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Outdoor insulators are highly susceptible to environmental factors, such as moisture, rain, 

and contaminants, which significantly degrade their efficiency and durability. These factors 

contribute to surface flashovers, leading to insulation failures in outdoor power systems. 

This study presents a novel application of advanced machine learning techniques to predict 

the flashover performance of glass insulators under diverse environmental conditions, 

focusing on dry and rainy scenarios. The research emphasizes the critical role of raindrops 

in reducing flashover voltage. A hybrid model combining Artificial Neural Networks (ANN) 

with Particle Swarm Optimization (PSO) is developed to address these challenges. The PSO 

algorithm optimizes the ANN's hyperparameters, enabling the model to establish a nonlinear 

relationship between key insulator characteristics, including standard and anti-pollution 

profiles and their critical flashover voltage. Rigorous testing demonstrated exceptional 

accuracy, with a mean absolute percentage error (MAPE) of 0.2458 and a near-perfect 

coefficient of determination (R²) of 0.999. These findings highlight the robustness and 

reliability of the proposed hybrid model in predicting flashover voltage under varying 

environmental conditions. This work provides a powerful tool for enhancing the design, 

maintenance, and operational reliability of outdoor insulators, particularly in regions prone 

to high levels of pollution and moisture, contributing significantly to the advancement of 

sustainable power transmission systems. 
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I. INTRODUCTION 

insulators are critical components of power transmission 

and distribution systems, ensuring electrical insulation between 

conductors and grounded towers while supporting overhead lines. 

However, their performance is significantly affected by 

environmental conditions, material properties, and surface 

contamination [1]. 

Contaminants such as dust and industrial emissions 

significantly threaten outdoor insulators. They cause problems with 

performance and decrease the life of an insulator faster. This 

accumulation of arcing and corona discharges erodes the insulator 

surface finish, leaving flashover paths and accelerating the aging 

process. These pollutants lead to surface cracking and erosion, 

increasing the leakage current path over the insulator's surfaces and 

aggravating this fault by the conduction flow along its surface. 

Therefore, researchers must study the long-term behavior of 

insulators in outdoor environments [2],[3]. 

To cope with different environmental conditions, insulators 

are designed with varying profiles. Standard profile insulators are 

widely used in areas with low pollution, as they are more 

economical. In contrast, anti-pollution profile insulators are 

specifically designed for regions with moderate to high pollution 

levels, where they provide better performance under challenging 

conditions [4]. The behavior of these two insulator types differs 

significantly when exposed to pollutants, particularly under dry 

and wet conditions. The situation becomes even more complex 
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when multiple insulators are connected in chains, which is common 

in modern high-voltage transmission systems [5]. 

Many studies have focused on assessing insulator 

performance under pollution stress, employing various physical 

and mathematical models [6]. Experimental research has 

developed much over the years, as evidenced by the early analyses 

of this topic [7],[8]. Better characterization of the physical 

environment through simulation tools, which represent the 

complexity of environmental conditions that insulators are 

subjected to, has dramatically helped to understand the mechanism 

of pollution-induced performance degradation. Such development 

helps in a better characterization of insulator behavior under a 

broad range of stresses, as well as for the development of improved 

predictive models, which aim to reduce the risk of flashover. 

The literature includes several advanced predictive models, 

such as time-series simulations, regression techniques, and 

artificial intelligence methods like artificial neural networks 

(ANN) [9], adaptive neuro-fuzzy inference systems (ANFIS), [10] 

and least squares support vector machines (LS-SVM) [11]. These 

models have been applied extensively to forecast the behavior and 

performance of insulators in polluted environments. 

Among neural network architectures, the Multi-Layer 

Perceptron (MLP) is one of the most widely recognized and applied 

models, typically utilizing the backpropagation (BP) algorithm or 

one of its derivatives, known as the Backpropagation Neural 

Network (BPNN). However, the BP algorithm’s reliance on the 

steepest descent search technique makes it prone to convergence 

issues, such as getting stuck in local optima, or in some cases, even 

leading to computational overflow or oscillation. These limitations 

have driven researchers to explore more powerful optimization 

techniques to enhance the effectiveness of neural networks [9]. 

A breakthrough in this regard is the application of 

evolutionary algorithms (EA) to optimize neural networks. One of 

the most effective of these techniques is Particle Swarm 

Optimization (PSO), introduced by Eberhart and Kennedy, 

inspired by the social behavior of birds and fish flocks [12]. 

Initially developed to graphically simulate the graceful, yet 

unpredictable, movements of flocks, the PSO algorithm was later 

refined to improve its performance by removing unnecessary 

parameters, resulting in the basic PSO algorithm.  

Recent research has focused on training Artificial Neural 

Networks (ANNs) using the Particle Swarm Optimization (PSO) 

technique to predict the flashover voltage of outdoor insulators. 

This approach leverages data from real-world experiments 

conducted on high-voltage insulators to build a comprehensive 

database for applying artificial intelligence methodologies. These 

experiments involve varying levels of artificial contamination 

using distilled brine, with each contamination level quantified by 

the amount of brine applied per unit area of the insulator [13] 

In this study, we propose a PSO-trained ANN model to 

predict the flashover voltage of standard and anti-pollution profile 

glass insulators under dry and rainy conditions. These insulators, 

extensively deployed by SONELGAZ in Algeria, are critical for 

reliable power delivery in diverse environmental settings. By 

addressing key limitations of traditional methods, our approach 

aims to provide a robust predictive tool for optimizing insulator 

performance, with implications for power utilities globally. 
 

II. PARTICLE SWARM OPTIMIZATION (PSO) 

The PSO algorithm was first developed by Kennedy and 

Eberhart in 1995 [12], inspired by the collective behavior observed 

in animal groups, such as flocks of birds and schools of fish. A 

semi-evolutionary swarm intelligence algorithm is one way to 

describe this particular method.  

The process is driven by randomly picking and testing 

solutions and then using the results to find, step by step, a better 

one [14]. Every solution scanned in this process is attached to a 

search strategy that works at the speed and with the memory of the 

best condition it was ever exposed to. 

There are three critical elements that play a crucial role: 

position, velocity, and fitness. To address an optimization issue 

using PSO, the steps are as follows: 

•  Generate an initial population of particles with random 

positions and velocities within the problem space. 

•  Calculate the fitness value for each particle. 

• Update the particle positions and velocities based on 

equations (1) and (2)[15]. 

The PSO method employs equation 1 to do the update on 

velocity. 

 

vij(t + 1) = wvij(t) + c1r1(pBij(t) − xij(t))  + c2r2(gBij(t) xij(t))(1) 

 

Where pij(t) represents the best personal memory, gi (t) 

represents the best collective memory, W represents the factor of 

inertia weight of particle, c1, and c2 represent the coefficients of 

individual learning, and r1 and r2 rep3resent the coefficients of 

collaborative learning [13]. 

 To determine the positions of any newly introduced 

particles, this method relies on Equation 2 [14]. 

 

xij
t = xij

t−1 + vij
t                                   (2) 

 

III. NEURAL NETWORK MODEL 

In principle, ANNs are similar to the biological systems that 

humans and other animals have, so they have become an excellent 

tool for analyzing complex data sets [9]. They excel at revealing 

less apparent relations between the inputs and the output, even if 

the data set is pretty noisy but complicated. The most widely used 

neural network architecture is the multilayer perceptron (MLP). 

However, prior research indicates that the brute force design of 

these networks is important, as only some formula works in every 

case [16]. 

In addition to its essential function, the ANN model created 

and trained in this paper predicts the flashover voltage of polluted 

glass insulators in extreme environments (both dry and rainy) and 

for different designs (standard and anti-pollution) as a function of 

time. The main objective of this study is to reach the topmost 

performance for the model by carefully refining the model 

architecture, determining the best fitting of activation functions 

thirdly, and tuning the training algorithms to gain exact prediction 

so that it can be highly reliable and robust for flashover voltage 

prediction in different surrounding such as high voltage power 

system dependability domain. 
 

IV. ANN ARCHITECTURE AND OPTIMIZATION 

APPROACH 

Our ANN model follows a multilayer perceptron (MLP) 

architecture known for its robustness in learning and predictive 

power. The MLP architecture consists of: 

• Input Layer: Incorporates features related to the 

insulators, humidity, rainfall intensity, and insulator profile 

(standard vs. anti-pollution). These input variables provide the data 

needed for predicting flashover voltage across different scenarios. 
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• Hidden Layers: Hidden layers allow the ANN to process 

and interpret complex interactions between input variables. By 

applying nonlinear activation functions like the sigmoid or tangent-

sigmoid (Logsig), the model is able to capture subtle relationships 

within the data. 

• Output Layer: Provides the flashover voltage prediction 

based on the input variables and learned relationships. The output 

is a continuous value that represents the expected flashover voltage 

for each insulator configuration. 

The mathematical formulation behind the MLP can be 

described as follows [9]: 
 

Sj = F(∑  n
j=1  wkjEj + Bj)                            (3) 

 

Where: 

• Sj  is the neuron output in the current layer, 

• F is the activation function, 

• wkj and Bj are the weights and biases, respectively, 

• Ej represents the node values from the preceding layer. 

As depicted in figure 1, once the structure of the ANN is 

established, the subsequent step involves training the network. 

 

IV.1 MODEL DEVELOPMENT 

In this study, we employed a hybrid approach that combines 

Particle Swarm Optimization (PSO) and Artificial Neural 

Networks (ANN) to accurately forecast flashover voltage. The PSO 

algorithm optimizes the neural network's weights and biases, 

improving the model's performance in terms of both speed and 

accuracy. 

Given its powerful capability for data-driven simulations 

and optimization, MATLAB was used to build the PSO-ANN 

model. The methodology started with collecting a data set that 

comprised numerous influencing factors as input variables such as 

insulator geometrical features (the spacing between the two 

consecutive insulator threads, S; in mm), diameter Dm (in mm), 

leakage length of one-piece and the number elements in the chain 

of insulator NE. The model's output is flashover voltage prediction 

(Vc, in kV) concerning two kinds of conditions: dry and rainy. 

 

 
Figure 1: A standard representation of an artificial neural network 

(ANN). 

Source: Authors, (2025). 

 

The first step was to structure the dataset, ensuring that the 

input features (insulator spacing (S, in mm), diameter (Dm, in mm), 

leakage length of the insulator element (L, in mm), and the number 

of elements in the insulator chain (NE) were properly normalized. 

Then, the PSO algorithm was configured to optimize the initial 

weights and biases of the neural network. 

After the ANN structure was defined consisting of input, 

hidden, and output layers the PSO algorithm iteratively adjusted 

the network’s parameters, seeking the configuration that 

minimized the mean squared error (MSE) between predicted and 

actual flashover voltages. The optimization process continued until 

convergence, with the best particle’s position representing the 

optimal set of network weights. 

 

𝑀𝑆𝐸 = (
1

𝑁
) ∑  𝑖 |𝑡𝑖 − 𝑜𝑖|2                          (4) 

 

Once training was complete, the model was validated using 

test data that were not part of the training process. 

The process of training the ANN using PSO involved seven 

key steps: 

1.Collecting the necessary data. 

2.Creating the neural network. 

3.Configuring the network. 

4.Initializing the weights and biases of the network. 

5.Training the neural network using the PSO algorithm. 

6.Validating the network to assess its performance. 

7.Applying the trained network for predictions. 

 

The optimal configuration for the ANN-PSO model was 

established as follows: (a) The hidden layer comprised 10 neurons. 

(b) The training process was run for 6000 iterations. (c) The 

particle swarm consisted of 100 particles. (d) The acceleration 

constants were set at c1 = 1 and c2 = 2. 

A three-layer neural network predicts insulator flashovers 

(Figure 2). The network architecture includes four six neurons, a 

hidden layer with 10 neurons, and a single output neuron. The 

parameters c1 and c2 are kept constant; for each config file, 

multiple test metrics are run to determine the better network 

configuration. We calculate the average deviation to find a network 

trained for up to 6000 iterations with minimal error. Iteratively 

undergoing this process ensures the model's capability to 

generalize in any situation and reduce predictive error. 

 

IV.2 DATA SELECTION 

In the testing process for insulators, including those featured 

in this study, a comprehensive evaluation of both electrical and 

mechanical parameters is conducted to ensure their performance 

and reliability under various operational conditions. A critical 

aspect of this evaluation is the flashover voltage test, which 

assesses the insulator’s ability to withstand high voltages without 

experiencing flashover, a disruptive electrical discharge across its 

surface. The flashover voltage is measured under both dry and wet 

conditions, simulating real-world environmental factors such as 

rain or humidity that could impact the insulator's performance. 

Each insulator model is subjected to stringent mechanical 

and electrical rating tests as per international standards, such as IEC 

60305, ANSI, and BS [17]. These tests are essential for ensuring 

the insulator's capability to endure stresses encountered across 

different voltage ranges and environmental pollution levels. 

Additionally, insulators are categorized into various profiles 

standard and anti-pollution profile to optimize performance in 

specific environments, such as low-pollution areas or regions 

exposed to heavy pollution or desert conditions. This rigorous 

testing protocol ensures the reliability and operational safety of 

insulators used in high-voltage transmission systems worldwide. 
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Figure 2: The network training model in MATLAB. 

Source: Authors, (2025). 

 

In this study, we focused on data derived from experimental 

results for the prediction of flashover voltage on two types of 

insulators: the standard profile insulator and the anti-pollution 

profile insulator, both tested under dry and rainy conditions. Our 

objective was to investigate the impact of rain on the flashover 

voltage. To achieve this, several key parameters were selected as 

input vectors for the predictive model, including insulator spacing 

(S, mm), diameter (Dm, mm), leakage length of the insulator 

element (L, mm), and the number of elements in a chain of 

insulators (NE). The predicted output is the flashover voltage (Vc, 

kV) under both dry and rainy conditions. In our investigations, the 

number of insulator elements in the chain varied, ranging from a 

minimum of two to a maximum of thirty, allowing us to 

comprehensively study the effects of different configurations and 

environmental conditions on the flashover voltage. This approach 

provides valuable insights into how rain affects the electrical 

performance of insulators, particularly in polluted and extreme 

environmental settings [17] . 

 Table 1 presents the characteristics and specifications of 

various types of insulators. 

 

IV.3 CASE STUDIES 
 

To effectively evaluate the predictive accuracy of the ANN 

-PSO model, it is necessary to use a dataset of diverse species in 

the testing phase that was not used in the training phase. This 

approach allows the creation of a representative and unbiased test 

set. 

Splitting the data correctly can be particularly important 

when creating machine learning models, especially during training 

and testing. According to available research, 70-80 % of the data 

(for training) and 20-30% (for testing) can yield optimal 

performance. [18],[19]. For our model, 75 % of the data is reserved 

for training, and 25 % is reserved for testing, with the split being 

consistent on whether the data belongs to type 1 or type 2 

insulators. 

The test set data is then used to test the models’ predictive 

accuracy. This allows the model to be trained on the given data 

with as slight bias and training error as possible but still retain the 

ability to be generalized to new data with as slight variance and test 

error as possible. 

Table 2 presents various case studies, detailing the number 

of elements in the insulator chain for each type of insulator. 

Additionally, it includes the number of training data points and 

testing data points for each of the three types of insulators. 

Table 1: Key features of the insulators examined in the study [17]. 

Insulator Type (Model) S (mm) D(mm) L(mm) 

Standard 

profile 

insulators 

NB-70-146 146 255 320 

NB-100-146 146 255 320 

NJ-120-146 146 255 320 

NK-180-146 146 280 320 

NK-220-156 156 280 380 

Anti-

pollution 

profile 

insulators 

NB-100PPZ-146 146 280 445 

NJ-120PPZ-146 146 280 445 

NJ-140PPZ-146 146 280 445 

NK-160PZ-171 171 330 545 

NK-222PZ-171 160 330 545 

Source: Authors, (2025). 

 

Table 2:The different cases studied. 

 Standard profile 

insulators 

Anti-pollution 

insulators 

NE in train Case 22 22 

NE in test case 7 7 

Training data 110 110 

Testing data 35 35 

Source: Authors, (2025). 

 

IV.4 PERFORMANCE EVALUATION METRICS 

This study selected various performance metrics were 

selected to evaluate the proposed models and identify the most 

accurate one for predicting the Flashover output voltage. These 

metrics included the coefficient of determination (R²), root mean 

square error (RMSE), and mean absolute percentage error 

(MAPE). The following formulas were applied to compute these 

indices: [10] 
 

R2 = 1 −
∑  n

k=1  (ytes ,k−ypre, k)
2

∑  n
k=1  (ytess ,k−ytes ,k)

2                            (5) 

 

RMSE = {
∑  n

k=1  (ytes ,k−ypre,k)

n
}

1/2

                       (6) 
 

MAPE = 100%.
∑  n

k=1  |ytes ,k−ypre,k|/ytes ,k

n
               (7) 

 

V. RESULTS AND DISCUSSION 

The assessment of insulator performance in different 

environmental conditions is crucial for comprehending the 

mechanisms underlying arc initiation and flashover incidents. This 

research focuses on examining insulator behavior in both dry and 

rainy settings, with a particular emphasis on how these conditions 

affect their electrical characteristics. 

The findings shed light on the way environmental elements 

impact key parameters like flashover voltage, underscoring the 

necessity for customized predictive models tailored to diverse 

insulator types and weather circumstances. 

The study was conducted in two distinct phases: the first 

phase focused on determining the critical flashover voltage under 

dry conditions, while the second phase examined the same under 

wet conditions, utilizing experimental test data from previous 

research [17]. 

The performance of the model developed using the ANN-

PSO approach was thoroughly evaluated, yielding superior results 

compared to existing methodologies. These findings are presented 

in Figures 3 to 6. Figures 3 and 4 present the performance of the 

ANN-PSO model in predicting the flashover voltage using the 

testing dataset for the standard profile insulator under dry and rainy 
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condition. The model demonstrates a remarkable ability to closely 

replicate the trend of the experimental data, indicating that it has 

been effectively trained to capture the complex, nonlinear 

relationships governing flashover voltage behavior. The significant 

overlap between the experimental results and the ANN-PSO 

predictions during the testing phase underscores the model's high 

degree of accuracy and its capability to generalize the intricate 

characteristics of flashover voltage for both insulator profiles. 

 

 
Figure 3: ANN-PSO model performance for testing (standard 

profile under dry conditions) 

Source: Authors, (2025). 

 

 
Figure 4: ANN-PSO model performance for testing (standard 

profile under Rain conditions) 

Source: Authors, (2025). 
 

Figures 5 and 6 evaluate the model’s performance using an 

independent testing dataset for the anti-pollution profile insulator, 

offering additional confirmation of its predictive accuracy. 

Even when faced with data points not previously 

encountered during training, the ANN-PSO model consistently 

produces predictions that closely match the experimental results. 

This reliability under  

unfamiliar conditions underscore the model’s robustness and its 

strong ability to generalize beyond the training dataset. 

The results highlight the model's potential as an effective 

tool for predicting critical flashover voltage, with implications for 

optimizing insulator design and improving the reliability of high-

voltage systems under diverse operating conditions. 

 
Figure 5: ANN-PSO model performance for testing (Anti-

pollution profile under dry conditions) 

Source: Authors, (2025). 

 

 
Figure 6: ANFIS-PSO model performance for testing (Anti-

pollution profile under Rain conditions). 

Source: Authors, (2025). 

 

According to the results presented in Figures 3 through 6, 

the flashover voltage of insulators under rainy conditions is 

significantly lower compared to dry conditions. This explains how 

the deposition of water droplets on the surface of insulators alters 

the resistance Rp. Rain introduces water on the insulator's surface, 

which can significantly reduce the surface resistance, especially if 

the water contains dissolved salts or other contaminants. 

The presence of water promotes the formation of a 

conductive path along the insulator's surface, leading to a 

substantial decrease in flashover voltage. This means that under 

wet conditions, the insulator is more prone to flashover at lower 

voltages compared to dry conditions. By comparing the values of 

flashover voltage in dry and rainy conditions, we can calculate the 

mean percentage as follows: 

For standard profile  :             
V Dry

V Rain 
 =1.3423, 

For anti-pollution profile:       
V Dry

V Rain
 =1.4600, 

Anti-pollution profile insulators exhibit clear superiority 

over standard profile insulators due to their enhanced design 
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features tailored for polluted and challenging environments. With 

increased leakage distances and optimized profiles, they effectively 

reduce surface electric field intensity and mitigate the risk of 

flashovers caused by contamination and moisture. 

Unlike standard insulators, which are more susceptible to 

flashovers under polluted or wet conditions, anti-pollution 

insulators demonstrate higher flashover voltage and better 

performance, even in regions with heavy industrial emissions, salt 

deposits, or extreme weather. Their self-cleaning capability allows 

rain and wind to remove contaminants more efficiently, 

maintaining their insulating properties and reducing maintenance 

requirements. 

Additionally, anti-pollution insulators are more resistant to 

surface erosion and material degradation, ensuring longer 

operational life and greater reliability in high-voltage applications. 

These attributes make them the preferred choice for ensuring the 

safety and efficiency of power transmission systems in harsh 

environmental conditions. 

To evaluate the precision of the ANN-PSO model, one 

approach is to analyse the correlation between the actual   critical 

flashover voltage (Vc) and the estimated values produced by the 

ANN-PSO. With the maximum possible correlation being one, a 

correlation value closer to 1 indicates a higher performance level 

of the model. Figures 7 and 8 display the correlation for the 

estimated versus actual values of Vc for the Anti-pollution profile 

insulator under both dry and rainy conditions, which were used to 

assess the model. 

The data points almost perfectly align with the line of best 

fit, demonstrating the model's strong ability to accurately predict 

the duty ratio for the test dataset. Specifically, the correlation for 

the test set under dry conditions reached 0.99812, while under rainy 

conditions, it was 0.999, showcasing the model's high accuracy in 

both scenarios. Evaluating the ANN-PSO model's performance 

involves comparing it with other models, a key step in assessing its 

effectiveness. 

To do this, validation indices such as RMSE, MAPE, and 

R² were measured against results previously reported in literature 

for two specific scenarios, as detailed in Table 3. From the 

comparison outlined in Table 3 with other intelligent methods, it is 

evident that the model we propose stands out by securing a higher 

coefficient of determination (R²=0.999) and exhibiting a 

remarkably low root mean square error (RMSE=0.00288), clearly 

surpassing other modelling approaches in effectiveness. 
 

 
Figure 7: Correlation between predicted and actual Critical 

Flashover Voltage values for Anti-pollution profile insulators 

tested under dry conditions. 

Source: Authors, (2025). 

 
Figure 8: Correlation between predicted and actual Critical 

Flashover Voltage values for Anti-pollution profile insulators 

tested under Rainy conditions. 

Source: Authors, (2025). 

 

Table 3: Evaluating the suggested ANN-PSO models against 

other modelling approaches. 

Methods (RMSE) (R2) (MAPE) 

GMDL Dry [17] - 0.9929 - 

GMDL Rain [17] - 0.998 - 

LS-SVM Dry [17] 0.0389 0.997 - 

LS-SVM Rain [17] 0.371 0.9983 - 

ANN-PSO Dry 0.00288 0.999 0.2458 

ANN -PSO Rain 0.00295 0.99812 0.3546 

Source: Authors, (2025). 

 

The findings indicate that an ANN trained with PSO not 

only offers more accurate predictions, but also requires fewer 

computational resources. This approach is particularly robust, as it 

avoids becoming trapped in local optima. Moreover, it benefits 

from straightforward logic, ease of implementation, and built-in 

intelligence. When compared to results from practical experiments, 

the PSO-ANN technique proves to be highly effective in 

forecasting flashover in high-voltage polluted insulators. 
 

VI. CONCLUSIONS 

This study introduces an advanced Artificial Neural 

Network (ANN) model optimized using the Particle Swarm 

Optimization (PSO) algorithm to predict the flashover voltage of 

glass insulators with standard and anti-pollution profiles under dry 

and rainy conditions. The research highlights the significant 

influence of raindrops on reducing flashover voltage, emphasizing 

the critical implications for the reliability of high-voltage insulation 

systems. 

The ANN's parameters were meticulously fine-tuned by 

leveraging the PSO algorithm, enabling the model to effectively 

capture the complex interactions between insulator characteristics, 

environmental conditions, and flashover performance. The 

findings indicate that this model excels at forecasting flashover 

voltages for contaminated high-voltage insulators in various 

weather conditions. 

To evaluate the effectiveness of the suggested model, 

several statistical measures were utilized, including the Root Mean 

Square Error (RMSE), the Mean Absolute Percentage Error 

(MAPE), and the coefficient of determination (R²). The analyses 

and outcomes of this study, including comparisons with other 

methodologies such as GMDL, ANFIS, and LSSVM models, 
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distinctly highlight the proficiency of the proposed ANN-PSO 

modelling approach. It effectively predicts the critical flashover 

voltage for various insulator types across different regions, by 

providing comprehensive data on the electrical transmission 

system. 

To construct a more comprehensive and adaptive predictive 

framework, future research could enhance this study by integrating 

additional environmental and climatic variables, such as 

temperature, humidity, wind speed, and varying pollution levels. 

Incorporating real-time monitoring data from power systems 

would enhance the model's precision and applicability in dynamic 

operational settings. Moreover, exploring hybrid optimization 

techniques or ensemble learning approaches could augment the 

model's performance, improving its predictive accuracy and 

robustness under complex scenarios. 
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