
Journal of Engineering and Technology for Industrial Applications

ITEGAM-JETIA

Manaus, v.11 n.51, p. 119-126. January/February., 2025.

DOI: https://doi.org/10.5935/jetia.v11i51.1449

RESEARCH ARTICLE OPEN ACCESS

Journal homepage: www.itegam-jetia.org

ISSN ONLINE: 2447-0228

TITLE: FROM BACKTRACKING TO DEEP LEARNING: A SURVEY ON

METHODS FOR SOLVING CONSTRAINT SATISFACTION PROBLEMS

Fatima AIT HATRIT1 and Kamal AMROUN2

1,2 Université de Bejaia, Faculté des Sciences Exactes, Laboratoire d'Informatique Médicale et des Environnements Dynamiques et intelligents

(LIMED), 06000 Bejaia, Algérie.

1 http://orcid.org/0000-0002-0072-1348 , 2 http://orcid.org/0000-0002-4259-2783

Email: fatima.aithatrit@univ-bejaia.dz, kamal.amroun@univ-bejaia.dz

ARTICLE INFO ABSTRACT

Article History

Received: November 05, 2024

Revised: January 10, 2025

Accepted: January 15, 2025

Published: January 30, 2025

Constraint Satisfaction Problems (CSP) are a fundamental mechanism in artificial

intelligence, but finding a solution is an NP-complete problem, requiring the exploration of

a vast number of combinations to satisfy all constraints. To address this, extensive research

has been conducted, leading to the development of effective techniques and algorithms for

different types of CSPs, ranging from exhaustive search methods, which explore the entire

search space, to modern techniques that use deep learning to learn how to solve CSPs. This

paper represents a descriptive and synthetic overview of various CSPs solving methods,

organized by approach: systematic search methods, inference and filtering methods,

structural decomposition methods, local search-based methods, and deep learning-based

methods. By offering this structured classification, it presents a clear view of resolution

strategies, from the oldest to the most recent, highlighting current trends and future

challenges, there by facilitating the understanding and application of available approaches

in the field.

Keywords:

Constraints Satisfaction Problems,

Solving CSP,

Deep Learning,

CSP resolution method,

Backtracking.

Copyright ©2025 by authors and Galileo Institute of Technology and Education of the Amazon (ITEGAM). This work is licensed

under the Creative Commons Attribution International License (CC BY 4.0).

I. INTRODUCTION

Constraint Satisfaction Problems (CSPs) play a crucial

role in various fields of computer science, artificial intelligence

(AI), and operations research. These problems arise in scenarios

where a set of variables must be assigned values that satisfy

specific constraints. Applications of CSPs are diverse [1], ranging

from activity and scheduling planning [2], to allocation problem

[3]. Despite their widespread use, CSPs are inherently complex,

often involving a large search space and intricate constraint

interactions, making their resolution a challenging task. The

formalization of CSPs provides a structured framework to model

and solve these problems systematically. Since the foundational

work by [4] in 1974, numerous approaches have been developed to

tackle CSPs, each aiming to optimize the tree search for a solution,

requiring the exploration of a vast number of combinations to

satisfy all constraints. To address this challenge, a wide range of

methods have been proposed, from traditional systematic search

algorithms, such as backtracking (BT) and constraint propagation,

to modern techniques that leverage deep learning to learn how to

solve CSPs. This study’s objective is to provide a comprehensive

overview of the current state of art CSP-solving methodologies,

highlighting their strengths, limitations, and suitability for different

types of CSPs. By examining these approaches, we aim to shed

light on the evolution of CSP-solving strategies and propose a

structured classification that aids in understanding and selecting

appropriate methods for solving CSP problem. Although a number

of studies have already proposed classifications. In [5] the author

presented a survey on general CSP resolution techniques and

classifed them on finite domain techniques and infinite domain

techniques. In [6], they classified the resolution methods in two

mains groupe, complete resolution methods and incomplete

resolution methods. Then we have [7], the authors in their study

classified CSP resolution methods based on practical applications

like scheduling and planning, They emphasize that constraint

satisfaction approaches, especially search and constraint

satisfaction algorithms, are favored in AI for addressing complex

combinatorial issues.

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 119-126, January/February., 2025.

In this study, we build on these existing classifications to provide

a more detailed and up-to-date overview of CSP solving methods,

focusing on the latest trends and developments in the field. By

presenting a structured classification of CSP-solving techniques,

we aim to offer a clear and comprehensive view of the available

approaches, from traditional methods to modern deep learning-

based techniques. The main contributions of this paper are as

follows:

• A comprehensive overview of CSP-solving methods,

organized by approach, including systematic search methods,

inference and filtering methods, structural decomposition methods,

local search-based methods, and deep learning-based methods.

• A detailed analysis of each category, highlighting the

main algorithms and techniques used to solve CSPs, their strengths,

limitations, and applications.

• A structured classification of CSP-solving methods,

providing a clear view of the evolution of resolution strategies,

from traditional to modern approaches, and highlighting current

trends and future challenges in the field.

 The remainder of this paper is organized as follows:

Section II presents the preliminary definitions of CSPs, including

the formal definition of a CSP, CSP constraints, CSP instantiation,

and CSP solution. Section III introduces the classification of CSP-

solving methods, categorizing them into five main categories:

Systematic Search Methods, Inference and Filtering Methods,

Structural Decomposition Methods, Local Search Based Methods,

and Deep Learning Based Methods. Sections IV to VIII provide an

in-depth analysis of each category, detailing the methods used to

solve CSPs, their approaches, and applications. Finally, Section IX

concludes the paper, summarizing the main findings and discussing

future research directions.

II. PRELIMINARY DEFINITIONS

In this section, we present the fundamental definitions of

Constraint Satisfaction Problems (CSPs), including the formal

definition of a CSP, CSP constraints, CSP instantiation and CSP

solution.

II.1 CONSTRAINT SATISFACTION PROBLEM

A CSP is define as a set of variables, with associated

domains, and a set of constraints. Each constraint is defined on a

subset of the set of variables and limits the combinations of values

that these variables can take.

The formal definition of a CSP was introduced by Montanari [4], a

CSP is defined by < 𝑋, 𝐷, 𝐶 >, where:

• 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑛} is a set of 𝑛 variables,

• 𝐷 = {𝐷1, 𝐷2 , . . . , 𝐷𝑛} is a set of finite domains, each

variable 𝑋𝑖 takes its value from its domain 𝐷𝑖 ,

• 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑚} is a set of 𝑚 constraints. Each

constraint 𝐶𝑖 is a pair (𝑆𝑐𝑜𝑝𝑒(𝐶𝑖), 𝑅𝑒𝑙(𝐶𝑖)) where

𝑆𝑐𝑜𝑝𝑒(𝐶𝑖) ⊆ 𝑋 is a list of variables, called the scope of 𝐶𝑖

and 𝑅𝑒𝑙(𝐶𝑖) ⊆ ∏𝑋𝑘∈𝑆𝑐𝑜𝑝𝑒(𝐶𝑖)𝐷𝑘 (subset of the cartesian

product) is the relation of 𝐶𝑖 that indicates the valid

combinations of values for the variables in 𝑆𝑐𝑜𝑝𝑒(𝐶𝑖).where

each constraint 𝐶𝑖 is a relation between a subset of variables.

II.2 CONSTRAINTS

Constraints in the context of CSPs can be expressed in

different ways: in extension, by presenting the set of tuples

authorised, forbidden, or in intention, by giving mathematical

formulae.

The structure of the problem to be solved is difined by the

relation between the variables.

The size of 𝑆𝑐𝑜𝑝𝑒(𝐶𝑖) is called the arity of 𝐶𝑖 , and

constraints can be classified within its arity into different

categories:

• Unary constraints: constraints that involve a single

variable, 𝑋1 ≠ 𝑅𝑒𝑑,
• Binary constraints: constraints that involve two variables,

𝑋1 ≠ 𝑋2,

• N-ary constraints: constraints that involve more than two

variables, 𝑋1 + 𝑋2 < 𝑋3.

II.3 INSTANTIATION AND CONSTANCY

An instantiation 𝐼 of a subset of variables denoted by 𝑋𝑖 is

an ordered set of assignments:

𝑋𝑖 = {𝑥𝑖 , . . . , 𝑥𝑘} ⊆ 𝑋 (1)

𝐼 = {[(𝑥𝑖 = 𝑣𝑖), ⋯ , (𝑥𝑘 = 𝑣𝑘)]|𝑣𝑗 ∈ 𝐷(𝑥 − 𝑗)} (2)

The variables assigned on an instantiation 𝐼 are denoted 𝑣𝑎𝑟𝑠(𝐼)

𝐼 = [(𝑥𝑖 = 𝑣𝑖), ⋯ , (𝑥𝑘 = 𝑣𝑘)] (3)

𝑣𝑎𝑟𝑠(𝐼) = {𝑥𝑖 , ⋯ , 𝑥𝑘} (4)

 If 𝐼 instantiates all the variables of the problem, it is called

a full instantiation (i.e., 𝑣𝑎𝑟𝑠(𝐼) = 𝑋).

 An instantiation 𝐼 satisfies a constraint 𝑐𝑖𝑗 ∈ 𝐶 if and

only if the variables involved in 𝑐𝑖𝑗 (𝑖.𝑒., 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗) are assigned

in 𝐼. Formally:

• 𝐼 satisfies 𝑐𝑖𝑗 iff

 (𝑥𝑖 = 𝑣𝑖) ∈ 𝐼 ∧ (𝑥𝑗 = 𝑣𝑗) ∈ 𝐼 ∧ (𝑣𝑖 , 𝑣𝑗) ∈ 𝑐𝑖𝑗 (5)

 An instantiation 𝐼 is locally consistent iff it satisfies all of

the constraints whose scopes have no uninstantiated variables in 𝐼.

𝐼 is also called a partial solution.

Formally, 𝐼 is locally consistent iff

∀𝑐𝑖𝑗 ∈ 𝐶 | 𝑠𝑐𝑜𝑝𝑒(𝑐𝑖𝑗) ⊑ 𝑣𝑎𝑟𝑠(𝐼), 𝐼 satisfies 𝑐𝑖𝑗 (6)

II.4 SOLUTION

A solution to a CSP is a full instantiation that satisfies all

the constraints of the problem.

 Formally, a solution 𝐼 is a full instantiation that satisfies

all the constraints of the problem, i.e.,

 ∀𝑐𝑖𝑗 ∈ 𝐶, 𝐼 satisfies 𝑐𝑖𝑗 .

Solving a CSP could mean to find existence or nonexistence of a

solution, if it existes find :

• One solution, without preference as to which one,

• all solutions,

• an optimal, or at least a good solution.

II.5 EXAMPLE OF CSP

A CSP can be represented by intention, by giving the

constraints in a mathematical form, or by extension, by giving the

set of tuples authorised or forbidden.

Consider the following CSP instance represented by intention as

follows:

 𝑋 = {𝑋1, 𝑋2, 𝑋3}, 𝐷 = {𝐷1, 𝐷2, 𝐷3}, 𝐶 = {𝐶1, 𝐶2}, where:

Page 120

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 119-126, January/February., 2025.

• 𝑋1, 𝑋2, 𝑋3 are variables,

• 𝐷1 = {1, 2, 3}, 𝐷2 = {1, 2}, 𝐷3 = {1, 2, 3} are the

domains of the variables,

• 𝐶1 = {(𝑋1 + 𝑋2) < (𝑋3 − 𝑋2 + 2)}, 𝐶2 = {(𝑋1 +
 𝑋3 < 4)} are the constraints.

 The same CSP can be represented by extension as follows:

• 𝑋1, 𝑋2, 𝑋3 are variables,

• 𝐷1 = {1, 2, 3}, 𝐷2 = {1, 2}, 𝐷3 = {1, 2, 3} are the

domains of the variables,

• 𝐶1 = {(1, 1, 2), (1, 1, 3), (1, 2, 3), (2, 1, 3)}, 𝐶2 =
{ (1, 1), (1, 2), (2, 1)} are the constraints.

The solution to this CSP is the full instantiation:

 𝐼 = {(𝑋1 = 1), (𝑋2 = 1), (𝑋3 = 2)}, which satisfies all the

constraints.

III. CLASSIFICATION PROPOSAL

 In this paper, we review some relevant existing literature

methods used to solve CSPs and propose a classification that

categorizes the cited works into two main levels, where:

• The first level is divided into five main categories:

Systematic Search Methods, Inference and Filtering Methods,

Structural Decomposition Methods, Local Search Based Methods,

and Deep Learning Based Methods.

• The second level is divided into subcategories, which

are further divided into specific methods.

 This classification offers a more detailed view of the cited

methods and facilitate understanding of the different approaches

used to solve CSPs. In what follows, following the classification

giving in Figure 1, we present and describe in section IV to VII the

different categories of methods used to solve CSPs which constitue

the first level of the proposed classification.

IV. SYSTEMATIC SEARCH METHODS

Systematic Search Methods for solving CSPs are

approaches that explore the solution space in a structured way in

order to find value assignments that satisfy all the constraints

imposed. These methods generally apply an exhaustive search

strategy and may include various optimisations to improve

efficiency and avoid unnecessary search paths. In what follows, we

present the main algorithms used in systematic search methods to

solve CSPs.

Figure 1: Classification of the CSP solving methods

Source: Authors, (2024).

IV.1 BACKTRAKING

Backtracking (BT) [8] is a systematic search technique

which explores all possible combinations of values for variables,

thus covering the entire solution space. The principle of the BT

algorithm consists of instantiating a new variable at each stage to

progressively extend an initially empty partial assignment. With

each addition, a consistency test is performed to check that the

assignment respects the constraints.

 In the event of inconsistency, the assignment is reset, and

the algorithm returns chronologically to the last consistent partial

instantiation. A new instantiation is then attempted by modifying

the value of the last variable. Once all the variables in a constraint

have been instantiated, the validity of the constraint is checked. If

a partial instantiation violates a constraint, the process returns to

the most recently instantiated variable with available alternatives.

In this way, each constraint violation eliminates part of the space

of possible solutions, reducing the Cartesian product of variable

domains.

 BT performs a depth-first search of the space of potential

solutions to CSPs. This process guarantees the consistency of the

solution and optimises the search time by immediately stopping

any iteration that does not lead to a valid solution. Although BT is

generally performed on a single variable, it can sometimes involve

several variables. The advantage of the BT algorithm lies in its

exhaustive exploration of the search space, ensuring that if a

solution exists, it will be found, or confirming its nonexistence.

However, this thorough traversal results in an exponential time

complexity, as nearly the entire search space must be examined.

 The BT is the foundational approach for solving CSPs,

providing the essential framework on which many advanced

techniques are built. Each subsequent method adapts and optimizes

backtracking principles to improve search efficiency like using

variable ordering heuristics to improve BT algorithm [10-12].

 According to [9] is one of the primary enhancements,

introducing mechanisms to bypass unnecessary steps and adjust

variable assignments dynamically for faster resolution.

IV.2 BACKJUMPING

Backjumping algorithm (BJ) [9] is an intelligent variant

of the BT algorithm, it is an improvement on the BT algorithm that

optimises the search by avoiding unnecessary revisiting of subtrees

in the solution space. Unlike traditional BT, which goes back to the

last instantiation point in the event of failure, BJ identifies the

precise variable at the origin of the conflict and goes directly back

to an earlier variable in the tree, closer to the root. This technique

is used to avoid re-examining the same sub-tree multiple times. The

advantage of the BJ algorithm is that the approach saves and reduce

the search time by jumping over irrelevant intermediate

instantiations, which is particularly beneficial when the search

space is vast and the constraints are complex.

 However, the BJ algorithm is not always able to identify

the variable at the origin of the conflict, which can lead to a less

efficient search and the time complexity is also exponential.

IV.3 FORWARD CHEKING

Forward cheking (FC) described by [13] as a systematic

search technique that extends the BT algorithm by adding a

consistency check to the partial assignment of variables. It works

by reducing the domains of variables by eliminating values that are

incompatible with those already instantiated. When a variable is

assigned, the FC tests the compatibility of this assignment with

Page 121

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 119-126, January/February., 2025.

subsequent variables and deletes values in domains that would

conflict with this new instantiation. This means that each domain

available after filtering only contains values compatible with the

current instantiations. The advantage of forward checking (FC) is

considered to be its ability to anticipate conflicts and thus reduce

the search space. It increases search efficiency by avoiding

numerous unnecessary backtracks, making it a notable

improvement in complex and constrained search environments.

Although FC is useful for anticipating and reducing conflicts, it can

sometimes be costly and less effective for low-constraint problems

or in the absence of appropriate heuristics.

 One of the recent application of FC [14] used to simulate

the multi-point statistical properties of some synthetic training

images, the results show that no anomalies occurred in any of the

produced realizations and also show that the presence of hard data

does not degrade the quality of the generated realizations.

V. INFERENCE AND FILTERING METHODS

To improve the Systematic Search Methods, several

techniques and strategies of constraint propagation have been

proposed wich can be classifed as prospective strategies used to

choose the variable to be assigned a value and retrospective

strategies used to choose the value to be assigned to the variable.

Constraint propagation techniques are used to anticipate the effects

of partial assignments on the domains of uninstantiated variables.

By filtering out the domains of values that are incompatible with

the constraints, they reduce the search space and avoid unnecessary

exploration of combinations with no solution. Constraint

propagation thus eliminates redundant values and reduces the size

of the problem. When a reduction results in an empty domain, this

indicates that there is no solution for the given instance. this

technique, while beneficial, need to be balanced to avoid excessive

computational cost in relation to search performance gains.

 These techniques are often combined with Systematic

Search Methods to improve resolution time. The most common

constraint propagation techniques are described below:

V.1 ARC CONSISTENCY

Arc consistency (AC) defined in [15] for binary

constraints then extended to non-binary constraints, is a constraint

propagation technique that aims to reduce the search space by

eliminating incompatible values in the domains of the variables in

a binary constraint. It ensures that for every value in the domain of

one variable, there is a corresponding value in the domain of the

second variable, thus satisfying the constraint. This process

examines each constraint and removes incompatible values from

the domains.

 By improving domain consistency, AC makes searching

more efficient. However, its application can be costly, with

exponential complexity in the most difficult cases, as it must

evaluate all possible combinations of values.

V.2 PATH CONSISTENCY

Path Consistency (PC) [4] is an enhanced form of

constraint consistency that extends the concept of AC. A CSP is

path-consistent if any consistent assignment between two variables

can be consistently extended to a third. In other words, for every

value of a variable, there is a corresponding value in the domains

of the other variables satisfying the constraint.

This process improves domain consistency by removing

incompatible values, making the search more efficient. However,

PC is computationally expensive, with exponential complexity in

difficult cases, as it must examine all possible combinations of

values.

V.3 MAINTAINING ARC CONSISTENCY

Maintaining Arc Consistency (MAC) [16] is a constraint

propagation technique designed to maintain the consistency of

variable domains throughout the search. It removes incompatible

values at each stage, reducing the search space and avoiding

unnecessary exploration of combinations with no solution. In the

MAC algorithm, the search space is structured as a binary tree,

where each node represents a decision based on the assignment or

exclusion of a value for a variable. Ordering heuristics are used to

select variables and values, improving search efficiency. Although

MAC optimises the search by making domains more consistent, it

can be computationally expensive in the most complex cases.

VI. STRUCTURAL DECOMPOSITION METHODS

Structural decomposition methods divide a complex

problem into simpler sub-problems, based on the structure of a

constraint graph. By grouping variables and constraints into tree-

like clusters, they limit interdependencies and simplify

computation.

 A CSP instance < 𝑋, 𝐷, 𝐶 > have constraint hypergraph

ℋ = (𝑉, 𝐸), where 𝑉 = 𝑋 and 𝐸 = 𝐶. The structural

decomposition methods are used to decompose the hypergraph ℋ

into simpler sub-problems.

 These techniques transform the problems into equivalent

but simpler sub-problems, making them more efficient to solve.

The most common structural decomposition methods are described

below.

VI.1 TREE DECOMPOSITION

Tree decomposition (TD) [17] is a structural decomposition

method that divides a constraint graph into clusters forming a tree

structure, where each cluster contains variables and constraints.

The width of the decomposition is defined by the size of the largest

cluster, simplifying the problem by making it more accessible. This

approach is particularly useful for tree-structured CSPs, as it

reduces search complexity. Although effective, it can be costly in

very complex cases, but it remains widely used for its simplicity

and effectiveness on tree graphs.

 Formally, a TD [17] of a graphed 𝐺 = (𝑉, 𝐸) is a pair

⟨𝑇, 𝜒⟩ where 𝑇 = (𝑁, 𝐹) is a tree and 𝜒 is a labelling function that

assigns to each node 𝑡 ∈ 𝑁 a subset of vertices 𝜒(𝑡) ⊆ 𝑉 called

the bag of 𝑡 such that:

∀𝑣 ∈ 𝑉, ∃𝑡 ∈ 𝑁 | 𝑣 ∈ 𝜒(𝑡), (7)

∀𝑒 = {𝑢, 𝑣} ∈ 𝐸, ∃𝑡 ∈ 𝑁 | {𝑢, 𝑣} ⊆ 𝜒(𝑡), (8)

∀𝑣 ∈ 𝑉, {𝑡 ∈ 𝑁 | 𝑣 ∈ 𝜒(𝑡)} (9)

(9) induces a connected subtree of 𝑇.

 The 𝑤𝑖𝑑𝑡ℎ of aTD is equal to 𝑚𝑎𝑥𝑡∈𝑁 (|𝜒(𝑡)|) − 1,
treewidth of a graph is the minimum width over all its tree

decomposing.

 The advantage of TD is that it simplifies the problem by

grouping variables and constraints into tree-like clusters. This

method is particularly useful for problems with a tree-like

structure, as it reduces the complexity of the search. However, TD

can also be computationally expensive in the most complex cases.

To exploit this technique for solving CSPs, several algorithms have

been proposed in the literature, the most popular being: BT on Tree

Decomposition (BTD) [18], that proceeds by an enumerative

Page 122

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 119-126, January/February., 2025.

search guided by a static pre-established partial order induced by a

tree decomposition of the constraint network.

VI.2 JOIN TREE DECOMPOSITION

A Join tree [19], is a structural decomposition method that

divides a constraint graph into tree-like clusters called cliques.

Each clique contains a set of variables and constraints, forming a

hierarchical tree structure. The width of the junction tree

decomposition is determined by the size of the largest clique.

 A join tree decomposition of a hypergraph ℋ is a triplet

⟨𝑇, 𝜒, 𝜆⟩ where 𝑇 = (𝑁, 𝐹) is a tree, 𝜒 is a labelling function that

assigns to each node 𝑡 ∈ 𝑁 a subset of vertices 𝜒(𝑡) ⊆ 𝑉 called

the bag of 𝑡, 𝜆 is a labelling function that assigns to each edge 𝑒 ∈
 𝐹 a subset of vertices 𝜆(𝑒) ⊆ 𝑉 called the bag of 𝑒, such that:

 ∀𝑣 ∈ 𝑉, ∃𝑡 ∈ 𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑣 ∈ 𝜒(𝑡), (10)

 ∀𝑒 ∈ 𝐹, ∃𝑡 ∈ 𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜆(𝑒) ⊆ 𝜒(𝑡), (11)

 ∀𝑣 ∈ 𝑉, {𝑡 ∈ 𝑁 | 𝑣 ∈ 𝜒(𝑡)} (12)

induces a connected subtree of 𝑇 ,

 ∀𝑒 ∈ 𝐹, 𝜆(𝑒) =
⋂ 𝑡∈𝑁 |𝜆(𝑒)⊆𝜒(𝑡) 𝜒(𝑡), (13)

 ∀𝑒 ∈ 𝐸, ∃𝑡 ∈ 𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑒 ⊆ 𝜒(𝑡). (14)

 This technique simplifies complex problems by

decomposing them into manageable clusters, making them easier

to solve.

 It is particularly advantageous for problems with a tree

structure, as it reduces the complexity of the search. However,

junction tree decomposition can become computationally

expensive in the most complex cases. A classic algorithm for

solving CSPs using join tree decomposition is the arc-consistency

propagation algorithm on join trees, often known as the clique tree

propagation algorithm [19]. This algorithm leverages the join tree

structure to manage sets of constraints using cliques as

computational units.

 The main advantage of join tree decomposition is that it

exploits redundant relationships and inferences through a

simplified tree structure. This reduces the complexity of algorithms

by minimising the size of the search space. In particular, it

improves the efficiency of solution methods such as BT and

optimisation algorithms by providing a better structure for

constraint propagation.

 However, its limitations include an exponential

complexity related to the width of the tree and difficulty in finding

an optimal decomposition for complex CSPs. This may restrict its

application to large or highly connected problems.

VI.3 GENERALIZED HYPERTREE DECOMPOSITION

The Generalised Hypertree Decomposition (GHD)[20] is

a structural decomposition method that segments a constraint graph

into clusters organised in the form of hypertrees, each hypertree

grouping a set of variables and constraints into a tree structure. The

width of the decomposition is defined by the size of the largest

hypertree. This method simplifies complex problems by

decomposing them, making them easier to solve. The GHD

[21] of a hypergraph ℋ is formally defined as a hypertree ⟨𝑇, 𝜒, 𝜆⟩
of ℋ, wich satisfies the following properties:

• For each edge ℎ ∈ 𝐸, there exists 𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇) such

that: 𝑣𝑎𝑟(ℎ) ⊆ 𝜒(𝑝) (15)

•

• For each vertex 𝑣 ∈ 𝑉, the set

{𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑇)|𝑣 ∈ 𝜒(𝑝)} (16)

induces a connected subtree of 𝑇;

• For each vertex

𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇), 𝜒(𝑝) ⊆ 𝑣𝑎𝑟(𝜆(𝑝)) (17)

• For each vertex

𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇), 𝑣𝑎𝑟(𝜆(𝑝)) ∩ 𝜒(𝑇𝑝) ⊆ 𝜒(𝑝) (18)

The width of a hypertree 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ is equal to

𝑚𝑎𝑥 𝑝∈𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑇)|𝜆(𝑝)|.The hypertree-width (ℎ𝑤(ℋ)) of a

hypergraph ℋ is the minimum width over all its hypertree

decompositions.

 A hyperedge ℎ of a hypergraph ℋ = ⟨𝑉, 𝐸⟩ is strongly

covered in 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ if there exists 𝑝 ∈ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇) such that

the vertices of ℎ are contained in 𝜒(𝑝) and ℎ ∈ 𝜆(𝑝).

 A hypertree decomposition 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ of a

hypergraph ℋ is complete if every hyperedge ℎ of ℋ is strongly

covered in 𝐻𝐷.

 A hypertree 𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ is called a Generalized

Hypertree Decomposition (GHD), if the conditions (15), (16) and

(17) hold. The width of a Generalized Hypertree Decomposition

𝐻𝐷 = ⟨𝑇, 𝜒, 𝜆⟩ is equal to 𝑚𝑎𝑥 𝑝∈𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑇)|𝜆(𝑝)|. The

generalized hypertreewidth (𝑔ℎ𝑤(ℋ)) of a hypergraph ℋ is the

minimum width over all its generalized hypertree decompositions.

 Several approaches have been developed in order to

exploit GHD for solving CSPs, In [22], it was used to evaluate

conjunctive queries (CQs) and solve CSP.

 GHD is particularly useful for problems with a tree

structure. However, in complex cases, constructing the GHD can

be computationally expensive, particularly due to the size and

flexibility of the hypertrees in multivariate representations. The

problem of updating the decomposition of a CSP is resolved in [23]

where they propose and implement a framework for effectively

update a GHD. Moreover, in [20], authors proposed parallel

algorithms to compute GHDs efciently for a wide range of CSPs.

VII. LOCAL SEARCH BASED METHODS

Local search based methods [24] are techniques designed to

find an acceptable solution to a CSP by exploring the solution space

from an initial (often partial) solution and progressively modifying

it through local adjustments to reduce the number of unsatisfied

constraints. These algorithms include methods such as Min-

Conflicts [25], which adjust an assignment to satisfy a set of

constraints by choosing a variable associated with an unsatisfied

constraint and assigning it a value that minimizes the number of

remaining unsatisfied constraints. By exploring the neighborhood

of a solution incrementally, local search methods navigate the

space of nearby solutions, making them particularly effective for

large and constrained search spaces where exhaustive exploration

is impractical.

 Recent research in local search methods for CSPs

demonstrates the adaptability of these techniques in solving

complex and specialized problems. In [26] , local search is used to

handle incomplete fuzzy CSPs, allowing for solutions that

minimize constraint violations in situations with uncertainty and

flexible constraints. This approach is especially effective in cases

where constraints are not fully defined or have degrees of

satisfaction. Moreover in [27] focuses on optimizing costly

industrial processes through a derivative-free local search method,

adapted for "black-box" problems with high evaluation costs,

applied to refining the start-up optimization of a production plant.

Page 123

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 119-126, January/February., 2025.

Both studies highlight the adaptability of local search techniques in

managing complex, constrained environments and enhancing

solution efficiency.

VIII. DEEP LEARNING BASED METHODS

Deep learning methods have been proposed to solve CSPs

by leveraging the power of neural networks to learn patterns and

make predictions.These methods use deep learning models to

predict the values of variables and constraints, optimising the

search process and improving the resolution of CSPs.

Deep learning methods have been applied to various types of CSPs,

including scheduling, planning, and optimisation problems. They

have been used to predict the values of variables and constraints,

optimising the search process and improving the resolution of

CSPs.

VIII.1 SUPERVISED LEARNING METHODS

Supervised machine learning [28] is a machine learning

method where a model is trained on labeled data, meaning

examples for which the expected answers are known. This process

involves using the labeled data to learn relationships between

inputs and outputs, allowing the model to "learn" the relationship

between them. Based on known patterns, they generate a model

capable of making accurate predictions on new data.

 The supervised leaning methods have been applied in the

context of CSPs by learning from labelled data and identifying

optimal solution configurations, thus guiding research towards

more efficient and reliable solutions for solving CSPs.

 Among the supevised leaning methods used to solve

CSPs, [29] uses a Convolutional Neural Network (CNN) on binary

boolean CSPs to predict the satisfiability of CSPs, it includes

domain adaptation and data augmentation techniques to handle the

sparsity of labelled data. [30] uses a supervised model to learn how

to optimise the ordering of variables in a search tree, reducing the

depth of searches in CSPs and making resolution more efficient,

[31] creates a general framework for selecting the optimal

algorithm for each type of CSP, based on supervised learning

models that analyse past performance and adjust algorithms

accordingly [32] apply the Recurrent Transformer to learn how to

solve CSPs. This approach offers an alternative to Graphical

Neural Networks (GNNs) and neuro-symbolic models by

effectively capturing constraints, especially for visual CSP

problems.

VIII.2 UNSUPERVISED LEARNING METHODS

Unsupervised machine learning [33] is a machine learning

method where the model is trained on unlabeled data, where only

the inputs are available without any expected answers. The goal is

to uncover hidden structures or underlying patterns within the data.

It detect structures or patterns in data without the use of labels or

pre-labelled examples, by learning to group similar data or reduce

data dimensionality, the model builds a representation that can

reveal useful patterns.

 These methods have been applied to various types of CSP,

such as planning, scheduling and optimisation problems. Various

unsupervised learning methods have been used to solve CSPs, [34]

uses a Deep Neural Network (DNN) agnostic model with no prior

knowledge of specific constraints, allowing possible solutions to

be explored using an agnostic approach that learns from experience

about the structures of CSPs, in [35] used GNN and exploits their

power to understand and exploit the connections between nodes in

a CSP graph, improving the representation of constraints and

helping to define efficient global heuristics for solving them.

 VIII.3. REINFORCEMENT LEARNING METHODS

Reinforcement Learning (RL) [36] is an approach where an

agent learns through direct interactions with an environment,

receiving rewards or penalties based on its actions. The objective

is to optimize the agent’s strategy to maximize cumulative rewards

over time. Unlike supervised methods, there is no immediate

correct answer for each situation. The agent explores and adjusts

its choices based on the feedback it receives.

 In the context of CSPs, RL can be used to improve search

heuristics or dynamically adapt solving strategies, such as the

choice of variables or values. RL can help prioritise tasks or

optimise assignments according to constraints, by learning which

actions lead most efficiently to find solution. Some of the

techniques used to solve CSPs, as in [37] applies RL algorithm to

learn a value function that adapt solving strategies to the specific

characteristics of CSP instances, making it easier to solve new

similar cases based on accumulated experience, this model adapts

search decisions based on the complexity of constraints and

optimises realtime search, [38] Integrates a RL model to guide

branching decisions in the SeaPearl solver, using the historical

characteristics of solutions to guide the process, [39] uses a policy

gradient trained GNN approach to learn global heuristics for CSPs

without explicit supervision. The model is tuned by feedback on

the performance of the heuristic search, enabling various types of

constraints to be handled in a single model.

IX. CONCLUSIONS

This paper has provided an overview of CSPs, detailing

their formal definition, core components, and the variety of

constraints involved. We classified CSP solving methods into five

main categories: Systematic Search Methods, Inference and

Filtering Methods, Structural Decomposition Methods, Local

Search Based Methods, and Deep Learning Based Methods. Each

method was analyzed in terms of its approach, efficiency, and

application scenarios. Systematic methods like backtracking offer

completeness but suffer from high computational cost. Inference

methods enhance efficiency by pruning the search space, while

structural decomposition simplifies complex problems by

leveraging their inherent structure. Local search methods provide

flexibility and efficiency in large, dynamic search spaces. Lastly,

deep learning techniques, including supervised, unsupervised, and

reinforcement learning, represent a growing frontier in CSP

solving, offering automated learning and heuristic generation. This

classification not only aids in understanding but also in selecting

appropriate methods for specific CSP instances. Future work could

focus on hybrid approaches that combine the strengths of these

methods, particularly integrating machine learning and deep

learning techniques with traditional algorithms for adaptive and

scalable CSP solving.

X. AUTHOR’S CONTRIBUTION

Conceptualization: Fatima AIT HATRIT1, Kamal AMROUN2

Methodology: Fatima AIT HATRIT1, Kamal AMROUN2

Investigation: Fatima AIT HATRIT1, Kamal AMROUN2

Discussion of results: Fatima AIT HATRIT1, Kamal AMROUN2

Writing – Original Draft: Fatima AIT HATRIT1, Kamal

AMROUN2

Writing – Review and Editing: Fatima AIT HATRIT1, Kamal

AMROUN2

Page 124

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 119-126, January/February., 2025.

Resources: Fatima AIT HATRIT1, Kamal AMROUN2

Supervision: Fatima AIT HATRIT1, Kamal AMROUN2

Approval of the final text: Fatima AIT HATRIT1, Kamal

AMROUN2

XI. REFERENCES

[1] K. R. Chowdhary, « Constraint Satisfaction Problems », in Fundamentals of
Artificial Intelligence, New Delhi: Springer India, 2020, p. 273‑302. doi:

10.1007/978-81-322-3972-7_10.

[2] S. Choudhury, J. K. Gupta, M. J. Kochenderfer, D. Sadigh, and J. Bohg, «

Dynamic multi-robot task allocation under uncertainty and temporal constraints »,

Auton Robot, vol. 46, no 1, p. 231‑247, janv. 2022, doi: 10.1007/s10514-021-
10022-9.

[3] J. K. Behrens, R. Lange and M. Mansouri, « A Constraint Programming
Approach to Simultaneous Task Allocation and Motion Scheduling for Industrial

Dual-Arm Manipulation Tasks », 2019 International Conference on Robotics and

Automation (ICRA), Montreal, QC, Canada, p. 8705-8711, 2019, doi:

10.1109/ICRA.2019.8794022.

[4] U. Montanari, « Networks of constraints: Fundamental properties and
applications to picture processing », Information Sciences, vol. 7, p. 95‑132, janv.

1974, doi: 10.1016/0020-0255(74)90008-5.

[5] M. Dohmen, « A survey of constraint satisfaction techniques for geometric

modeling », Computers & Graphics, vol. 19, no 6, p. 831‑845, nov. 1995, doi:

10.1016/0097-8493(95)00055-0.

[6] B. Bogaerts, E. Gamba, and J. Claes, « Step-Wise Explanations of Constraint

Satisfaction Problems », In : ECAI 2020. IOS Press, 2020. p. 640-647.

[7] S. C. Brailsford, C. N. Potts, and B. M. Smith, « Constraint satisfaction

problems: Algorithms and applications », European Journal of Operational
Research, vol. 119, no 3, p. 557‑581, 1999.

[8] S. W. Golomb and L. D. Baumert, « Backtrack Programming », J. ACM, vol.

12, no 4, p. 516‑524, oct. 1965, doi: 10.1145/321296.321300.

[9] J. Gaschig, « Performance Measurement and Analysis of Certain Search
Algorithms », Carnegie Mellon University, 1979.

[10] G. Audemard, C. Lecoutre, and C. Prud’homme, « Guiding Backtrack Search
by Tracking Variables During Constraint Propagation », LIPIcs, Volume 280, CP

2023, vol. 280, p. 9:1-9:17, 2023, doi: 10.4230/LIPICS.CP.2023.9.

[11] D. Habet and C. Terrioux, « Conflict history based heuristic for constraint

satisfaction problem solving », J Heuristics, vol. 27, no 6, p. 951‑990, déc. 2021,

doi: 10.1007/s10732-021-09475-z.

[12] H. Li, M. Yin, and Z. Li, « Failure Based Variable Ordering Heuristics for

Solving CSPs (Short Paper) », LIPIcs, Volume 210, CP 2021, vol. 210, p. 9:1-9:10,
2021, doi: 10.4230/LIPICS.CP.2021.9.

[13] P. Prosser, « HYBRID ALGORITHMS FOR THE CONSTRAINT

SATISFACTION PROBLEM », Computational Intelligence, vol. 9, no 3, p.

268‑299, août 1993, doi: 10.1111/j.1467-8640.1993.tb00310.x.

[14] M. Shahraeeni, « Enhanced Multiple-Point Statistical Simulation with

Backtracking, Forward Checking and Conflict-Directed Backjumping », Math
Geosci, vol. 51, no 2, p. 155‑186, févr. 2019, doi: 10.1007/s11004-018-9761-y.

[15] A. K. Mackworth, « Consistency in networks of relations », Artificial
Intelligence, vol. 8, no 1, p. 99‑118, févr. 1977, doi: 10.1016/0004-3702(77)90007-

8.

[16] C. Bessière and J.-C. Régin, « MAC and combined heuristics: Two reasons to

forsake FC (and CBJ?) on hard problems », in Principles and Practice of Constraint

Programming — CP96, vol. 1118, E. C. Freuder, Éd., in Lecture Notes in Computer
Science, vol. 1118. , Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, p. 61‑75.

doi: 10.1007/3-540-61551-2_66.

[17] N. Robertson et P. D. Seymour, « Graph minors. II. Algorithmic aspects of

tree-width », Journal of Algorithms, vol. 7, no 3, p. 309‑322, sept. 1986, doi:

10.1016/0196-6774(86)90023-4.

[18] P. Jégou and C. Terrioux, « Hybrid backtracking bounded by tree-
decomposition of constraint networks », Artificial Intelligence, vol. 146, no 1, p.

43‑75, mai 2003, doi: 10.1016/S0004-3702(02)00400-9.

[19] S. L. Lauritzen and D. J. Spiegelhalter, « Local Computations with Probabilities

on Graphical Structures and Their Application to Expert Systems », Journal of the

Royal Statistical Society. Series B (Methodological), vol. 50, no 2, p. 157‑224,
1988.

[20] G. Gottlob, C. Okulmus, and R. Pichler, « Fast and parallel decomposition of
constraint satisfaction problems », Constraints, vol. 27, no 3, p. 284‑326, juill. 2022,

doi: 10.1007/s10601-022-09332-1.

[21] G. Gottlob, N. Leone, and F. Scarcello, « Robbers, marshals, and guards: game

theoretic and logical characterizations of hypertree width », J. Comput. Syst. Sci.,

vol. 66, no 4, p. 775‑808, juin 2003, doi: 10.1016/S0022-0000(03)00030-8.

[22] Z. Younsi, K. Amroun, F. Bouarab-Dahmani, and S. Bennai, « HSJ-Solver: a

new method based on GHD for answering conjunctive queries and solving
constraint satisfaction problems », Appl Intell, vol. 53, no 13, p. 17226‑17239, juill.

2023, doi: 10.1007/s10489-022-04361-y.

[23] G. Gottlob, M. Lanzinger, D. M. Longo, and C. Okulmus, « Incremental

Updates of Generalized Hypertree Decompositions », ACM J. Exp. Algorithmics,

vol. 27, p. 1‑28, déc. 2022, doi: 10.1145/3578266.

[24] S. J. Russell et P. Norvig, Artificial intelligence: a modern approach, Fourth

edition, Global edition. in Prentice Hall series in artificial intelligence. Boston:
Pearson, 2022.

[25] A. Kaznatcheev, D. A. Cohen, et P. G. Jeavons, « Representing fitness
landscapes by valued constraints to understand the complexity of local search », 12

novembre 2020, arXiv: arXiv:1907.01218.

[26] M. Gelain, M. Silvia Pini, F. Rossi, and K. B. Venable, « A LOCAL SEARCH

APPROACH TO SOLVE INCOMPLETE FUZZY CSPs »:, in Proceedings of the

3rd International Conference on Agents and Artificial Intelligence, Rome, Italy:
SciTePress - Science and and Technology Publications, 2011, p. 582‑585. doi:

10.5220/0003174505820585.

[27] A. Manno, E. Amaldi, F. Casella, et E. Martelli, « A local search method for

costly black-box problems and its application to CSP plant start-up optimization

refinement », Optim Eng, vol. 21, no 4, p. 1563‑1598, déc. 2020, doi:
10.1007/s11081-020-09488-w.

[28] Y. Bengio, I. Goodfellow, and A. Courville, « Deep learning »: The MIT Press,

2016, doi: 10.1007/s10710-017-9314-z .

[29] H. Xu, S. Koenig, and T. K. S. Kumar, « Towards Effective Deep Learning for

Constraint Satisfaction Problems », in Principles and Practice of Constraint

Programming, vol. 11008, J. Hooker, Éd., in Lecture Notes in Computer Science,
vol. 11008. , Cham: Springer International Publishing, 2018, p. 588‑597. doi:

10.1007/978-3-319-98334-9_38.

[30] W. Song, Z. Cao, J. Zhang, and A. Lim, « Learning Variable Ordering

Heuristics for Solving Constraint Satisfaction Problems », Engineering

Applications of Artificial Intelligence, vol. 109, p. 104603, mars 2022, doi:
10.1016/j.engappai.2021.104603.

[31] J. C. Ortiz-Bayliss, I. Amaya, J. M. Cruz-Duarte, A. E. Gutierrez-Rodriguez,
S. E. Conant-Pablos, and H. Terashima-Marín, « A General Framework Based on

Machine Learning for Algorithm Selection in Constraint Satisfaction Problems »,

Applied Sciences, vol. 11, no 6, p. 2749, mars 2021, doi: 10.3390/app11062749.

[32] Z. Yang, A. Ishay, and J. Lee, « Learning to Solve Constraint Satisfaction

Problems with Recurrent Transformer », 10 juillet 2023, arXiv: arXiv:2307.04895.

[33] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.

in Springer Series in Statistics. New York, NY: Springer, 2009. doi: 10.1007/978-
0-387-84858-7.

[34] A. Galassi, M. Lombardi, P. Mello, and M. Milano, « Model Agnostic Solution
of CSPs via Deep Learning: A Preliminary Study », in Integration of Constraint

Programming, Artificial Intelligence, and Operations Research, vol. 10848, W.-J.

Van Hoeve, Éd., in Lecture Notes in Computer Science, vol. 10848. , Cham:
Springer International Publishing, 2018, p. 254‑262. doi: 10.1007/978-3-319-

93031-2_18.

Page 125

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 119-126, January/February., 2025.

[35] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, « How Powerful are Graph Neural
Networks? », 22 février 2019, arXiv: arXiv:1810.00826.

[36] R. S. Sutton et A. Barto, Reinforcement learning: an introduction, Nachdruck.
in Adaptive computation and machine learning. Cambridge, Massachusetts: The

MIT Press, 2014.

[37] Y. Xu, D. Stern, and H. Samulowitz, « Learning Adaptation to Solve Constraint

Satisfaction Problems », Proceedings of Learning and Intelligent Optimization

(LION), 2009, p. 14.

[38] F. Chalumeau, I. Coulon, Q. Cappart, and L.-M. Rousseau, « SeaPearl: A

Constraint Programming Solver guided by Reinforcement Learning », 20 avril
2021, arXiv: arXiv:2102.09193.

[39] J. Tönshoff, B. Kisin, J. Lindner, and M. Grohe, « One Model, Any CSP: Graph
Neural Networks as Fast Global Search Heuristics for Constraint Satisfaction », 22

août 2022, arXiv: arXiv:2208.10227.

Page 126

