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Constraint Satisfaction Problems (CSP) are a fundamental mechanism in artificial 

intelligence, but finding a solution is an NP-complete problem, requiring the exploration of 

a vast number of combinations to satisfy all constraints. To address this, extensive research 

has been conducted, leading to the development of effective techniques and algorithms for 

different types of CSPs, ranging from exhaustive search methods, which explore the entire 

search space, to modern techniques that use deep learning to learn how to solve CSPs. This 

paper represents a descriptive and synthetic overview of various CSPs solving methods, 

organized by approach: systematic search methods, inference and filtering methods, 

structural decomposition methods, local search-based methods, and deep learning-based 

methods. By offering this structured classification, it presents a clear view of resolution 

strategies, from the oldest to the most recent, highlighting current trends and future 

challenges, there by facilitating the understanding and application of available approaches 

in the field. 
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I. INTRODUCTION 

 

Constraint Satisfaction Problems (CSPs) play a crucial 

role in various fields of computer science, artificial intelligence 

(AI), and operations research. These problems arise in scenarios 

where a set of variables must be assigned values that satisfy 

specific constraints. Applications of CSPs are diverse [1], ranging 

from activity and scheduling planning [2], to allocation problem 

[3]. Despite their widespread use, CSPs are inherently complex, 

often involving a large search space and intricate constraint 

interactions, making their resolution a challenging task. The 

formalization of CSPs provides a structured framework to model 

and solve these problems systematically. Since the foundational 

work by [4] in 1974, numerous approaches have been developed to 

tackle CSPs, each aiming to optimize the tree search for a solution, 

requiring the exploration of a vast number of combinations to 

satisfy all constraints. To address this challenge, a wide range of 

methods have been proposed, from traditional systematic search 

algorithms, such as backtracking (BT) and constraint propagation, 

to modern techniques that leverage deep learning to learn how to 

solve CSPs. This study’s objective is to provide a comprehensive 

overview of the current state of art CSP-solving methodologies, 

highlighting their strengths, limitations, and suitability for different 

types of CSPs. By examining these approaches, we aim to shed 

light on the evolution of CSP-solving strategies and propose a 

structured classification that aids in understanding and selecting 

appropriate methods for solving CSP problem. Although a number 

of studies have already proposed classifications. In [5] the author 

presented a survey on general CSP resolution techniques and 

classifed them on finite domain techniques and infinite domain 

techniques. In [6], they classified the resolution methods in two 

mains groupe, complete resolution methods and incomplete 

resolution methods. Then we have [7], the authors in their study 

classified CSP resolution methods based on practical applications 

like scheduling and planning, They emphasize that constraint 

satisfaction approaches, especially search and constraint 

satisfaction algorithms, are favored in AI for addressing complex 

combinatorial issues. 
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In this study, we build on these existing classifications to provide 

a more detailed and up-to-date overview of CSP solving methods, 

focusing on the latest trends and developments in the field. By 

presenting a structured classification of CSP-solving techniques, 

we aim to offer a clear and comprehensive view of the available 

approaches, from traditional methods to modern deep learning-

based techniques. The main contributions of this paper are as 

follows: 

• A comprehensive overview of CSP-solving methods, 

organized by approach, including systematic search methods, 

inference and filtering methods, structural decomposition methods, 

local search-based methods, and deep learning-based methods. 

• A detailed analysis of each category, highlighting the 

main algorithms and techniques used to solve CSPs, their strengths, 

limitations, and applications. 

• A structured classification of CSP-solving methods, 

providing a clear view of the evolution of resolution strategies, 

from traditional to modern approaches, and highlighting current 

trends and future challenges in the field. 

 The remainder of this paper is organized as follows: 

Section II presents the preliminary definitions of CSPs, including 

the formal definition of a CSP, CSP constraints, CSP instantiation, 

and CSP solution. Section III introduces the classification of CSP-

solving methods, categorizing them into five main categories: 

Systematic Search Methods, Inference and Filtering Methods, 

Structural Decomposition Methods, Local Search Based Methods, 

and Deep Learning Based Methods. Sections IV to VIII provide an 

in-depth analysis of each category, detailing the methods used to 

solve CSPs, their approaches, and applications. Finally, Section IX 

concludes the paper, summarizing the main findings and discussing 

future research directions. 

 

II. PRELIMINARY DEFINITIONS 

In this section, we present the fundamental definitions of 

Constraint Satisfaction Problems (CSPs), including the formal 

definition of a CSP, CSP constraints, CSP instantiation and CSP 

solution. 

II.1 CONSTRAINT SATISFACTION PROBLEM 

A CSP is define as a set of variables, with associated 

domains, and a set of constraints. Each constraint is defined on a 

subset of the set of variables and limits the combinations of values 

that these variables can take.  

The formal definition of a CSP was introduced by Montanari [4], a 

CSP is defined by <  𝑋, 𝐷, 𝐶 >, where:  

• 𝑋 =  {𝑋1, 𝑋2, . . . , 𝑋𝑛} is a set of 𝑛 variables, 

• 𝐷 =  {𝐷1, 𝐷2 , . . . , 𝐷𝑛} is a set of finite domains, each 

variable 𝑋𝑖 takes its value from its domain 𝐷𝑖 , 

• 𝐶 =  {𝐶1, 𝐶2, . . . , 𝐶𝑚} is a set of 𝑚 constraints. Each 

constraint 𝐶𝑖 is a pair (𝑆𝑐𝑜𝑝𝑒(𝐶𝑖), 𝑅𝑒𝑙(𝐶𝑖)) where 

𝑆𝑐𝑜𝑝𝑒(𝐶𝑖)  ⊆  𝑋 is a list of variables, called the scope of 𝐶𝑖 

and 𝑅𝑒𝑙(𝐶𝑖)  ⊆ ∏𝑋𝑘∈𝑆𝑐𝑜𝑝𝑒(𝐶𝑖)𝐷𝑘 (subset of the cartesian 

product) is the relation of 𝐶𝑖 that indicates the valid 

combinations of values for the variables in 𝑆𝑐𝑜𝑝𝑒(𝐶𝑖).where 

each constraint 𝐶𝑖 is a relation between a subset of variables. 
 

II.2 CONSTRAINTS 

Constraints in the context of CSPs can be expressed in 

different ways: in extension, by presenting the set of tuples 

authorised, forbidden, or in intention, by giving mathematical 

formulae. 

The structure of the problem to be solved is difined by the 

relation between the variables. 

The size of 𝑆𝑐𝑜𝑝𝑒(𝐶𝑖) is called the arity of 𝐶𝑖 , and 

constraints can be classified within its arity into different 

categories: 

• Unary constraints: constraints that involve a single 

variable, 𝑋1  ≠  𝑅𝑒𝑑, 
• Binary constraints: constraints that involve two variables, 

𝑋1 ≠ 𝑋2,  

• N-ary constraints: constraints that involve more than two 

variables, 𝑋1  +  𝑋2  <  𝑋3. 

 

II.3 INSTANTIATION AND CONSTANCY 

An instantiation 𝐼 of a subset of variables denoted by 𝑋𝑖  is 

an ordered set of assignments: 

𝑋𝑖 = {𝑥𝑖  , . . . , 𝑥𝑘}  ⊆  𝑋       (1) 

𝐼 =  {[(𝑥𝑖  =  𝑣𝑖), ⋯ , (𝑥𝑘  =  𝑣𝑘)]|𝑣𝑗  ∈  𝐷(𝑥 −  𝑗)}  (2) 

The variables assigned on an instantiation 𝐼 are denoted 𝑣𝑎𝑟𝑠(𝐼)  

𝐼 =  [(𝑥𝑖  =  𝑣𝑖), ⋯ , (𝑥𝑘  =  𝑣𝑘)]     (3) 

𝑣𝑎𝑟𝑠(𝐼)  =  {𝑥𝑖  , ⋯ , 𝑥𝑘}       (4) 

 If 𝐼 instantiates all the variables of the problem, it is called 

a full instantiation (i.e., 𝑣𝑎𝑟𝑠(𝐼)  =  𝑋 ).  

 An instantiation 𝐼 satisfies a constraint 𝑐𝑖𝑗  ∈  𝐶 if and 

only if the variables involved in 𝑐𝑖𝑗  (𝑖.𝑒., 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 ) are assigned 

in 𝐼. Formally: 
 

• 𝐼 satisfies  𝑐𝑖𝑗   iff 

 

 (𝑥𝑖  =  𝑣𝑖) ∈  𝐼 ∧  (𝑥𝑗  =  𝑣𝑗) ∈  𝐼 ∧  (𝑣𝑖 , 𝑣𝑗) ∈  𝑐𝑖𝑗     (5) 

 An instantiation 𝐼 is locally consistent iff it satisfies all of 

the constraints whose scopes have no uninstantiated variables in 𝐼. 

𝐼 is also called a partial solution.  

Formally, 𝐼 is locally consistent iff  

∀𝑐𝑖𝑗  ∈  𝐶 | 𝑠𝑐𝑜𝑝𝑒(𝑐𝑖𝑗  )  ⊑  𝑣𝑎𝑟𝑠(𝐼), 𝐼 satisfies 𝑐𝑖𝑗         (6) 

II.4 SOLUTION 

A solution to a CSP is a full instantiation that satisfies all 

the constraints of the problem. 

 Formally, a solution 𝐼 is a full instantiation that satisfies 

all the constraints of the problem, i.e., 

 ∀𝑐𝑖𝑗  ∈  𝐶, 𝐼 satisfies 𝑐𝑖𝑗  . 

Solving a CSP could mean to find existence or nonexistence of a 

solution, if it existes find : 

• One solution, without preference as to which one, 

• all solutions, 

• an optimal, or at least a good solution. 

II.5 EXAMPLE OF CSP 

A CSP can be represented by intention, by giving the 

constraints in a mathematical form, or by extension, by giving the 

set of tuples authorised or forbidden. 

Consider the following CSP instance represented by intention as 

follows: 

 𝑋 =  {𝑋1, 𝑋2, 𝑋3}, 𝐷 =  {𝐷1, 𝐷2, 𝐷3}, 𝐶 =  {𝐶1, 𝐶2}, where:  
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• 𝑋1, 𝑋2, 𝑋3 are variables,  

• 𝐷1  =  {1, 2, 3}, 𝐷2  =  {1, 2}, 𝐷3  =  {1, 2, 3} are the 

domains of the variables, 

• 𝐶1  =  {(𝑋1  +  𝑋2)  <  (𝑋3  −  𝑋2  +  2)}, 𝐶2  =  {(𝑋1  +
 𝑋3  <  4)} are the constraints. 

 The same CSP can be represented by extension as follows:  

• 𝑋1, 𝑋2, 𝑋3 are variables, 

• 𝐷1 =  {1, 2, 3}, 𝐷2 =  {1, 2}, 𝐷3 =  {1, 2, 3} are the 

domains of the variables, 

• 𝐶1  =  {(1, 1, 2), (1, 1, 3), (1, 2, 3), (2, 1, 3)}, 𝐶2  =
{ (1, 1), (1, 2), (2, 1)} are the constraints. 

The solution to this CSP is the full instantiation: 

 𝐼 =  {(𝑋1  =  1), (𝑋2  =  1), (𝑋3  =  2)}, which satisfies all the 

constraints. 
 

III. CLASSIFICATION PROPOSAL 

 In this paper, we review some relevant existing literature 

methods used to solve CSPs and propose a classification that 

categorizes the cited works into two main levels, where:  

• The first level is divided into five main categories: 

Systematic Search Methods, Inference and Filtering Methods, 

Structural Decomposition Methods, Local Search Based Methods, 

and Deep Learning Based Methods. 

• The second level is divided into subcategories, which 

are further divided into specific methods.  

 This classification offers a more detailed view of the cited 

methods and facilitate understanding of the different approaches 

used to solve CSPs. In what follows, following the classification 

giving in Figure 1, we present and describe in section IV to VII the 

different categories of methods used to solve CSPs which constitue 

the first level of the proposed classification. 
 

IV. SYSTEMATIC SEARCH METHODS 

Systematic Search Methods for solving CSPs are 

approaches that explore the solution space in a structured way in 

order to find value assignments that satisfy all the constraints 

imposed. These methods generally apply an exhaustive search 

strategy and may include various optimisations to improve 

efficiency and avoid unnecessary search paths. In what follows, we 

present the main algorithms used in systematic search methods to 

solve CSPs. 

 
Figure 1: Classification of the CSP solving methods  

Source: Authors, (2024). 

IV.1 BACKTRAKING 

Backtracking (BT) [8] is a systematic search technique 

which explores all possible combinations of values for variables, 

thus covering the entire solution space. The principle of the BT 

algorithm consists of instantiating a new variable at each stage to 

progressively extend an initially empty partial assignment. With 

each addition, a consistency test is performed to check that the 

assignment respects the constraints. 

 In the event of inconsistency, the assignment is reset, and 

the algorithm returns chronologically to the last consistent partial 

instantiation. A new instantiation is then attempted by modifying 

the value of the last variable. Once all the variables in a constraint 

have been instantiated, the validity of the constraint is checked. If 

a partial instantiation violates a constraint, the process returns to 

the most recently instantiated variable with available alternatives. 

In this way, each constraint violation eliminates part of the space 

of possible solutions, reducing the Cartesian product of variable 

domains. 

 BT performs a depth-first search of the space of potential 

solutions to CSPs. This process guarantees the consistency of the 

solution and optimises the search time by immediately stopping 

any iteration that does not lead to a valid solution. Although BT is 

generally performed on a single variable, it can sometimes involve 

several variables. The advantage of the BT algorithm lies in its 

exhaustive exploration of the search space, ensuring that if a 

solution exists, it will be found, or confirming its nonexistence. 

However, this thorough traversal results in an exponential time 

complexity, as nearly the entire search space must be examined. 

 The BT is the foundational approach for solving CSPs, 

providing the essential framework on which many advanced 

techniques are built. Each subsequent method adapts and optimizes 

backtracking principles to improve search efficiency like using 

variable ordering heuristics to improve BT algorithm [10-12].  

 According to [9] is one of the primary enhancements, 

introducing mechanisms to bypass unnecessary steps and adjust 

variable assignments dynamically for faster resolution.  

 

IV.2 BACKJUMPING 

Backjumping algorithm (BJ) [9] is an intelligent variant 

of the BT algorithm, it is an improvement on the BT algorithm that 

optimises the search by avoiding unnecessary revisiting of subtrees 

in the solution space. Unlike traditional BT, which goes back to the 

last instantiation point in the event of failure, BJ identifies the 

precise variable at the origin of the conflict and goes directly back 

to an earlier variable in the tree, closer to the root. This technique 

is used to avoid re-examining the same sub-tree multiple times. The 

advantage of the BJ algorithm is that the approach saves and reduce 

the search time by jumping over irrelevant intermediate 

instantiations, which is particularly beneficial when the search 

space is vast and the constraints are complex.  

 However, the BJ algorithm is not always able to identify 

the variable at the origin of the conflict, which can lead to a less 

efficient search and the time complexity is also exponential. 

IV.3 FORWARD CHEKING 

Forward cheking (FC) described by [13] as a systematic 

search technique that extends the BT algorithm by adding a 

consistency check to the partial assignment of variables. It works 

by reducing the domains of variables by eliminating values that are 

incompatible with those already instantiated. When a variable is 

assigned, the FC tests the compatibility of this assignment with 
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subsequent variables and deletes values in domains that would 

conflict with this new instantiation. This means that each domain 

available after filtering only contains values compatible with the 

current instantiations. The advantage of forward checking (FC) is 

considered to be its ability to anticipate conflicts and thus reduce 

the search space. It increases search efficiency by avoiding 

numerous unnecessary backtracks, making it a notable 

improvement in complex and constrained search environments. 

Although FC is useful for anticipating and reducing conflicts, it can 

sometimes be costly and less effective for low-constraint problems 

or in the absence of appropriate heuristics. 

 One of the recent application of FC [14] used to simulate 

the multi-point statistical properties of some synthetic training 

images, the results show that no anomalies occurred in any of the 

produced realizations and also show that the presence of hard data 

does not degrade the quality of the generated realizations. 

 

V. INFERENCE AND FILTERING METHODS 

To improve the Systematic Search Methods, several 

techniques and strategies of constraint propagation have been 

proposed wich can be classifed as prospective strategies used to 

choose the variable to be assigned a value and retrospective 

strategies used to choose the value to be assigned to the variable. 

Constraint propagation techniques are used to anticipate the effects 

of partial assignments on the domains of uninstantiated variables. 

By filtering out the domains of values that are incompatible with 

the constraints, they reduce the search space and avoid unnecessary 

exploration of combinations with no solution. Constraint 

propagation thus eliminates redundant values and reduces the size 

of the problem. When a reduction results in an empty domain, this 

indicates that there is no solution for the given instance. this 

technique, while beneficial, need to be balanced to avoid excessive 

computational cost in relation to search performance gains. 

 These techniques are often combined with Systematic 

Search Methods to improve resolution time. The most common 

constraint propagation techniques are described below: 

V.1 ARC CONSISTENCY  

Arc consistency (AC) defined in [15] for binary 

constraints then extended to non-binary constraints, is a constraint 

propagation technique that aims to reduce the search space by 

eliminating incompatible values in the domains of the variables in 

a binary constraint. It ensures that for every value in the domain of 

one variable, there is a corresponding value in the domain of the 

second variable, thus satisfying the constraint. This process 

examines each constraint and removes incompatible values from 

the domains. 

 By improving domain consistency, AC makes searching 

more efficient. However, its application can be costly, with 

exponential complexity in the most difficult cases, as it must 

evaluate all possible combinations of values. 

V.2 PATH CONSISTENCY 

Path Consistency (PC) [4] is an enhanced form of 

constraint consistency that extends the concept of AC. A CSP is 

path-consistent if any consistent assignment between two variables 

can be consistently extended to a third. In other words, for every 

value of a variable, there is a corresponding value in the domains 

of the other variables satisfying the constraint. 

This process improves domain consistency by removing 

incompatible values, making the search more efficient. However, 

PC is computationally expensive, with exponential complexity in 

difficult cases, as it must examine all possible combinations of 

values.   

V.3 MAINTAINING ARC CONSISTENCY  

Maintaining Arc Consistency (MAC) [16] is a constraint 

propagation technique designed to maintain the consistency of 

variable domains throughout the search. It removes incompatible 

values at each stage, reducing the search space and avoiding 

unnecessary exploration of combinations with no solution. In the 

MAC algorithm, the search space is structured as a binary tree, 

where each node represents a decision based on the assignment or 

exclusion of a value for a variable. Ordering heuristics are used to 

select variables and values, improving search efficiency. Although 

MAC optimises the search by making domains more consistent, it 

can be computationally expensive in the most complex cases. 

VI. STRUCTURAL DECOMPOSITION METHODS 

Structural decomposition methods divide a complex 

problem into simpler sub-problems, based on the structure of a 

constraint graph. By grouping variables and constraints into tree-

like clusters, they limit interdependencies and simplify 

computation. 

 A CSP instance <  𝑋, 𝐷, 𝐶 > have constraint hypergraph 

ℋ =  (𝑉, 𝐸), where 𝑉 =  𝑋 and 𝐸 =  𝐶. The structural 

decomposition methods are used to decompose the hypergraph ℋ 

into simpler sub-problems. 

 These techniques transform the problems into equivalent 

but simpler sub-problems, making them more efficient to solve.  

The most common structural decomposition methods are described 

below. 

VI.1 TREE DECOMPOSITION  

Tree decomposition (TD) [17] is a structural decomposition 

method that divides a constraint graph into clusters forming a tree 

structure, where each cluster contains variables and constraints. 

The width of the decomposition is defined by the size of the largest 

cluster, simplifying the problem by making it more accessible. This 

approach is particularly useful for tree-structured CSPs, as it 

reduces search complexity. Although effective, it can be costly in 

very complex cases, but it remains widely used for its simplicity 

and effectiveness on tree graphs. 

 Formally, a TD [17] of a graphed 𝐺 =  (𝑉, 𝐸) is a pair 

⟨𝑇, 𝜒⟩ where 𝑇 =  (𝑁, 𝐹) is a tree and 𝜒 is a labelling function that 

assigns to each node 𝑡 ∈  𝑁 a subset of vertices 𝜒(𝑡)  ⊆  𝑉 called 

the bag of 𝑡 such that: 

∀𝑣 ∈  𝑉, ∃𝑡 ∈  𝑁 | 𝑣 ∈  𝜒(𝑡),                                          (7) 

∀𝑒 =  {𝑢, 𝑣}  ∈  𝐸, ∃𝑡 ∈  𝑁 | {𝑢, 𝑣}  ⊆  𝜒(𝑡),               (8) 

∀𝑣 ∈  𝑉, {𝑡 ∈  𝑁 | 𝑣 ∈  𝜒(𝑡)}                                          (9) 

 

(9) induces a connected subtree of 𝑇. 

 The 𝑤𝑖𝑑𝑡ℎ of aTD is equal to 𝑚𝑎𝑥𝑡∈𝑁 (|𝜒(𝑡)|)  − 1, 
treewidth of a graph is the minimum width over all its tree 

decomposing.  

 The advantage of TD is that it simplifies the problem by 

grouping variables and constraints into tree-like clusters. This 

method is particularly useful for problems with a tree-like 

structure, as it reduces the complexity of the search. However, TD 

can also be computationally expensive in the most complex cases. 

To exploit this technique for solving CSPs, several algorithms have 

been proposed in the literature, the most popular being: BT on Tree 

Decomposition (BTD) [18], that proceeds by an enumerative 
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search guided by a static pre-established partial order induced by a 

tree decomposition of the constraint network. 

VI.2 JOIN TREE DECOMPOSITION  

A Join tree [19], is a structural decomposition method that 

divides a constraint graph into tree-like clusters called cliques. 

Each clique contains a set of variables and constraints, forming a 

hierarchical tree structure. The width of the junction tree 

decomposition is determined by the size of the largest clique. 

 A join tree decomposition of a hypergraph ℋ is a triplet 

⟨𝑇, 𝜒, 𝜆⟩ where 𝑇 =  (𝑁, 𝐹 ) is a tree, 𝜒 is a labelling function that 

assigns to each node 𝑡 ∈  𝑁 a subset of vertices 𝜒(𝑡)  ⊆  𝑉 called 

the bag of 𝑡, 𝜆 is a labelling function that assigns to each edge 𝑒 ∈
 𝐹 a subset of vertices 𝜆(𝑒)  ⊆  𝑉 called the bag of 𝑒, such that: 

 ∀𝑣 ∈  𝑉, ∃𝑡 ∈  𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑣 ∈  𝜒(𝑡),                      (10) 

 ∀𝑒 ∈  𝐹, ∃𝑡 ∈  𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜆(𝑒)  ⊆  𝜒(𝑡),                (11) 

 ∀𝑣 ∈  𝑉, {𝑡 ∈  𝑁 | 𝑣 ∈  𝜒(𝑡)}                                        (12) 

induces a connected subtree of 𝑇 , 

 ∀𝑒 ∈  𝐹, 𝜆(𝑒)  =
⋂ 𝑡∈𝑁 |𝜆(𝑒)⊆𝜒(𝑡) 𝜒(𝑡),                          (13) 

 ∀𝑒 ∈  𝐸, ∃𝑡 ∈  𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑒 ⊆  𝜒(𝑡).                      (14) 

 This technique simplifies complex problems by 

decomposing them into manageable clusters, making them easier 

to solve. 

 It is particularly advantageous for problems with a tree 

structure, as it reduces the complexity of the search. However, 

junction tree decomposition can become computationally 

expensive in the most complex cases. A classic algorithm for 

solving CSPs using join tree decomposition is the arc-consistency 

propagation algorithm on join trees, often known as the clique tree 

propagation algorithm [19]. This algorithm leverages the join tree 

structure to manage sets of constraints using cliques as 

computational units. 

 The main advantage of join tree decomposition is that it 

exploits redundant relationships and inferences through a 

simplified tree structure. This reduces the complexity of algorithms 

by minimising the size of the search space. In particular, it 

improves the efficiency of solution methods such as BT and 

optimisation algorithms by providing a better structure for 

constraint propagation. 

 However, its limitations include an exponential 

complexity related to the width of the tree and difficulty in finding 

an optimal decomposition for complex CSPs. This may restrict its 

application to large or highly connected problems. 

VI.3 GENERALIZED HYPERTREE DECOMPOSITION 

The Generalised Hypertree Decomposition (GHD)[20] is 

a structural decomposition method that segments a constraint graph 

into clusters organised in the form of hypertrees, each hypertree 

grouping a set of variables and constraints into a tree structure. The 

width of the decomposition is defined by the size of the largest 

hypertree. This method simplifies complex problems by 

decomposing them, making them easier to solve.  The GHD 

[21] of a hypergraph ℋ is formally defined as a hypertree ⟨𝑇, 𝜒, 𝜆⟩ 
of ℋ, wich satisfies the following properties: 

 

• For each edge ℎ ∈ 𝐸, there exists 𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇) such 

that:                              𝑣𝑎𝑟(ℎ) ⊆ 𝜒(𝑝)                                (15) 

•  

• For each vertex 𝑣 ∈ 𝑉, the set  

{𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑇)|𝑣 ∈ 𝜒(𝑝)}                                        (16)   

induces a connected subtree of 𝑇; 

• For each vertex  

𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇), 𝜒(𝑝) ⊆ 𝑣𝑎𝑟(𝜆(𝑝))                          (17) 

 

•  For each vertex  

𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇), 𝑣𝑎𝑟(𝜆(𝑝)) ∩ 𝜒(𝑇𝑝) ⊆ 𝜒(𝑝)         (18) 

The width of a hypertree 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ is equal to 

𝑚𝑎𝑥 𝑝∈𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑇)|𝜆(𝑝)|.The hypertree-width (ℎ𝑤(ℋ)) of a 

hypergraph ℋ is the minimum width over all its hypertree 

decompositions. 

 A hyperedge ℎ of a hypergraph ℋ = ⟨𝑉, 𝐸⟩ is strongly 

covered in 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ if there exists 𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇) such that 

the vertices of ℎ are contained in 𝜒(𝑝) and ℎ ∈ 𝜆(𝑝). 

 A hypertree decomposition 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩  of a 

hypergraph ℋ is complete if every hyperedge ℎ of ℋ is strongly 

covered in 𝐻𝐷.  

 A hypertree 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ is called a Generalized 

Hypertree Decomposition (GHD), if the conditions (15), (16) and 

(17) hold. The width of a Generalized Hypertree Decomposition 

𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ is equal to 𝑚𝑎𝑥 𝑝∈𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑇)|𝜆(𝑝)|. The 

generalized hypertreewidth (𝑔ℎ𝑤(ℋ )) of a hypergraph ℋ is the 

minimum width over all its generalized hypertree decompositions. 

 Several approaches have been developed in order to 

exploit GHD for solving CSPs, In [22], it was used to evaluate 

conjunctive queries (CQs) and solve CSP.  

 GHD is particularly useful for problems with a tree 

structure. However, in complex cases, constructing the GHD can 

be computationally expensive, particularly due to the size and 

flexibility of the hypertrees in multivariate representations. The 

problem of updating the decomposition of a CSP is resolved in [23] 

where they propose and implement a framework for effectively 

update a GHD. Moreover, in [20], authors proposed parallel 

algorithms to compute GHDs efciently for a wide range of CSPs. 

VII. LOCAL SEARCH BASED METHODS  

Local search based methods [24] are techniques designed to 

find an acceptable solution to a CSP by exploring the solution space 

from an initial (often partial) solution and progressively modifying 

it through local adjustments to reduce the number of unsatisfied 

constraints. These algorithms include methods such as Min-

Conflicts [25], which adjust an assignment to satisfy a set of 

constraints by choosing a variable associated with an unsatisfied 

constraint and assigning it a value that minimizes the number of 

remaining unsatisfied constraints. By exploring the neighborhood 

of a solution incrementally, local search methods navigate the 

space of nearby solutions, making them particularly effective for 

large and constrained search spaces where exhaustive exploration 

is impractical. 

 Recent research in local search methods for CSPs 

demonstrates the adaptability of these techniques in solving 

complex and specialized problems. In [26] , local search is used to 

handle incomplete fuzzy CSPs, allowing for solutions that 

minimize constraint violations in situations with uncertainty and 

flexible constraints. This approach is especially effective in cases 

where constraints are not fully defined or have degrees of 

satisfaction. Moreover in [27] focuses on optimizing costly 

industrial processes through a derivative-free local search method, 

adapted for "black-box" problems with high evaluation costs, 

applied to refining the start-up optimization of a production plant. 
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Both studies highlight the adaptability of local search techniques in 

managing complex, constrained environments and enhancing 

solution efficiency. 

VIII. DEEP LEARNING BASED METHODS 

Deep learning methods have been proposed to solve CSPs 

by leveraging the power of neural networks to learn patterns and 

make predictions.These methods use deep learning models to 

predict the values of variables and constraints, optimising the 

search process and improving the resolution of CSPs. 

Deep learning methods have been applied to various types of CSPs, 

including scheduling, planning, and optimisation problems. They 

have been used to predict the values of variables and constraints, 

optimising the search process and improving the resolution of 

CSPs. 

VIII.1 SUPERVISED LEARNING METHODS 

Supervised machine learning [28] is a machine learning 

method where a model is trained on labeled data, meaning 

examples for which the expected answers are known. This process 

involves using the labeled data to learn relationships between 

inputs and outputs, allowing the model to "learn" the relationship 

between them. Based on known patterns, they generate a model 

capable of making accurate predictions on new data. 

 The supervised leaning methods have been applied in the 

context of CSPs by learning from labelled data and identifying 

optimal solution configurations, thus guiding research towards 

more efficient and reliable solutions for solving CSPs. 

 Among the supevised leaning methods used to solve 

CSPs, [29] uses a Convolutional Neural Network (CNN) on binary 

boolean CSPs to predict the satisfiability of CSPs, it includes 

domain adaptation and data augmentation techniques to handle the 

sparsity of labelled data. [30] uses a supervised model to learn how 

to optimise the ordering of variables in a search tree, reducing the 

depth of searches in CSPs and making resolution more efficient, 

[31] creates a general framework for selecting the optimal 

algorithm for each type of CSP, based on supervised learning 

models that analyse past performance and adjust algorithms 

accordingly [32] apply the Recurrent Transformer to learn how to 

solve CSPs. This approach offers an alternative to Graphical 

Neural Networks (GNNs) and neuro-symbolic models by 

effectively capturing constraints, especially for visual CSP 

problems. 

VIII.2 UNSUPERVISED LEARNING METHODS 

Unsupervised machine learning [33] is a machine learning 

method where the model is trained on unlabeled data, where only 

the inputs are available without any expected answers. The goal is 

to uncover hidden structures or underlying patterns within the data. 

It detect structures or patterns in data without the use of labels or 

pre-labelled examples, by learning to group similar data or reduce 

data dimensionality, the model builds a representation that can 

reveal useful patterns.  

 These methods have been applied to various types of CSP, 

such as planning, scheduling and optimisation problems. Various 

unsupervised learning methods have been used to solve CSPs, [34] 

uses a Deep Neural Network (DNN) agnostic model with no prior 

knowledge of specific constraints, allowing possible solutions to 

be explored using an agnostic approach that learns from experience 

about the structures of CSPs, in [35] used GNN and exploits their 

power to understand and exploit the connections between nodes in 

a CSP graph, improving the representation of constraints and 

helping to define efficient global heuristics for solving them. 

 VIII.3. REINFORCEMENT LEARNING METHODS  

Reinforcement Learning (RL) [36] is an approach where an 

agent learns through direct interactions with an environment, 

receiving rewards or penalties based on its actions. The objective 

is to optimize the agent’s strategy to maximize cumulative rewards 

over time. Unlike supervised methods, there is no immediate 

correct answer for each situation. The agent explores and adjusts 

its choices based on the feedback it receives. 

 In the context of CSPs, RL can be used to improve search 

heuristics or dynamically adapt solving strategies, such as the 

choice of variables or values. RL can help prioritise tasks or 

optimise assignments according to constraints, by learning which 

actions lead most efficiently to find solution. Some of the 

techniques used to solve CSPs, as in [37] applies RL algorithm to 

learn a value function that adapt solving strategies to the specific 

characteristics of CSP instances, making it easier to solve new 

similar cases based on accumulated experience, this model adapts 

search decisions based on the complexity of constraints and 

optimises realtime search, [38] Integrates a RL model to guide 

branching decisions in the SeaPearl solver, using the historical 

characteristics of solutions to guide the process, [39] uses a policy 

gradient trained GNN approach to learn global heuristics for CSPs 

without explicit supervision. The model is tuned by feedback on 

the performance of the heuristic search, enabling various types of 

constraints to be handled in a single model. 

IX. CONCLUSIONS 

This paper has provided an overview of CSPs, detailing 

their formal definition, core components, and the variety of 

constraints involved. We classified CSP solving methods into five 

main categories: Systematic Search Methods, Inference and 

Filtering Methods, Structural Decomposition Methods, Local 

Search Based Methods, and Deep Learning Based Methods. Each 

method was analyzed in terms of its approach, efficiency, and 

application scenarios. Systematic methods like backtracking offer 

completeness but suffer from high computational cost. Inference 

methods enhance efficiency by pruning the search space, while 

structural decomposition simplifies complex problems by 

leveraging their inherent structure. Local search methods provide 

flexibility and efficiency in large, dynamic search spaces. Lastly, 

deep learning techniques, including supervised, unsupervised, and 

reinforcement learning, represent a growing frontier in CSP 

solving, offering automated learning and heuristic generation. This 

classification not only aids in understanding but also in selecting 

appropriate methods for specific CSP instances. Future work could 

focus on hybrid approaches that combine the strengths of these 

methods, particularly integrating machine learning and deep 

learning techniques with traditional algorithms for adaptive and 

scalable CSP solving. 
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