featured a single feed-forward layer with a 

dimension of 256, an embedding dimension of 32, one attention 

head, a dropout rate of 0.3, and a label smoothing of 0.6. All 

optimizers were configured with a learning rate of 1. This first 

phase yielded significant insights into the performance and 

adaptability of the optimizers on a minimal model in this specific 

use case. Both AdaDelta and SGD resulted in a model with subpar 

performance, with a ROUGE score of 1.75 and 12.08 respectively. 

However, the AdaGrad and Adam optimizers achieved superior 

results with 48.14, and 48.78 ROUGE respectively. Despite 

AdaDelta being an extension of AdaGrad, it yields significantly 

inferior performance in our specific testing conditions. The 

observed performance discrepancy may stem from AdaDelta’s 

limited adaptability to the intricacies of our text-to-GLOSS 

translation task, suggesting potential challenges in generalizing its 

optimization capabilities for this specific context. Subsequently, 

the findings obtained from the optimizer screening phase guide the 

subsequent hyper-parameter exploration, aiming to identify the 

optimal transformer architecture in the second phase. 

Our investigative approach emphasizes a sequential 

optimization process. Initially, we analyze the optimizers in a 

simpler context and subsequently apply the insights to guide the 

hyper-parameter exploration for identifying the optimal 

architecture. The hypothesis underscores the critical role of a well-

suited optimizer in attaining optimal convergence and ensuring 
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high translation quality, particularly in the complex task of text-to-

GLOSS translation using a transformer model. 

To enhance the search for the optimal architecture, we 

leverage the insights from the optimizer screening to guide the 

exploration of hyper-parameters and model configurations. 

Employing a consecutive hyper-parameter exploration technique 

for Transformers. This process is used to address the excessively 

intensive resource demand of an exhaustive parameter exploration 

and the suboptimal performance obtained from a random parameter 

search. Our optimization process starts with the selection of a 

primary hyper-parameter set, with subsequent sequential 

optimization of each parameter. During this process, one hyper-

parameter is altered at a time while maintaining the others fixed, 

evaluating the model’s translation quality on the selected corpus. 

Following that, hyper-parameter values are modified in accordance 

with the outcomes of the first optimization run. This continual 

process of fine-tuning proceeds for each hyper-parameter 

individually until the model’s output no longer shows any signs of 

progress. 

In addition to comparing optimizers within the context of 

the minimal model, our analysis extends to a larger and more 

intricate transformer architecture. This broader comparison serves 

the purpose of affirming the robustness and consistency of the 

selected optimizer, ensuring that the insights obtained from the 

initial experiment are applicable to a practical, real-world text-to-

GLOSS translation scenario. The increased complexity of the 

larger model accentuates the performance distinctions observed 

with each optimizer. AdaDelta and SGD yield ROUGE scores of 

0.09 and 4.10, respectively, significantly lower than the scores 

achieved in the smaller model. This outcome further reinforces our 

hypothesis regarding the critical role of a well-suited optimizer 

tailored to specific conditions. In contrast, AdaGrad demonstrates 

a ROUGE score of 50.72, while Adam excels with a ROUGE score 

of 55.18. This comparison within the larger model context 

reinforces the reliability of the identified optimizer in delivering 

high-quality results across diverse scenarios. 

In the study by Choi et al. [32], the authors observed 

significant variability in optimizer performance depending on the 

workload. While some workloads exhibited comparable 

performance across all tested optimizers, in other scenarios, there 

were substantial differences leading to clear distinctions in both 

predictive performance and training speed. Notably, the efficiency 

of Adam was particularly evident, requiring significantly fewer 

training steps than SGD to achieve the same target error on a 

transformer architecture. Our findings resonate with this observed 

performance difference, as SGD demonstrated notably reduced 

effectiveness for our specific text-to-GLOSS translation task 

compared to Adam. These results underscore the critical 

importance of carefully selecting the appropriate optimizer tailored 

to the unique characteristics of each workload or task. Several 

studies have suggested that the suboptimal performance of SGD on 

attention models can be attributed to heavy-tailed noise, as noted 

in Zhang et al.’s work [33]. They propose that Adam’s success in 

optimizing these models is linked to its resilience against outliers. 

However, Chen et al. [34] challenge this notion. Backed by 

controlled stochasticity experiments through varied batch sizes, the 

study proposes that stochasticity and heavy-tailed noise might not 

be significant contributors to the observed performance 

discrepancy. Instead, it suggests that Adam-like methods utilize a 

descent direction that is superior to the gradient, providing an 

alternative explanation for their effectiveness. Using a consecutive 

hyper-parameter exploration, we managed to find an optimal 

Transformer architecture and significantly increase the translation 

performance over the PHOENIX-14T dataset highlighting the 

importance of finding a task-specific parameter set for achieving a 

significant performance. This aligns with Araabi et al.’s study [10] 

that shows through experimental evidence the performance 

increase of a properly configured Transformer for low-resource 

language conditions. 

Following the optimizer comparison, we performed real-

time benchmarking to evaluate the model’s performance in 

practical scenarios. The benchmarking results revealed that the 

CPU outperformed the GPU in terms of time per token and 

sentence latency for small models and short sentences. 

Specifically, the CPU’s time per token was approximately three 

times lower than that of the GPU, and sentence latency on the CPU 

was about three times faster. Additionally, the CPU’s memory 

usage was slightly lower than that of the GPU. These findings 

suggest that for small models, CPUs offer a more efficient solution 

compared to GPUs. 

In the context of real-time inference, our results are 

consistent with [35], who also observed better performance with 

inference on CPU compared to GPU despite having a CPU with 

less peak FLOP performance. Wu et al. reported that decoding their 

model on CPU was 2.3 times faster than on GPU. They attributed 

this discrepancy to the significant overhead caused by non-trivial 

amount of data transfer between the host and the GPU at every 

decoding step. 

Overall, our findings provide a comprehensive 

understanding of the optimization strategies and hardware 

considerations crucial for maximizing the performance of neural 

machine translation models. The evaluation of different optimizers 

and hyper-parameter settings has revealed significant performance 

gains, while the real-time benchmarking highlights the importance 

of hardware choice, particularly the efficiency of CPUs for specific 

tasks. These insights align with and extend existing research, and 

contribute valuable knowledge to the field, guiding future research 

and practical implementations. 

 

V. CONCLUSIONS 

This paper presents a novel transformer-based Neural 

Machine Translation model specifically tailored for real-time text-

to-GLOSS translation. First, we provided a comprehensive 

exploration of optimizers to identify the most optimal transformer 

architecture for the text-to-GLOSS translation task. The initial 

phase involved a comprehensive examination of optimizers using 

a minimal transformer model. This phase revealed significant 

variations in performance, with Adam emerging as a robust choice 

for our specific use case reaching 48.78 ROUGE. Building upon 

the optimizer screening phase, our consecutive hyper-parameter 

exploration is used to fine-tune the search for the optimal 

transformer architecture. The iterative process, sequentially 

refining each hyper-parameter, supported our exploration of the 

complex landscape of model configurations. This methodological 

refinement proved essential in identifying an architecture that 

significantly enhanced text-to-GLOSS translation performance 

over the PHOENIX-14T dataset. The comparison of optimizers 

extended to a larger and more intricate transformer architecture, 

affirming the robustness of our selected optimizer, Adam, across 

diverse scenarios. The performance distinctions observed in the 

larger model context reinforced the hypothesis that the choice of 

the optimizer, coupled with the right hyper-parameter set, plays a 

pivotal role in achieving optimal convergence and translation 

quality, particularly in complex tasks. 
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Furthermore, we show that our obtained model using these 

techniques not only outperforms alternative architectures such as 

CNN, LSTM, and GRU in both ROUGE and BLEU 1 to 4 scores, 

but also outperforms state-of-the-art models not only on the 

optimization target metric (BLEU1), but also on the ROUGE 

metric, setting a new benchmark for text-to-GLOSS translation on 

the PHOENIX-14T dataset with 63.6 BLEU1 and 55.18 ROUGE 

scores further establishing the significance of our findings in the 

field. In terms of real-time inference, our benchmarking results 

indicate that for small models, the CPU significantly outperforms 

the GPU, with the CPU achieving approximately three times lower 

time per token and three times faster sentence latency. These 

insights emphasize the importance of hardware considerations in 

deployment, as optimizing for real-time performance can greatly 

enhance the practical applicability of NMT systems. Our findings 

hold great promise for diverse applications, ranging from education 

to healthcare, offering enhanced accessibility through real-time 

sign language translation for the Deaf and hard-of-hearing 

community. By addressing specific challenges in sign language 

translation, particularly the need for real-time processing, our 

research paves the way for seamless and uninterrupted 

communication, significantly improving inclusivity for the DHH 

community. 
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