
Journal of Engineering and Technology for Industrial Applications

ITEGAM-JETIA

Manaus, v.11 n.51, p. 99-111. January/February., 2025.

DOI: https://doi.org/10.5935/jetia.v11i51.1423

RESEARCH ARTICLE OPEN ACCESS

Journal homepage: www.itegam-jetia.org

ISSN ONLINE: 2447-0228

TRANSFORMER-BASED OPTIMIZATION FOR TEXT-TO-GLOSS IN LOW-

RESOURCE NEURAL MACHINE TRANSLATION

Younes Ouargani1 and Noussaima El Khattabi2

1, 2 Laboratory of Conception and Systems (Electronics, Signals, and Informatics), Faculty of Science, Mohammed V University, Rabat, Morocco.

1http://orcid.org/0000-0002-0804-9218 , 2http://orcid.org/0009-0009-3390-275X

Email: younes_ouargani@um5.ac.ma, e.noussaima@um5r.ac.ma

ARTICLE INFO ABSTRACT

Article History

Received: November 21, 2024

Revised: December 20, 2024

Accepted: January 15, 2025

Published: January 30, 2025

Sign Language is the primary means of communication for the Deaf and Hard of Hearing

community. These gesture-based languages combine hand signs with face and body gestures

for effective communication. However, despite the recent advancements in Signal

Processing and Neural Machine Translation, more studies overlook speech-to-sign language

translation in favor of sign language recognition and sign language to text translation. This

study addresses this critical research gap by presenting a novel transformer-based Neural

Machine Translation model specifically tailored for real-time text-to-GLOSS translation.

First, we conduct trials to determine the best optimizer for our task. The trials involve

optimizing a minimal model, and our complex model with different optimizers; The findings

from these trials show that both Adaptive Gradient (AdaGrad) and Adaptive Momentum

(Adam) offer significantly better performance than Stochastic Gradient Descent (SGD) and

Adaptive Delta (AdaDelta) in the minimal model scenario, however, Adam offers

significantly better performance in the complex model optimization task. To optimize our

transformer-based model and obtain the optimal hyper-parameter set, we propose a

consecutive hyper-parameter exploration technique. With a 55.18 Recall-Oriented

Understudy for Gisting Evaluation (ROUGE) score, and a 63.6 BiLingual Evaluation

Understudy 1 (BLEU1) score, our proposed model not only outperforms state-of-the-art

models on the Phoenix14T dataset but also outperforms some of the best alternative

architectures, specifically Convolutional Neural Network (CNN), Long Short Term

Memory (LSTM), and Gated Recurrent Unit (GRU). Additionally, we benchmark our model

with real-time inference tests on both CPU and GPU, providing insights into its practical

efficiency and deployment feasibility.

Keywords:

Real-Time Signal Processing,

Auditory Impairment,

Neural Machine Translation,

Optimization,

Sign Language

Copyright ©2025 by authors and Galileo Institute of Technology and Education of the Amazon (ITEGAM). This work is licensed

under the Creative Commons Attribution International License (CC BY 4.0).

I. INTRODUCTION

Sign languages, as visual-gestural forms of communication,

are integral components of the linguistic landscape for the Deaf and

Hard of Hearing (DHH) community. Unlike spoken languages,

sign languages rely on visual and gestural elements, incorporating

manual signs, body movements, and facial expressions to convey

meaning. This unique modality enables individuals within the

DHH community to express themselves with depth and nuance,

offering a rich and diverse means of communication. The

significance of visual-gestural languages becomes particularly

evident when considering the limitations of traditional spoken

languages in meeting the communication needs of the DHH

community. Spoken languages heavily rely on auditory cues,

making them less accessible for those with hearing impairments. In

contrast, sign languages provide an inclusive and versatile medium

that allows individuals to communicate effectively without

dependence on auditory stimuli. Visual-gestural languages play a

crucial role in facilitating social interactions, education, and

professional engagement within the DHH community. The use of

manual signs allows for the expression of abstract concepts,

emotions, and complex ideas. Additionally, facial expressions and

body language contribute to the linguistic richness of sign

languages, enhancing the overall communicative experience.

However, the broader societal landscape predominantly relies on

spoken languages. This linguistic dissonance results in a noticeable

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 99-111, January/February., 2025.

communication gap that Speech-to-Sign Language translation tools

endeavor to address. However, for truly seamless interaction, real-

time translation is crucial. Consider a classroom environment

where a lecture is being translated, a delay can disrupt the flow of

information and hinder understanding. The imperative

development and implementation of these tools, particularly those

with real-time capabilities, play a crucial role in facilitating

effective and inclusive communication between individuals who

use spoken languages and those who depend on visual-gestural

languages, as these tools play a pivotal role in harmonizing

interactions, promoting accessibility across linguistic and cultural

boundaries, ensuring equal access to information, opportunities,

and social interactions.

The evolution of machine translation has been a dynamic

journey, progressing through various phases of development. It

began with the early attempts of rule-based systems, as presented

in [1], which explored the collaborative role of human translators

and machines, emphasizing the synergy required for effective

language translation in the early phases. These rule-based systems,

however, faced challenges in capturing the complexities and

nuances of language due to their reliance on predetermined

linguistic rules. The subsequent transition to statistical methods

marked a pivotal moment in machine translation’s evolution.

Brown et al.’s groundbreaking work [2] introduced probabilistic

models that significantly enhanced translation accuracy by

addressing linguistic variations. This departure from rigid rules

allowed the model to learn patterns and relationships from data,

enabling more nuanced and context-aware translations. The

paradigm shift continued with the advent of neural networks. Ref

[3] presented a transformative neural machine translation model

with attention mechanisms. Unlike traditional models, this

approach allowed the model to selectively focus on distinct

sections of the input sequence amid translation. This attention

mechanism proved crucial in handling long sentences and

capturing contextual information, leading to substantial

improvements in translation quality. Building upon this, [4]

introduced the transformer architecture, which further refined the

attention mechanism. The transformer architecture replaced

recurrent layers with self-attention mechanisms, enabling the

model to consider dependencies across the entire input sequence

simultaneously. This innovation significantly improved the

efficiency of training and the model’s capacity to represent long-

range dependencies, setting new standards in machine translation

performance.

Sign language translation has followed a parallel evolution,

incorporating diverse approaches to bridge the communication gap

between spoken languages and visual-gestural languages. Early

contributions include the work of According to [5], who presented

a rule-based system for speech-to-sign language translation. Their

focus on National Identification Document (NID) and Passport-

related content demonstrates the practical application of translation

systems. Transitioning to an alternative approach, the Arabic

context highlights a significant achievement. An interdisciplinary

team, collaborating closely with deaf native signers and an Arabic

Sign Language (ArSL) interpreter, developed an example-based

machine translation (EBMT) system [6]. This system adeptly

translates Arabic text into ArSL, aligning with the unique linguistic

nuances and cultural context of the Arabic deaf and hearing-

impaired community. The choice of EBMT ensures adaptability to

the intricate grammar, structure, and idioms inherent in ArSL.

In contrast to traditional rule-based approaches, recent

advancements delve into the integration of Neural Machine

Translation (NMT), showcasing the evolving landscape of sign

language translation. According to [7] present an innovative

synthesis by seamlessly integrating NMT and Generative

Adversarial Networks to produce sign language video sequences

from spoken language sentences. This approach not only

showcases the capabilities of text-to-gloss translation but also

underscores the potential for video generation in sign language

translation offering a fresh perspective independent of avatars and

motion-capture-based methods. In a different vein, [8] focus on the

bidirectional translation of sign language, proposing a deep

learning approach based on GRU and Long Short-Term Memory

(LSTM) models with attention mechanisms. Their work stands out

by demonstrating superior performance on ASLG-PC12 and

Phoenix-14T corpora, particularly with the GRU model using

Bahdanau attention [3]. This highlights the effectiveness of their

approach in capturing the linguistic structure and context of natural

sign language sentences. For Sign Language Production (SLP),

Saunders et al. [9] provide a progressive Transformers architecture

that performs end-to-end translation of spoken language sentences

into continuous 3D sign pose sequences. Their method addresses

the need for architectures more appropriate for continuous sign

sequence generation by applying a counter-decoding methodology.

By providing benchmarks on the complex PHOENIX14T dataset

and establishing a baseline for subsequent studies, Saunders et al.

emphasize the importance of continuous sequence synthesis and

lay the groundwork for further exploration in the field.

These modern translation methods showcase a notable

advancement over earlier techniques. However, several studies

shed light on the critical role of hyper-parameter tuning in

improving Transformer performance in low-resource neural

machine translation (NMT) scenarios. In [10] Araabi and Monz run

several experiments on subsets of the IWSLT14 training corpus,

they highlight the influence of hyper-parameters on the

performance of Transformer models under low-resource scenarios.

This study underscores the importance of proper configuration,

showing that optimizing Transformer hyper-parameters can lead to

an improvement of up to 7.3 BLEU points in translation quality

compared to using default settings. Additionally, [11] focus on

deep Transformer optimization for translation tasks in low-

resource conditions, specifically for Chinese-Thai machine

translation. Their exploration of various experiment settings,

including the embedding size, dropout probability, and number of

BPE merge operations, highlights the significance of choosing

optimal configurations, even when dealing with low-resource

scenarios. This research reinforces the notion that hyper-parameter

optimization is critical to enhancing the performance of

Transformer models across different language pairs and data

conditions.

Expanding on the existing body of research, and building on

our previous work [12], our study investigates the intricacies of

optimizing transformers for the real-time text-to-GLOSS

translation task, marking the first comprehensive study in this

domain. The exploration is initiated by crafting a minimal model

for thorough optimizer screening, specifically Adaptive Delta

(AdaDelta) [13], Stochastic Gradient Descent (SGD) [14], and

Adaptive Moment Estimation (Adam) [15], Adaptive Gradient

(AdaGrad) [16]. Subsequently, harnessing the potential of the best

optimizers, we employ an innovative hyper-parameter exploration

technique tailored for Transformers. This methodology enables us

to discern the optimal architecture for sign language translation,

thereby making a significant contribution to the field of NMT for

sign language processing.

Within this scope, the key contributions of this study are:

Page 100

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 99-111, January/February., 2025.

 We propose a novel hyper-parameter exploration

technique for Transformer-based architectures on low-resource

tasks, and use it to create a real-time text-to-GLOSS sequence-to-

sequence translation model.

 We investigate the performance of AdaDelta, SGD,

AdaGrad, and Adam optimizers on low-resource sequence-to-

sequence tasks and evaluate their performance on Transformer

models.

 We evaluate the proposed model’s performance on the

PHOENIX-14T corpus, demonstrating superior performance using

the Bi-Lingual Evaluation Understudy (BLEU), and the Recall-

Oriented Understudy for Gisting Evaluation (ROUGE) metrics.

 We compare our model’s performance with other

sequence-to-sequence architectures like GRU, CNN, and LSTM.

Figure 1: Proposed pipeline for Text-to-GLOSS Neural Translation

Source: Authors, (2025).

I.1. PROPOSED METHODOLOGY

In this section, we will present the resources necessary to

understand our methodology approach and provide an overview of

each of these elements. First, we will introduce our pipeline and

describe each of the steps used to process the input text and

generate the GLOSS output, then we will address the transformer

architecture as it is a critical component of our architecture, then

we will present the used optimizers in detail as they are a key

element in producing a high fidelity translation model, then we are

going to discuss the used performance metrics as it is extremely

challenging to compare each model and optimizer’s performance

without an adequate performance metric.

II. REAL-TIME TEXT-TO-SIGN LANGUAGE GLOSS

TRANSLATION PIPELINE USING TRANSFORMERS.

Our real-time text-to-sign language GLOSS translation

pipeline encompasses a series of essential steps to enable a

seamless conversion of textual input into a sign language GLOSS

representation. As can be seen in Figure 1, the process begins with

input tokenization, which divides the source text into discrete units

for processing. Subsequently, input embedding encodes these

tokens into vector representations, while positional encoding

introduces spatial information to maintain word order.

The heart of the pipeline features the transformer

architecture, consisting of an encoder that captures context and

dependencies within the input text and a decoder that generates the

corresponding sign language gloss. The SoftMax layer assigns

probabilities to different gloss elements. Finally, detokenization

reconstructs the output into a coherent GLOSS that represents the

signed expression of the original text.

Each of the pipeline steps involves the following:

 Input Tokenization: The input text is divided into

smaller units called tokens, which can be individual words or

subwords. Tokenization is essential for representing text data in a

format that the Transformer model can process.

 Input Embedding: Each input token is mapped to a high-

dimensional vector representation called an embedding. The

embedding layer helps the model to capture the semantic meaning

of the tokens and their relationships within the input sequence.

 Positional Encoding: Since the Transformer architecture

does not have built-in mechanisms to handle the sequential order

of the input tokens, Positional encoding serves to provide

information about the token’s position in the sequence. By

appending positional encoding to the input embeddings, the model

is better able to comprehend the input data’s sequential structure.

 Encoder: A series of transformer layers is used to process

the input token embeddings with positional encodings. The input

sequence is processed by the encoder, generating a sequence of

continuous representations that capture the learned information for

each token.

 Decoder: A set of transformer layers is applied to the

encoder’s output. The decoder’s role is to generate the output

sequence, which in this case is the gloss.

 Softmax: The output of the decoder is subjected to an

activation function to obtain a probability distribution over the

possible glosses. The equation of the softmax function is:

softmax(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

 (1)

with 𝑧𝑖 the 𝑖𝑡ℎ element of the input vector, and 𝐾 the number of

elements in the input vector.

 Detokenization: Convert the predicted gloss back into text form.

This is the reverse process of tokenization.

II.1 TRANSFORMER-BASED MODEL ARCHITECTURE.

Our text-to-GLOSS translation model, based on

transformers, is inspired by the well-established encoder-decoder

architecture commonly found in neural models for sequence

transduction [17],[18]. This structural choice is vital for preserving

the task’s sequential aspect, allowing the production of GLOSS

outputs that are both coherent and contextually accurate.

Incorporating a sophisticated attention mechanism, the two

primary components of our model’s architecture are an encoder and

a decoder. The encoder maps a sequence of input symbol

representations (𝑥1, . . . , 𝑥𝑛) to an output sequence (𝑧1, . . . , 𝑧𝑛),
while the output sequence (𝑦1 , . . . , 𝑦𝑛) is generated by the decoder

in an autoregressive manner. This sequential generation preserves

the integral temporal dependencies within the translation process,

Page 101

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 99-111, January/February., 2025.

ensuring that each output element is generated based on the

symbols produced previously.

Figure 2: Proposed transformer-based model architecture for text-

to-GLOSS translation.

Source: Authors, (2025).

Figure 2 shows the Transformer architecture, which is well-

known for its effectiveness in processing sequential data via a

combination of layered self-attention and dense layers, providing a

visual representation of both the encoder and decoder components.

Consisting of N identical layers, each comprising two sub-layers,

the encoder integrates a multi-head self-attention mechanism into

its first sub-layer. The second sub-layer employs a position-wise

fully connected feed-forward network. Each sub-layer is

surrounded by a residual connection [19], and to ensure smooth

information flow, layer normalization [20] is applied after the

residual connection. Notably, an output dimension d is maintained

across all sub-layers, aligning with the dimension of the embedding

layer. Similarly, the decoder is structured with a stack of N identical

layers, augmented by a multi-head attention sub-layer designed to

handle the output of the encoder stack. This is followed by a

residual connection and a normalization layer. Thus, the output of

each sub-layer in the model can be expressed as:

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥) = (𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)) (2)

where Sublayer represents the function applied by the sub-

layer and LayerNorm denotes layer normalization.

To maintain the autoregressive nature of the decoder,

information flow from subsequent positions is prevented by

masking the self-attention sub-layer. To achieve this, the output

embeddings are shifted one position and masked to ensure only

known outputs from preceding positions are used to predict the

output at position i.

The attention mechanism has become an integral part of

sequence-to-sequence and transduction models. Attention allows

modeling dependencies regardless of their distance in the input and

output sequences. In our model, we use a combination of scaled

dot-product and multi-head attention. The scaled dot-product

attention computes the dot products of the query and keys, divides

each by the square root of the dimension of the keys, and applies a

SoftMax function to obtain the weights on the values. It is

computed as follows:

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (3)

where the values, keys, and queries are packed together into

the V, K, and Q matrices accordingly. And 𝑑𝑘 is the dimension of

the input keys (and queries).

The multi-head attention mechanism on the other hand uses

several parallel attention layers, with each attention layer (head)

having its own set of queries, keys, and values. This is expressed

by the equation:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = Concat(head1, … , headℎ)𝑊
𝑂 (4)

with head𝑖 = Attention(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉). Where Q, K,

and V are the query, key, and value matrices respectively, ℎ is the

number of attention heads, 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 , and 𝑊𝑖

𝑉 projections are the

parameter matrices for the i-th attention head, and 𝑊𝑂 is the output

projection matrix.

II.2 MODEL OPTIMIZATION

Optimizers are essential for training deep learning models,

as they determine how the model’s parameters are updated based

on the gradients of the loss function. A good optimizer can

significantly improve the convergence speed and final performance

of the model. In the context of transformers, which are complex

and computationally intensive models, choosing the right optimizer

is essential for efficient training and inference.

 Stochastic Gradient Descent(SGD) [14]: is a widely

used optimizer in deep learning. It updates the model’s parameters

by taking small steps in the direction of the loss function’s negative

gradient. The learning rate, which determines the step size, is a

critical hyper-parameter that requires precise adjustment. The SGD

algorithm utilizes the following equation to update the model’s

parameters:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
1

𝑛
∑ 𝛻𝜃
𝑛
𝑖=1 𝐿(𝑓(𝑥𝑖; 𝜃𝑡), 𝑦𝑖) (5)

where 𝜃𝑡 represents the model parameters at iteration t, 𝜂 the

learning rate, which indicates the step size in the parameter update,

𝛻𝜃𝐿(𝑓(𝑥𝑖; 𝜃𝑡), 𝑦𝑖) the gradient of the loss function with respect to

the model parameters at iteration t (evaluated on a batch of training

examples (𝑥𝑖 , 𝑦𝑖))

 Adaptive Gradient (AdaGrad) [16]: is an optimizer that

adapts the learning rate for each parameter based on its past

gradients. It performs smaller updates for parameters that are

frequently updated and larger updates for infrequently updated

parameters. The AdaGrad algorithm updates the parameters

according to the following equations:

o The first step is to compute the gradient 𝑔𝑡 of the loss

function with respect to the parameters 𝜃.

Page 102

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 99-111, January/February., 2025.

o Update the squared sum of the gradients: 𝐺𝑡 = 𝐺𝑡−1 + 𝑔𝑡
2

o Update the parameters: 𝜃𝑡 = 𝜃𝑡−1 −
𝜂

√𝐺𝑡+𝜖
⋅ 𝑔𝑡

where 𝐺𝑡 is the sum of the square gradients up to the iteration

t, 𝜂 is the learning rate that controls the step size in the parameter

update, and 𝜖 is a small constant added for numerical stability.

 Adaptive Delta (AdaDelta) [13]: is a stochastic gradient

descent method that extends AdaGrad and seeks to address its

limitations. Like AdaGrad, AdaDelta maintains a per-parameter

learning rate, but it also introduces a decay term that helps to

prevent the learning rate from becoming too small. This decay term

allows AdaDelta to adapt to changing data and model parameters.

The AdaDelta algorithm functions as follows: First the

accumulation variables 𝐸[𝑔2) and 𝐸[𝛥𝑥2) are initialized to zero;

then to update each parameter 𝑥 at time t:

o Compute the gradient 𝑔𝑡

o perform a gradient accumulations step: 𝐸[𝑔2)𝑡 =
𝜌𝐸[𝑔2)𝑡−1 + (1 − 𝜌)𝑔𝑡

2

o Computes the parameter update: 𝛥𝑥𝑡 = −
𝑅𝑀𝑆[𝛥𝑥)𝑡−1

𝑅𝑀𝑆[𝑔)𝑡
𝑔𝑡

o Accumulates updates: 𝐸[𝛥𝑥2)𝑡 = 𝜌𝐸[𝛥𝑥2)𝑡−1 + (1 −
𝜌)𝛥𝑥𝑡

2

o Apply the updates: 𝑥𝑡+1 = 𝑥𝑡 + 𝛥𝑥𝑡

 where 𝑥𝑡 is the current value of the model’s parameters, 𝜌

is the decay rate, 𝑔𝑡 is the gradient of the loss function in relation

to the model parameters at time step 𝑡, 𝛥𝑥𝑡 is the update to the

parameter, and 𝑅𝑀𝑆[⋅) is the root mean square of the values.

 Adaptive Moment Estimation (Adam) [15]: combines

the advantages of two popular optimizers: AdaGrad, which is

advantageous in sparse gradient situations, and RMSProp, which

excels in online and non-stationary settings. It uses the first and

second moments of the gradients to adapt the learning rate for each

parameter. The update rule for Adam is given by:

o Compute the gradient 𝑔𝑡.

o Update the first momentum estimate: 𝑚𝑡 = 𝛽1𝑚𝑡−1 +
(1 − 𝛽1)𝑔𝑡

o Update the second momentum estimate: 𝑣𝑡 = 𝛽2𝑣𝑡−1 +
(1 − 𝛽2)𝑔𝑡

2

o Correct the bias of the first moment estimate: �̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡

o Correct the bias of the second moment estimate:𝑣𝑡 =
𝑣𝑡

1−𝛽2
𝑡

o Update the parameters: 𝜃𝑡+1 = 𝜃𝑡 −
𝛼

√𝑣𝑡+𝜖
�̂�𝑡

where 𝑚𝑡 and 𝑣𝑡 are the first and second moments of the

gradients, respectively, �̂�𝑡 and 𝑣𝑡 are the bias-corrected estimates

of the moments, 𝜃𝑡 is the current value of the model’s parameters,

𝑔𝑡 is the gradient of the loss function with respect to the parameters

at time step 𝑡, 𝛼 is the learning rate, 𝛽1 and 𝛽2 are the exponential

decay rates for the moment estimates and 𝜖 is a small constant

added for numerical stability.

II.3 MODEL EVALUATION

In the evaluation of the text-to-gloss transformer pipeline,

we employed several metrics to assess the performance of the

generated glosses. Each metric serves a specific purpose and

provides valuable insights into different aspects of the generated

text. The following metrics were used:

 Perplexity: is a commonly used metric to measure the

quality of language models. It measures the accuracy with which a

model predicts a sample of text. More precisely, it measures how

well a model predicts the following word in a series based on the

preceding word sequence. Models demonstrating higher predictive

capabilities over a text sample are characterized by a lower

perplexity score.

 Bi-Lingual Evaluation Understudy(BLEU) [21]: is a

metric that measures the similarity between a generated text and

one or more reference texts. It is often used in machine translation

tasks but can also be applied to other text generation tasks such as

text summarization, and image caption generation. BLEU scores

range from 0 to 1 with a higher score indicating a better translation

quality. The BLEU score also incorporates a brevity penalty to

penalize translations that are shorter than the reference text. The

driving factor behind the use of this penalty is that shorter

translations in addition to being easier to generate are more likely

to have a higher n-gram precision.

 Recall Oriented Understudy for Gisting Evaluation

(ROUGE) [22]: is a set of metrics used for evaluating automatic

summarization of texts as well as machine translations. It evaluates

the quality of summaries or translations by comparing them to a set

of reference summaries. It measures the overlap between the

generated summary and the reference summaries in terms of n-

gram matches and word sequences. ROUGE scores range from 0

to 1, with higher scores indicating better performance. Out of the

ROUGE score variations, we specifically use the ROUGE-L which

uses the Longest Common Subsequence.

II.4 REAL-TIME INFERENCE

For seamless communication in real-time scenarios,

achieving fast and efficient translation is crucial. We leverage

CTranslate2 [23], a custom C++ Transformer-specific inference

engine, to enable real-time deployment of our text-to-gloss

translation model. CTranslate2 offers a significant advantage by

having no runtime dependencies on TensorFlow or PyTorch. This

eliminates potential compatibility issues and streamlines

deployment. Additionally, CTranslate2 demonstrates optimized

inference capabilities, including CPU and GPU support, leading to

up to 4 times faster translation speeds compared to PyTorch [23].

This focus on real-time performance allows our model to be used

in applications like live captioning and educational settings,

providing greater inclusivity for the Deaf and hard-of-hearing

community.

III. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments,

which demonstrate the effectiveness of the transformer in text-to-

gloss translation tasks and provide valuable insights into the

performance of this model in this specific task. The results are

organized as follows: In the first subsection we introduce the

experimental setup used to run our experiments, then the dataset

subsection will provide more details about the dataset used for

training and benchmarking our models, and finally, a results

subsection that presents our consecutive hyper-parameter

exploration, followed by a model optimization section, before

finally presenting the performance results we share the obtained

optimal parameters of our final model.

III.1 EXPERIMENTAL SETUP

Our text-to-GLOSS transformer model was built using the

open source OpenNMT toolkit [24] with a pytorch backend [25].

The experiments were performed on a PC with an Intel Core I5

Page 103

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 99-111, January/February., 2025.

Central Processing Unit, an Nvidia RTX 3060 Graphics Processing

Unit, 16GB of Random-Access Memory, and an Ubuntu Operating

System.

Table 1: Text-to-Gloss Examples from the PHOENIX14T Dataset.

Text GLOSS

AM SAMSTAG IST ES WIEDER

UNBESTÄNDIG
SAMSTAG WECHSELHAFT

AUCH AM SAMSTAG

TEILWEISE FREUNDLICH .

SAMSTAG AUCH

FREUNDLICH

SONST SCHEINT VERBREITET

DIE SONNE .
SONST REGION SONNE

IM SÜEDOSTEN REGNET ES

TEILWEISE LÄNGER .
SUEDOST DURCH REGEN

Source: Authors, (2025).

Consistency in scoring methodologies is essential for

establishing reliable benchmarks and facilitating meaningful

comparisons between different models and research studies. The

use of standardized scoring scripts helps to mitigate discrepancies

in evaluation and ensures that the reported results are directly

comparable. For this purpose, we specifically selected the Moses

multi-bleu-detok.perl script for BLEU scoring, as it’s used

extensively used to report BLEU scores in research. To ensure a

uniform ROUGE scoring and an accurate ROUGE comparison

with other studies, we used HuggingFace’s rouge scoring script

which is a wrapper of Google Research’s native Python

implementation of ROUGE scoring.

III.2 DATASET

The PHOENIX-14T parallel text-to-GLOSS corpus [26]

was employed to assess the performance of our proposed model. It

is developed at RWTH Aachen University in Germany by the

Human Language Technology & Pattern Recognition Group as

part of the RWTH-PHOENIX-Weather 2014 corpus [27].

Table 2: PHOENIX14T Dataset Distribution.
 GLOSS TEXT

 Train Dev Test Train Dev Test

Sentences 7 096 519 642 7 096 519 642

Words 67 781 3 745 4 257 99 081 6 820 7 816

Vocabulary 1 066 393 411 2 887 951 1 001

Source: Authors, (2025).

The dataset encompasses German sign language

interpretation in the form of high-quality video recordings sourced

from daily weather forecasts and news from 2009 to 2011.

Additionally, the original German speech has been transcribed

using a combination of speech recognition and manual cleaning.

Manual GLOSS notation for German Sign Language (DGS) is

available for 386 editions of weather forecasts. Some examples of

the parallel text GLOSS dataset are provided in Table 1, and

detailed statistics of the dataset’s sentence, word, and vocabulary

count are provided in Table 2.

The PHOENIX14T dataset proves to be a valuable asset for

our research for several compelling reasons. Firstly, it is a non-

synthetic dataset, offering accurate interpretations in German Sign

Language (DGS) from professional interpreters. This authenticity

is important for developing a high-performing system that can

deliver accurate translations in uncontrolled environments.

Additionally, the dataset is widely utilized in the sign language

recognition and translation field, indicating its relevance and

reliability for training text-to-GLOSS translation systems.

Furthermore, its adoption facilitates the establishment of a

standardized evaluation for our proposed architecture through a

comparative analysis of our findings with state-of-the-art models.

Despite its relatively small size, the dataset is comprehensive,

offering a diverse range of linguistic and visual data for robust

model training and evaluation. This further solidifies its suitability

for the development of the text-to-GLOSS neural translation

system.

III.3 RESULTS

III.3.1 Hyper-parameter Exploration

In this subsection, we introduce a novel transformer-based

text-to-GLOSS translation architecture, considering the challenges

posed by the limited resource conditions of the task. Thanks to their

ability to capture contextual information and model long-range

dependencies, Transformers have demonstrated remarkable

success in various natural language processing tasks, especially in

NMT. However, while having considerable accomplishments in

NMT, their optimal utilization in the text-to-GLOSS translation

endeavor remains to be comprehensively explored. Achieving this

potential requires thorough hyper-parameter optimization, a vital

operation for achieving optimal performance in low-resource

scenarios.

Identifying the optimal Transformer architecture using grid

search for a comprehensive exploration of hyper-parameters can be

prohibitively expensive. Consequently, researchers resort to one of

two techniques: a random hyper-parameter exploration [28] or an

individual hyper-parameter grid search. While random search may

yield superior hyper-parameter combinations, it typically incurs a

greater time expense for a comprehensive exploration.

Alternatively, grid search, for a single hyper-parameter at a time,

only identifies the best value for the current hyper-parameter set,

which is unaltered even after adjusting other hyper-parameters.

This prompted us to adopt a consecutive hyper-parameter

exploration approach. This method remedies the aforementioned

downfalls by consecutively refining the model’s hyper-parameters

and not only relying on one round of optimization. The hyper-

parameter range outlined in Table 3 is used to carry out this

exploration.

Table 3: Explored hyper-parameter space.

Hyper-parameter Values

Warmup steps 100 200 300 400 500 600

Batch-size 256 512 1024 2048 4096

Attention heads 1 2 4 8

Number of layers 1 2 3 4 5 6 7

Embedding dimension 32 64 128

Feed-forward dimension 128 256 512

Dropout 0.1 0.2 0.3 0.4 0.5

Label smoothing 0.1 0.2 0.3 0.4 0.5 0.6

Source: Authors, (2025).

During the iterative process of consecutive hyper-parameter

exploration, a methodological approach is applied to refine the

transformer-based architecture. The methodology involves the

careful selection of an initial set of hyper-parameters, followed by

sequential optimization of each parameter. Each hyper-parameter

is individually addressed while keeping the others constant, and the

model’s performance on the selected dataset is assessed. The

results of the first optimization cycle are used to modify the hyper-

parameter values. Iteratively fine-tuning the model for each hyper-

parameter separately until there are no more gains in improvement

Page 104

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 99-111, January/February., 2025.

to the model’s output. By using this strategy of exploring hyper-

parameters sequentially, it is possible to have a thorough grasp of

how each hyper-parameter affects the performance of the model.

This iterative approach enables the development of an optimal

architecture, maximizing translation accuracy through the

application of the most effective hyper-parameter set.

III.3.2 Minimal Transformer Model Tuning

To identify the most effective optimizer for our hyper-

parameter exploration, we compared four commonly used

optimizers on an arbitrary minimal model. This model comprises a

single layer, a feed-forward dimension of 256, an embedding

dimension of 32, one attention head, a label smoothing of 0.6, and

a dropout rate of 0.3. All optimizers were configured with the same

learning rate of 1.

Figure 3: Comparative performance of stochastic optimizers on train and test sets for the minimal transformer model.

Source: Authors, (2025).

As can be observed in Figure 3, SGD and AdaDelta had the

worst performance, as they had the lowest train and test accuracy,

and the highest train and test perplexity. A logarithmic scale is

used on the perplexity plots to facilitate the visualization of their

progress, which was particularly necessary due to their

significantly poorer performance. Adam and AdaGrad had the

best results with Adam taking the lead with a higher train accuracy

and a lower train perplexity. And AdaGrad had a marginally

higher test accuracy and lower test perplexity.

Table 4: Comparison of ROUGE and BLEU scores for different

optimizers on the minimal transformer model.

OPTIMIZER ROUGE

BLEU

BLEU-1 BLEU-2 BLEU-3 BLEU-4

ADADELTA 1.75 16.5 0.0 0.0 0.0

SGD 12.08 22.7 4.8 3.3 0.0

ADAGRAD 48.14 55.6 23.3 11.5 6.3

ADAM 48.78 54.2 22.5 11.0 5.5

Source: Authors, (2025).

We report the best ROUGE and best BLEU-1 score

accompanied by the corresponding BLEU-2, BLEU-3, and

BLEU-4 scores of the resulting model’s performances for each

optimizer in Table 4. SGD and AdaDelta have the poorest

performance with AdaDelta having a BLEU-2, BLEU-3, and

BLEU-4 score of 0, and SGD having a BLEU-4 of 0.

This indicates that the model trained with the SGD

optimizer struggles to generate 4-gram sequences that match a 4-

gram sequence existing in the testing corpus, while the same can

be said about the model trained using the AdaDelta optimizer, but

in addition to 4-grams, the AdaDelta model fails to get matching

3-gram and 2-gram sequences too.

AdaGrad takes the lead when it comes to BLEU scores

with BLEU-1, BLEU-2, BLEU-3, and BLEU-4 of 55.6, 23.3,

11.5, and 6.3 respectively, but Adam has an apparent advantage in

terms of ROUGE scores with a 48.74 score. Stemming from these

results, we decided to adopt the Adam optimizer for training our

models and performing our hyper-parameters optimization.

Page 105

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 99-111, January/February., 2025.

Table 5: Dropout hyper-parameter exploration metrics.

METRICS
DROPOUT

0.1 0.2 0.3 0.4 0.5

BLEU-1 61.2 62.6 63.6 63.1 62.9

STEP 700 700 1000 7600 1000

ACCURACY 45.76 47.17 47.35 47.9 45.6

ROUGE 54.41 53.79 55.18 52.78 55.55

Source: Authors, (2025).

III.3.3 Fine-tuning Our Proposed Transformer Model

With the optimal optimizer identified in the first

experiment, we shifted our focus to constructing our Transformer-

based text-to-GLOSS model, in this subsection, we shed light on

the consecutive hyper-parameter exploration to then unveil our

final architecture. Our consecutive hyper-parameter exploration

was performed manually and using the BLEU-1 metric for scoring

the models and picking the best hyper-parameter in each run.

Table 5 presents the dropout BLEU-1 score of our last hyper-

parameter exploration run, in addition to the best BLEU-1 score

of each dropout, the table also shows the step at which the score

was obtained as well as the accuracy and the ROUGE score at that

step. The table reveals that despite having a slightly lower

accuracy on the test set, the dropout value of 0.3 yields the best

BLEU-1 score of 63.6, and reaches its optimal performance in the

1000th step. The results for the attention tuning run are also

provided in Table 6, a similar trend can be observed in the

attention heads tuning run where despite not having the best

accuracy, the model with 2 attention heads still yields a better

BLEU-1 score of 63.6 taking the lead in the attention tuning run,

it’s best performance was achieved at the 1000th step, with an

accuracy of 47.35.

Table 6: Attention heads hyper-parameter exploration metrics.

METRICS
ATTENTION HEADS

1 2 4 8

BLEU-1 62.5 63.6 63.1 61.4

STEP 800 1000 1500 2900

ACCURACY 47.53 47.35 47.72 47.88

ROUGE 54.22 55.18 54.56 53.96

Source: Authors, (2025).

The hyper-parameter optimization process took place until

the model’s parameters settled at the same value. The final hyper-

parameter set is depicted in Table 7. The final model reached a

training accuracy of 77.21, which translates to 47.35 test accuracy.

It also reached BLEU scores of 63.6, 28.5, 15.2, and 9.0 in BLEU-

1, BLEU-2, BLEU-3, and BLEU-4 respectively, and a ROUGE

score of 55.18. The best BLEU-1 score was obtained at the 1000th

training step, while the best ROUGE score was obtained at the

4900th step

Once our best-performing parameters were reached, the

final parameter set was used to perform an optimizer comparison.

Figure 4 illustrates the achieved performance metrics of the final

model using the four optimizers: Adam, AdaGrad, AdaDelta, and

SGD. The optimizers had the same parameters as the first

optimizers trial in conjunction with the model’s parameter set in

Table 7. When it comes to the train set performance, Adam is

clearly ahead of AdaGrad in both accuracy and perplexity.

Furthermore, even with AdaGrad having a closer performance to

Adam on the test set, Adam still takes the lead with a higher test

accuracy, and a lower test perplexity. Both SGD and AdaDelta

have significantly worse performance compared to Adam and

AdaGrad over both the train and the test set.

Figure 4: Comparative performance of stochastic optimizers on train and test sets for our proposed transformer model.

Source: Authors, (2025).

Page 106

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 99-111, January/February., 2025.

Figure 5: Performance metrics evolution of our proposed transformer-based model for

text-to-GLOSS translation during training.

Source: Authors, (2025).

Table 7: Optimal hyper-parameters for our proposed transformer

model.

Hyper-parameter Value

Warmup steps 300

Batch-size 4096

Attention heads 2

Number of layers 5

Embedding dimension 64

Feed-forward dimension 256

Dropout 0.3

Label smoothing 0.6

Source: Authors, (2025).

Table 8 presents the best ROUGE scores obtained from the

experiment and the best BLEU-1 score with the corresponding

BLEU-2 to 4 scores. From the results presented in the table, we can

observe that the AdaDelta optimizer has the worst scores, with 0.09

ROUGE and 0.0 in all BLEU scores. The SGD optimizer has

slightly better scores with 4.10 ROUGE, 13.5 BLEU-1, and 0.0

BLEU-2, BLEU-3, and BLEU-4. AdaGrad takes the second

position with 50.72 ROUGE, 57.8 BLEU-1, 23.3 BLEU-2, 11.6

BLEU-3, and 6.4 BLEU-4. Finally, the best-performing optimizer

is Adam with a significantly better score than AdaGrad. It has a

ROUGE score of 55.18, and its BLEU scores were 63.6, 28.5, 15.2,

and 9.0 for the BLEU-1, BLEU-2, BLEU-3, and BLEU-4

respectively. The results of the experiment clearly show that the

Adam optimizer is significantly better for our specific use-case of

text-to-GLOSS neural machine translation using a Transformer

architecture.

Table 8: Comparison of ROUGE and BLEU scores for different

optimizers in our proposed transformer model.

OPTIMIZER ROUGE

BLEU

BLEU-

1

BLEU

-2

BLEU

-3

BLE

U-4

ADADELTA 0.09 0.0 0.0 0.0 0.0

SGD 4.10 13.5 0.0 0.0 0.0

ADAGRAD 50.72 57.8 23.3 11.6 6.4

ADAM 55.18 63.6 28.5 15.2 9.0

Source: Authors, (2025).

III.3.4 Performance Evaluation and Comparative Analysis

Figure 5 shows the evolution of the ROUGE, BLEU, and

BLEU-1 to 4 performance metrics for our proposed model with

Adam optimizer on the test set during training. we can notice that

the models improve the most in the first thousand or so training

steps, then the performance only varies slightly in each evaluation,

these variations are more pronounced in the BLEU scores than the

ROUGE score.

Table 9: Comparison of ROUGE and BLEU scores for different

model architectures.

ARCHITECTU

RE

ROUG

E

BLEU

BLEU-

1

BLEU

-2

BLEU

-3

BLEU

-4

CNN 49.91 59.8 25.4 13.4 8.4

LSTM 46.27 51.1 17.8 7.3 3.3

GRU 25.90 31.0 5.7 0.9 0.2

OUR

PROPOSED

MODEL
55.18 63.6 28.5 15.2 9.0

Source: Authors, (2025).

To compare our system’s performance with other

architectures, we built several models with different architectures.

All the architectures were built using the default configuration of

the OpenNMT-py for translation. Three architectures were

constructed for this comparison: a CNN [29] model, an LSTM [30]

model, and a GRU [31] model. All the models have two encoder

layers, and two decoder layers, a hidden size of 500, and optimized

using the SGD optimizer. The CNN has a kernel width of 3. Table

9 presents the BLEU and ROUGE scores of all the evaluated

methods, out of the three tested architectures, the CNN takes the

first position with a ROUGE score of 49.91, and a BLEU-1, BLEU-

2, BLEU-3, and BLEU-4 of 59.8, 25.4, 13.4, and 8.4 respectively.

However, the table clearly demonstrates the transformer

architecture taking a lead in all scores with a 55.18 ROUGE score,

and 63.6, 28.5, 15.2, and 9.0 for the BLEU-1, BLEU-2, BLEU-3,

and BLEU-4 respectively.

Page 107

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 99-111, January/February., 2025.

Table 10: Comparison of ROUGE and BLEU scores for our

proposed approach with state-of-the-art methods on PHOENIX14T

corpus test set.

METHODS
ROUG

E

BLEU

BLEU

-1

BLEU

-2

BLEU

-3

BLEU

-4

RNN WITH

LUONG

ATTENTION

[7]

48.10 50.67 32.25 21.54 15.25

GRU WITH

BAHDANAU

ATTENTION

[8]

42.96 43.90 26.33 16.16 10.42

TRANSFORME

R [9]
54.55 55.18 37.10 26.24 19.10

OUR

PROPOSED

APPROACH
55.18 63.6 28.5 15.2 9.0

Source: Authors, (2025).

In Table 10 our model’s performance is compared to

previous studies. The PHOENIX-14T text-to-GLOSS dataset is

used to obtain the results. To provide a comprehensive overview of

the translation performance, both the best ROUGE score, and the

BLEU-1 to BLEU-4 scores are provided. Additionally, the

architecture of each system is provided. The highest BLEU score

achieved by our model is 19.04. Given that the BLEU-1 score is

employed in our hyper-parameter exploration, it exhibited the most

significant performance improvement when compared to

alternative systems. In regards to the BLEU-1 score, our model

outperforms all other approaches with a significant increase of 19.7

compared to [8], our model also outperforms the models suggested

in [7] and [9] by 12.93 and 8.42, respectively. For BLEU-2, BLEU-

3, and BLEU-4 scores, our model’s performance is on par with the

model in [8], with scores of 28.5, 15.2, and 9.0, respectively. Our

system outperforms both the GRU with attention proposed in [8]

and the Recurrent Neural Network (RNN) based architecture with

attention proposed in [7], with ROUGE score increases of 12.22

and 7.08, respectively. Our model also achieves a 0.63

improvement in ROUGE score, marginally outperforming the

Symbolic Transformer suggested in [9].

III.3.5 Performance Evaluation and Comparative Analysis.

In this subsection we present the benchmarking results for

our model’s inference using CTranslate2 on both CPU and GPU.

We evaluate the model’s inference performance based on three

metrics: time per token, sentence latency, and memory usage.

Figure 6 illustrates the comparison of these metrics across bot GPU

and CPU implementations.

The results reveal that the average time per token on the

CPU is 0.28 milliseconds, which is approximately three times

lower than the 0.86 millisecond observed on the GPU. Similarly

sentence latency on the CPU averages 1.69 milliseconds, whereas

on the GPU it is approximately three times higher with 5.09

milliseconds. Additionally, the CPU’s model memory usage is

around 8.37 MB, which is slightly lower than the 10MB recorded

on the GPU. These figures provide a clear comparison of the

performance between CPU and GPU implementations of the model

during inference.

IV. DISCUSSION

Our study aims to investigate the performance of optimizers

in the context of finding the most optimal transformer architecture

for the real-time text-to-GLOSS translation task. We hypothesize

that by initially exploring optimizers using a minimal model and

subsequently applying the insights gained to optimize a more

complex transformer architecture, we can obtain more insights into

optimizer performance in the text-to-GLOSS translation task

across different scenarios.

Figure 6: CPU and GPU performance metrics during model

inference.

Source: Authors, (2025).

Our study employs a two-phase experimental approach. In

the first phase, we conduct a comprehensive exploration of

optimizers using a minimal transformer model. The goal is to

identify the most effective optimizer through a comparative

evaluation of AdaDelta, SGD, AdaGrad, and Adam. Accordingly,

our model of choice featured a single feed-forward layer with a

dimension of 256, an embedding dimension of 32, one attention

head, a dropout rate of 0.3, and a label smoothing of 0.6. All

optimizers were configured with a learning rate of 1. This first

phase yielded significant insights into the performance and

adaptability of the optimizers on a minimal model in this specific

use case. Both AdaDelta and SGD resulted in a model with subpar

performance, with a ROUGE score of 1.75 and 12.08 respectively.

However, the AdaGrad and Adam optimizers achieved superior

results with 48.14, and 48.78 ROUGE respectively. Despite

AdaDelta being an extension of AdaGrad, it yields significantly

inferior performance in our specific testing conditions. The

observed performance discrepancy may stem from AdaDelta’s

limited adaptability to the intricacies of our text-to-GLOSS

translation task, suggesting potential challenges in generalizing its

optimization capabilities for this specific context. Subsequently,

the findings obtained from the optimizer screening phase guide the

subsequent hyper-parameter exploration, aiming to identify the

optimal transformer architecture in the second phase.

Our investigative approach emphasizes a sequential

optimization process. Initially, we analyze the optimizers in a

simpler context and subsequently apply the insights to guide the

hyper-parameter exploration for identifying the optimal

architecture. The hypothesis underscores the critical role of a well-

suited optimizer in attaining optimal convergence and ensuring

Page 108

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 99-111, January/February., 2025.

high translation quality, particularly in the complex task of text-to-

GLOSS translation using a transformer model.

To enhance the search for the optimal architecture, we

leverage the insights from the optimizer screening to guide the

exploration of hyper-parameters and model configurations.

Employing a consecutive hyper-parameter exploration technique

for Transformers. This process is used to address the excessively

intensive resource demand of an exhaustive parameter exploration

and the suboptimal performance obtained from a random parameter

search. Our optimization process starts with the selection of a

primary hyper-parameter set, with subsequent sequential

optimization of each parameter. During this process, one hyper-

parameter is altered at a time while maintaining the others fixed,

evaluating the model’s translation quality on the selected corpus.

Following that, hyper-parameter values are modified in accordance

with the outcomes of the first optimization run. This continual

process of fine-tuning proceeds for each hyper-parameter

individually until the model’s output no longer shows any signs of

progress.

In addition to comparing optimizers within the context of

the minimal model, our analysis extends to a larger and more

intricate transformer architecture. This broader comparison serves

the purpose of affirming the robustness and consistency of the

selected optimizer, ensuring that the insights obtained from the

initial experiment are applicable to a practical, real-world text-to-

GLOSS translation scenario. The increased complexity of the

larger model accentuates the performance distinctions observed

with each optimizer. AdaDelta and SGD yield ROUGE scores of

0.09 and 4.10, respectively, significantly lower than the scores

achieved in the smaller model. This outcome further reinforces our

hypothesis regarding the critical role of a well-suited optimizer

tailored to specific conditions. In contrast, AdaGrad demonstrates

a ROUGE score of 50.72, while Adam excels with a ROUGE score

of 55.18. This comparison within the larger model context

reinforces the reliability of the identified optimizer in delivering

high-quality results across diverse scenarios.

In the study by Choi et al. [32], the authors observed

significant variability in optimizer performance depending on the

workload. While some workloads exhibited comparable

performance across all tested optimizers, in other scenarios, there

were substantial differences leading to clear distinctions in both

predictive performance and training speed. Notably, the efficiency

of Adam was particularly evident, requiring significantly fewer

training steps than SGD to achieve the same target error on a

transformer architecture. Our findings resonate with this observed

performance difference, as SGD demonstrated notably reduced

effectiveness for our specific text-to-GLOSS translation task

compared to Adam. These results underscore the critical

importance of carefully selecting the appropriate optimizer tailored

to the unique characteristics of each workload or task. Several

studies have suggested that the suboptimal performance of SGD on

attention models can be attributed to heavy-tailed noise, as noted

in Zhang et al.’s work [33]. They propose that Adam’s success in

optimizing these models is linked to its resilience against outliers.

However, Chen et al. [34] challenge this notion. Backed by

controlled stochasticity experiments through varied batch sizes, the

study proposes that stochasticity and heavy-tailed noise might not

be significant contributors to the observed performance

discrepancy. Instead, it suggests that Adam-like methods utilize a

descent direction that is superior to the gradient, providing an

alternative explanation for their effectiveness. Using a consecutive

hyper-parameter exploration, we managed to find an optimal

Transformer architecture and significantly increase the translation

performance over the PHOENIX-14T dataset highlighting the

importance of finding a task-specific parameter set for achieving a

significant performance. This aligns with Araabi et al.’s study [10]

that shows through experimental evidence the performance

increase of a properly configured Transformer for low-resource

language conditions.

Following the optimizer comparison, we performed real-

time benchmarking to evaluate the model’s performance in

practical scenarios. The benchmarking results revealed that the

CPU outperformed the GPU in terms of time per token and

sentence latency for small models and short sentences.

Specifically, the CPU’s time per token was approximately three

times lower than that of the GPU, and sentence latency on the CPU

was about three times faster. Additionally, the CPU’s memory

usage was slightly lower than that of the GPU. These findings

suggest that for small models, CPUs offer a more efficient solution

compared to GPUs.

In the context of real-time inference, our results are

consistent with [35], who also observed better performance with

inference on CPU compared to GPU despite having a CPU with

less peak FLOP performance. Wu et al. reported that decoding their

model on CPU was 2.3 times faster than on GPU. They attributed

this discrepancy to the significant overhead caused by non-trivial

amount of data transfer between the host and the GPU at every

decoding step.

Overall, our findings provide a comprehensive

understanding of the optimization strategies and hardware

considerations crucial for maximizing the performance of neural

machine translation models. The evaluation of different optimizers

and hyper-parameter settings has revealed significant performance

gains, while the real-time benchmarking highlights the importance

of hardware choice, particularly the efficiency of CPUs for specific

tasks. These insights align with and extend existing research, and

contribute valuable knowledge to the field, guiding future research

and practical implementations.

V. CONCLUSIONS

This paper presents a novel transformer-based Neural

Machine Translation model specifically tailored for real-time text-

to-GLOSS translation. First, we provided a comprehensive

exploration of optimizers to identify the most optimal transformer

architecture for the text-to-GLOSS translation task. The initial

phase involved a comprehensive examination of optimizers using

a minimal transformer model. This phase revealed significant

variations in performance, with Adam emerging as a robust choice

for our specific use case reaching 48.78 ROUGE. Building upon

the optimizer screening phase, our consecutive hyper-parameter

exploration is used to fine-tune the search for the optimal

transformer architecture. The iterative process, sequentially

refining each hyper-parameter, supported our exploration of the

complex landscape of model configurations. This methodological

refinement proved essential in identifying an architecture that

significantly enhanced text-to-GLOSS translation performance

over the PHOENIX-14T dataset. The comparison of optimizers

extended to a larger and more intricate transformer architecture,

affirming the robustness of our selected optimizer, Adam, across

diverse scenarios. The performance distinctions observed in the

larger model context reinforced the hypothesis that the choice of

the optimizer, coupled with the right hyper-parameter set, plays a

pivotal role in achieving optimal convergence and translation

quality, particularly in complex tasks.

Page 109

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 99-111, January/February., 2025.

Furthermore, we show that our obtained model using these

techniques not only outperforms alternative architectures such as

CNN, LSTM, and GRU in both ROUGE and BLEU 1 to 4 scores,

but also outperforms state-of-the-art models not only on the

optimization target metric (BLEU1), but also on the ROUGE

metric, setting a new benchmark for text-to-GLOSS translation on

the PHOENIX-14T dataset with 63.6 BLEU1 and 55.18 ROUGE

scores further establishing the significance of our findings in the

field. In terms of real-time inference, our benchmarking results

indicate that for small models, the CPU significantly outperforms

the GPU, with the CPU achieving approximately three times lower

time per token and three times faster sentence latency. These

insights emphasize the importance of hardware considerations in

deployment, as optimizing for real-time performance can greatly

enhance the practical applicability of NMT systems. Our findings

hold great promise for diverse applications, ranging from education

to healthcare, offering enhanced accessibility through real-time

sign language translation for the Deaf and hard-of-hearing

community. By addressing specific challenges in sign language

translation, particularly the need for real-time processing, our

research paves the way for seamless and uninterrupted

communication, significantly improving inclusivity for the DHH

community.

VI. ACKNOWLEDGMENTS

We extend our sincere gratitude to Imane Lasri for their

invaluable comments and insightful suggestions that greatly

enhanced the quality and rigor of this article.

VII. AUTHOR CONTRIBUTIONS

Conceptualization: Younes Ouargani, Noussaima El Khattabi.

Methodology: Younes Ouargani.

Investigation: Younes Ouargani.

Discussion of results: Younes Ouargani, Noussaima El Khattabi.

Writing – Original Draft: Younes Ouargani.

Writing – Review and Editing: Younes Ouargani.

Resources: Younes Ouargani.

Supervision: Noussaima El Khattabi.

Approval of the final text: Younes Ouargani, Noussaima El

Khattabi.

VIII. REFERENCES

[1] M. Kay, “The proper place of men and machines in language translation,”

machine translation, vol. 12, pp. 3–23, 1997.

[2] P. F. Brown et al., “A statistical approach to machine translation,”
Computational linguistics, vol. 16, no. 2, pp. 79–85, 1990.

[3] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[4] A. Vaswani et al., “Attention Is All You Need,” arXiv:1706.03762 [cs], Dec.
2017.

[5] R. San-Segundo et al., “Speech to sign language translation system for Spanish,”
Speech Communication, vol. 50, no. 11, pp. 1009–1020, Nov. 2008, doi:

10.1016/j.specom.2008.02.001.

[6] A. Almohimeed, M. Wald, and R. I. Damper, “Arabic Text to Arabic Sign

Language Translation System for the Deaf and Hearing-Impaired Community,” in

Proceedings of the Second Workshop on Speech and Language Processing for

Assistive Technologies, N. Alm, Ed., Edinburgh, Scotland, UK: Association for

Computational Linguistics, Jul. 2011, pp. 101–109. Accessed: Jan. 25, 2024.
[Online]. Available: https://aclanthology.org/W11-2311

[7] S. Stoll, N. C. Camgoz, S. Hadfield, and R. Bowden, “Text2Sign: Towards Sign
Language Production Using Neural Machine Translation and Generative

Adversarial Networks,” International Journal of Computer Vision, vol. 128, no. 4,

pp. 891–908, Apr. 2020, doi: 10.1007/s11263-019-01281-2.

[8] M. Amin, H. Hefny, and A. Mohammed, “Sign Language Gloss Translation

using Deep Learning Models,” International Journal of Advanced Computer
Science and Applications, vol. 12, Jan. 2021, doi: 10.14569/IJACSA.2021.0121178.

[9] B. Saunders, N. C. Camgoz, and R. Bowden, “Progressive Transformers for
End-to-End Sign Language Production,” in Computer Vision – ECCV 2020, A.

Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds., in Lecture Notes in Computer

Science. Cham: Springer International Publishing, 2020, pp. 687–705. doi:
10.1007/978-3-030-58621-8_40.

[10] A. Araabi and C. Monz, “Optimizing Transformer for Low-Resource Neural
Machine Translation,” in Proceedings of the 28th International Conference on

Computational Linguistics, Barcelona, Spain (Online): International Committee on

Computational Linguistics, Dec. 2020, pp. 3429–3435. doi:
10.18653/v1/2020.coling-main.304.

[11] W. Hao, H. Xu, L. Mu, and H. Zan, “Optimizing Deep Transformers for
Chinese-Thai Low-Resource Translation,” in Machine translation, 2022, pp. 117–

126. doi: 10.1007/978-981-19-7960-6_12.

[12] Y. Ouargani and N. E. Khattabi, “Advancing text-to-GLOSS neural translation

using a novel hyper-parameter optimization technique.” 2023. Available:

https://arxiv.org/abs/2309.02162

[13] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” arXiv.org.

Dec. 2012.

[14] J. Kiefer and J. Wolfowitz, “Stochastic Estimation of the Maximum of a

Regression Function,” The Annals of Mathematical Statistics, vol. 23, no. 3, pp.
462–466, 1952.

[15] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization.”
arXiv, Jan. 2017. doi: 10.48550/arXiv.1412.6980.

[16] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization.” Journal of machine learning research, vol.

12, no. 7, 2011.

[17] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder

for Statistical Machine Translation.” arXiv, Sep. 2014.

[18] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly

Learning to Align and Translate.” arXiv, May 2016.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[20] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization.” arXiv, Jul. 2016.

[21] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A Method for

Automatic Evaluation of Machine Translation,” in Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, P. Isabelle, E. Charniak,

and D. Lin, Eds., Philadelphia, Pennsylvania, USA: Association for Computational

Linguistics, Jul. 2002, pp. 311–318. doi: 10.3115/1073083.1073135.

[22] C.-Y. Lin, “ROUGE: A Package for Automatic Evaluation of Summaries,” in

Text Summarization Branches Out, Barcelona, Spain: Association for
Computational Linguistics, Jul. 2004, pp. 74–81.

[23] G. Klein, F. Hernandez, V. Nguyen, and J. Senellart, “The OpenNMT Neural
Machine Translation Toolkit: 2020 Edition,” in Proceedings of the 14th Conference

of the Association for Machine Translation in the Americas (Volume 1: Research

Track), M. Denkowski and C. Federmann, Eds., Virtual: Association for Machine
Translation in the Americas, Oct. 2020, pp. 102–109.

[24] G. Klein, Y. Kim, Y. Deng, V. Nguyen, J. Senellart, and A. M. Rush,
“OpenNMT: Neural Machine Translation Toolkit.” arXiv, May 2018. doi:

10.48550/arXiv.1805.11462.

[25] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep

Learning Library,” in Advances in Neural Information Processing Systems, 2019.

Page 110

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 99-111, January/February., 2025.

[26] N. C. Camgoz, S. Hadfield, O. Koller, H. Ney, and R. Bowden, “Neural sign
language translation,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2018, pp. 7784–7793.

[27] O. Koller, J. Forster, and H. Ney, “Continuous sign language recognition:

Towards large vocabulary statistical recognition systems handling multiple

signers,” Computer Vision and Image Understanding, vol. 141, pp. 108–125, Dec.
2015, doi: 10.1016/j.cviu.2015.09.013.

[28] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.”
Journal of machine learning research, vol. 13, no. 2, 2012.

[29] A. Waibel, “Phoneme recognition using time-delay neural network.” 1989.
[30] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:

10.1162/neco.1997.9.8.1735.

[31] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the Properties

of Neural Machine Translation: Encoder-Decoder Approaches.” arXiv, Oct. 2014.

[32] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On

empirical comparisons of optimizers for deep learning.” 2020. Available:
https://arxiv.org/abs/1910.05446

[33] J. Zhang et al., “Why are adaptive methods good for attention models?”
Advances in Neural Information Processing Systems, vol. 33, pp. 15383–15393,

2020.

[34] J. Chen, F. Kunstner, and M. Schmidt, “Heavy-tailed noise does not explain

the gap between SGD and adam on transformers,” in 13th annual workshop on

optimization for machine learning, 2021.

[35] Y. Wu et al., “Google’s Neural Machine Translation System: Bridging the Gap

between Human and Machine Translation.” arXiv, Oct. 2016. doi:
10.48550/arXiv.1609.08144.

Page 111

