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This paper covers the impact of voltage dependent load models on the small signal stability 

in Western States Coordinating Council (WSCC) system having Automatic Voltage 

Regulator (AVR) with increased generation and load scenarios. Earlier work on the same 

system using constant power type of load representation for locating the Hopf bifurcation 

point was done by the authors of this manuscript. This paper deals with the extension of the 

previous work to include various voltage dependent small signal load models such as 

Constant Current (CC),  Constant Impedance (CZ),  Industrial (IND) and large scale Electric 

Vehicle (EV) for evaluating damping ratios and sketching the locus of critical modes at 

stressed loadings by defining six cases. A thorough comparison of damping ratios of several 

complex modes obtained after including various voltage dependent load models in the 

linearization programmes with the constant power model presented in earlier work at the 

nominal loading is done. It is concluded that by including large scale EV load model at load 

buses, highest damping ratio of exciter mode corresponding to first generator of WSCC 

system was obtained when compared to remaining load models.  
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I. INTRODUCTION 

Stability of a system can be broadly classified into large 

scale stability and small signal stability. The behaviour of system 

with huge disturbance is dealt by former one where non-linear 

differential equations have to be solved at every time step using 

various numerical integration techniques [1]. The later one is small 

scale stability which encompasses small disturbances where 

linearization process for Differential Algebraic Equations (DAE’s) 

are taken up and displayed in state space form to provide insight 

into asymptotic stability behaviour of system near equilibrium 

point.  

Earlier the power system loads were categorised as Constant 

Power (CP), Constant Current (CC) and Constant Impedances (CZ) 

[2], [3]. For the purpose of load flow, CP type is the most 

convenient form of load representation whereas CZ type is the most 

flexible for combining it into the bus admittance matrix to facilitate 

Krons reduction during linearization processes. Industrial loads 

(IND) can be expressed as combination of CZ, CC, CP (ZIP) 

model and its inclusion in distribution network for solving the 

network voltages are presented in [4]. Using adjustable converter 

dynamics for CP loads, the effects of CP and CZ loads are 

compared in a distribution network with four loads thus suggesting 

the degradation of performance with CP loads [5]. Electric 

Vehicle(EV) loads are emerging in the market and expected to rise 

in the future and thus large scale integration of EV’s is a matter of 

concern and hence the inclusion of this model was considered in 

this manuscript.  

Taking CC and CZ models into consideration for small 

signal stability analysis, [6] developed analytical techniques to 

include the effect of above models in the overall system matrix 

formulation in Western States Coordinating Council System 

(WSCC) as shown in Figure 1. The application of forward and 

backward sweep methods in micro grid having different EV models 

are given in [4], [7] presented current injection load flow to 

evaluate voltage profile and losses using ZIP based static EV load 

model in distribution network. [8] considered the application of 

Particle Swarm Optimization (PSO) based tuning of power system 
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stabilizer for improving the damping performance in distribution 

network having static ZIP-EV load model. They did not present the 

behaviour of modes with simultaneous increase in load and 

generation.  

 

 
Figure 1: Single line diagram of Western States Coordinating 

Council System. 

Source: Authors, (2025) 

Hopf bifurcation phenomenon occurs when one of the Eigen 

value transitions from Left Hand Side (LHS) to Right Hand Side 

(RHS) of complex plane due to parametric change of any algebraic 

variable in system while remaining values are in LHS [9], [10]. 

Usage of Hopf bifurcation concept to power system domains can 

be seen in [11]. Application of the above phenomenon on the 

DAE’s of South East Brazilian System can be seen in the [12] for 

dynamic voltage monitoring. Checking the available transfer 

capacity in a two area system by Hopf bifurcation is seen in works 

of [13]. They considered CZ model for loads during linearization 

process. [14] considered WSCC system with AVR and thoroughly 

studied the locus of critical mode that underwent Hopf bifurcation 

by defining six scenarios. In the work of [15], load change was 

considered at a single load bus whereas [14] considered load 

change at all the load buses. They considered CP type of load 

representation for load flow and linearization but didn’t present any 

information on the Hopf bifurcation phenomenon if voltage 

dependent load models like CC, CZ, IND and EV are taken into 

account. Based on the literature accumulated above, the following 

objectives are taken into custody in this paper: 

 

1. To evaluate the damping ratios of selected complex modes of 

various linearized models of system coupled with voltage 

dependent load models including EV type at nominal loading.   

2. To compare the damping ratios of selected modes obtained in 

objective (1) and appreciate the improvement in damping 

ratios of selected mode with the proposed voltage dependent 

load models.  

3. To evaluate the dynamic instability phenomenon via Hopf 

bifurcation with AVR in WSCC System by treating loads as 

voltage dependent type instead of constant power type as in 

[14]. 

4. To find out whether dynamic instability limit can be extended 

through Hopf bifurcation analysis with the inclusion of 

voltage dependent load models. 
 

Section II briefs the details of WSCC System, modelling of 

AVR followed by the descriptions of Hopf bifurcation 

phenomenon. Section III covers the results and discusses the 

comparison of damping ratios of voltage dependent load models 

with constant power model described in [14]. Section IV states the 

conclusions.  

II. WSCC SYSTEM MODELLING WITH AVR AND LOAD 

MODELS ALONG WITH CONCEPT OF HOPF 

BIFURCATION 

Section II.1 gives the information on WSCC System 

together with various voltage dependent load models. Section II.2 

explains the structure of AVR Section II.3 details the Hopf 

bifurcation concept and Section II.4 deals with the connection of 

dots of the above sections through an algorithm to achieve the 

objectives outlined in Section I. 

 

II.1. MODELLING OF WSCC SYSTEM 

The explanation for modelling of generators, networks and 

loads of WSCC system shown in Figure 1 are given in [16]. The 

procedure of linearization of machine rotor and stator equations, 

transmission circuit equations in power balance form and 

eigenvalue computation are written in [16], [17]. The nomenclature 

is taken from [16]. All generators of WSCC are modelled by two 

axis model. Network is represented by steady state model by not 

considering its transients. Mechanical damping is considered as 

given in [16]. Loads are represented by constant power for 

evaluating load flow during steady state and proposed voltage 

dependent load models for dynamic studies via linearization. 

For representing CC and CZ models, exponential form is 

used [2], [3]. IND and EV models are represented by ZIP models 

taken from [4, 7].  

 

𝑃𝐿𝑖 = 𝑃𝐿𝑖0 [𝛼𝑝 + 𝛽𝑝 (
𝑉𝑖

𝑉𝑖0

) + 𝛾𝑝 (
𝑉𝑖

𝑉𝑖0

)
2

]                              (1) 

 

 𝑄𝐿𝑖 = 𝑄𝐿𝑖0 [𝛼𝑞 + 𝛽𝑞 (
𝑉𝑖

𝑉𝑖0
) + 𝛾𝑞 (

𝑉𝑖

𝑉𝑖0
)

2

]                              (2) 

 

The nomenclature used in equations (1) and (2) are as per 

[4], [7]. The proposed linearized voltage dependent load models in 

compact form using equations (1) and (2) that needs to be coupled 

to the linearized network and generator DAE’s is shown in matrix 

equation (3). 
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[
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II.2. MODELLING OF AVR 

Automatic Voltage Regulators are used to improve the 

synchronising torque and bring voltage near reference voltage set 

to it thus improving transient stability. The block diagram is shown 

in Figure 2.  

 

 
Figure 2: Block diagram of automatic voltage regulator. 

Source: Authors, (2025) 
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Large gain and low time constant AVR as suggested in [16] 

is used in this paper. The above block parameters ensure rapid 

control of steady state voltage. 

 

II.3. HOPF BIFURCATION CONCEPT 

Consider a system governed by DAE’s (4-5) as given 

below: 

�̇� = 𝑓(𝑥, 𝑦, 𝑢)                                  (4) 

 

𝑔(𝑥, 𝑦, 𝑝) =  ∈ �̇�                               (5) 

 

The order of vector y, x are ‘r’ and ‘k’ respectively. ‘x’ is 

state vector ,‘u’ is control vector and ‘p’ is parameter variable that 

induces Hopf bifurcation in the system. ‘y’ covers algebraic 

variables. For a particular value of ‘p’, (5) can be solved to obtain 

the steady state point xe. Equations (4) and (5) are linearized about 

xe to get the eigenvalues for evaluating damping ratios and 

identifying critical modes. Equations (4) and (5) are linearized for 

given ‘p0’ and ‘u’ to get Equations (6) and (7). 

 

∆�̇� = 𝐴𝑓,𝑥∆𝑥 + 𝐴𝑓,𝑦∆𝑦                            (6) 

 

∈ ∆�̇� = 𝐴𝑔,𝑥∆𝑥 + 𝐴𝑔,𝑦∆𝑦                        (7) 

 

Eliminating ∆y by setting ∈  to zero in Equation (7), 

Equation (6) is simplified as given below. 

 

∆�̇� = [𝐴𝑓,𝑥
𝑝0

− 𝐴𝑓,𝑦
𝑝0

𝐴𝑔,𝑦
𝑝0 −1

𝐴𝑔,𝑥
𝑝0

] ∆𝑥 = [𝐴𝑠𝑦𝑠
𝑝0

] ∆𝑥          (8) 

 

where 𝐴𝑓,𝑥
𝑝0

,  𝐴𝑓,𝑦
𝑝0

,  𝐴𝑔,𝑥
𝑝0

, 𝐴𝑔,𝑦
𝑝0

 are given below: 
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          𝐴𝑠𝑦𝑠
𝑝0

= [𝐴𝑓,𝑥
𝑝0

− 𝐴𝑓,𝑦
𝑝0

𝐴𝑔,𝑦
𝑝0 −1

𝐴𝑔,𝑦
𝑝0

]                        (9) 

where ‘𝐴𝑠𝑦𝑠
𝑝0

’ is overall system matrix obtained to compute 

eigenvalues.  

If all eigenvalues lie in the left half of complex plane, 

system is asymptotically stable, else system is unstable. The value 

of parameter for which just one pair of complex eigenvalues cross 

imaginary axis into right half of ‘s’ plane while seeing that all the 

left over eigenvalues are housed in the left half plane of ‘s’ plane, 

then  such a phenomenon is coined as Hopf bifurcation. 

 

II.4. STEPS TO ASSESS DYNAMIC INSTABILITY VIA 

HOPF BIFURCATION 

The following algorithm given in II.4.1 is applied on 6 cases 

defined as follows: 

A, B, C: Variation in real power of load-A, load-B and load-C 

respectively with AVR. 

D, E, F: Variation in λ (loading factor) corresponding to load-A, 

load-B and load-C respectively with AVR. 

 

II.4.1. ALGORITHM 

1. Using Newton-Raphson method, solve network equations 

treating loads as CP model. 

2. Calculate synchronous machine variables by initializing DAE’s 

of machine to 0 [17]. 

3. Calculate [𝐴𝑠𝑦𝑠
𝑝0

] using linearized DAE model of machine, 

AVR, voltage dependent load model and network equations 

using method suggested in [6]. 

4. Evaluate eigenvalues of overall system matrix and calculate 

damping ratios of selected modes.  

5. Apply change in real power / real and imaginary power of load 

buses using equation/s (10) and (11) with change in generations 

as elaborated in [14] and recalculate steps 1 to 4 for inducing 

Hopf bifurcation. ‘λi’ in Equations (10) and (11) is loading 

factor. The other variables in Equations (10)-(11) are defined in 

[6] 

𝑃𝐿𝑖 = 𝑃𝐿𝑖,𝑜(𝜆𝑖)                              (10) 

 

𝑄𝐿𝑖 = 𝑄𝐿𝑖,𝑜(𝜆𝑖)                             (11) 

 

6. Mark the critical mode in each case and sketch the entire locus 

till the mode reaches imaginary axis line. 

7. Evaluate steps 1-6 for each case and if Hopf bifurcation is 

reached, stop the algorithm. If step 1 cannot be solved, 

algorithm can be terminated.  

8. Repeat steps 1-7 for all load models CC, CZ, IND and EV load 

models located at buses 6,7 and 9. 

 

III. RESULTS AND DISCUSSIONS 

The system shown in Figure 1 has three generators G1, G2, 

G3 and loads ‘A’, ‘B’ and ‘C’. The data is taken from [16]. The 

loads at nodes 6, 7 and 9 are designated as Load ‘A’, ‘B’ and ‘C’ 

respectively. Node-1 is taken as reference bus for load flow 

calculations and G1 is taken as reference generator to eliminate the 

zero eigenvalue obtained after the process of linearization. The 

development of programmes to evaluate power flows using CP 

model and linearization of WSCC system with AVR accompanied 

by CC, CZ, IND and EV type models was done in MATLAB 2020 

software. The locus of critical mode for each type of load model 

for seeing the Hopf bifurcation was also furnished.    

 

III. 1. DISCUSSION REGARDING CASE 1 

The results of load flow analysis with the data given in [15] 

was obtained exactly in this study. The MATLAB program was 
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developed for cases A-F defined in the previous section of the 

manuscript. The eigenvalue analysis done with CP type load 

representation for all cases A-F given in [14] is reproduced once 

again for ready reference as shown in Table 1. By modelling loads 

at nodes 6, 7 and 9 as CC, CZ, IND and EV, the results of small 

signal stability analysis program was presented in Table 1. [14] 

gave the eigenvalue analysis results at nominal loading and critical 

Table 1: Eigenvalue analysis with AVR for various types of load representation at nominal loading. 

CP 

[14, 15 ] 

CC CZ IND EV 

-0.8492 ±12.7672ia -0.8410 ±12.7715ia -0.8348 ±12.7743ia -0.8424 ±12.7706ia -0.8403 ±12.7717ia 

-0.2512 ± 8.3648ib -0.2341 ± 8.3243ib -0.2214 ± 8.2953ib -0.2419 ± 8.3406ib -0.2464 ± 8.3470ib 

-2.2421 ± 3.0195ic -2.3070 ± 2.8234ic -2.3559 ± 2.6635ic -2.3591 ± 2.7278ic -2.5161 ± 2.3360ic 

-4.6654 ±1.3830i -4.6682 ± 1.3807i -4.6708 ± 1.3787i -4.6693 ± 1.3788i -4.6749 ± 1.3705i 

-3.4855 ± 1.0014i -3.4931 ± 1.0056i -3.4996 ± 1.0096i -3.5044 ± 1.0406i -3.5482 ± 1.1511i 

-0.8882, -0.1365 -0.8855, -0.1385 -0.8830, -0.1401 -0.8843, -0.1381 -0.8792, -0.1387 

-2.2613, -3.2258 -2.2396, -3.2258 -2.2204, -3.2258 -2.2008, -3.2258 -2.0755, -3.2258 

Source: Authors, (2025) 

 

Table 2: Comparison of damping ratios of modes ‘a-c’ for various load representation at load buses at nominal loading. 

Mode Damping Ratios 

CP 

[Calculated from 14, 15] 

CC CZ IND EV 

a 0.06637 0.06570 0.06521 0.06582 0.06565 

b 0.03002 0.02811 0.02668 0.02899 0.02951 

c 0.59616 0.63273 0.66253 0.65414 0.73282 

Source: Authors, (2025) 

 

Table 3: Eigenvalue analysis corresponding to cases A-F for CC type of load representation at increased loading. 

Case ‘A’ Case ‘B’ Case ‘C’ Case ‘D’ Case ‘E’ Case ‘F’ 

-0.8088 ±12.7183ia -1.4198 ±11.8732ia -0.9843 ±12.3188ia -0.8901 ±12.6499ia -1.0147 ±12.3205ia -1.0880 ±12.2472ia 

-0.0001 ± 8.5860ib -0.0838 ± 8.0561ib -0.9184 ± 7.9165ib -0.1698 ± 7.8606ib -0.1985 ± 7.9403ib -0.0006 ± 8.8541ib 

-1.2493 ± 4.7139ic -0.0001 ± 6.5348ic -0.0001 ± 5.7919ic -1.7254 ± 4.4499ic -1.0403 ± 5.6069ic -0.1033 ± 6.2785ic 

-4.3314 ± 1.2393i -4.1034 ± 1.0313i -3.8938 ± 1.0099i -4.2110 ± 1.3186i -4.0460 ± 1.0191i -3.4648 ± 0.9252i 

-2.7580 ± 1.5803i -2.7619 ± 1.3663i -2.6600 ± 1.6248i -2.7887 ± 1.4327i -2.7694 ± 1.2993i -2.6358 ± 1.5638i 

-0.1407, -1.5464 -0.1364, -1.9495 -0.1337, -2.4048 -0.1406, -1.6124 -0.1376, -2.0914 -0.1361, -3.2527 

  -4.5421, -3.2258 -4.4771, -3.2258 -4.7029, -3.2258 -4.2924, -3.2258 -4.2151, -3.2258 -4.6412, -3.2258 

a), b) are swing modes associated with G3 and G2 respectively, c) Exciter mode of G1. 

Source: Authors, (2025) 

loading for exploring the phenomenon of Hopf bifurcation. 

The authors of this manuscript calculated the damping ratios of 

modes of specific interest for CP type and presented in Table 2 for 

comparing the damping ratios of modes ‘a’, ‘b’ and ‘c’. It can be 

seen that the mode that was subjected to Hopf bifurcation by 

inducing both increase in generation and loading was mode ‘c’ as 

stated in [14] whose damping ratio is 0.59616 at the nominal 

loading.  

It is clear from Table 2 that both mode ‘a’ and ‘b’ damping 

ratios are highest when loads are represented by CP and least when 

represented by CZ. Mode ‘c’ damping ratio is highest if load is 

represented by EV and least if represented by CP. 

  

III. 1. DISCUSSION REGARDING CC TYPE 

The results of eigenvalue analysis for cases A-F at higher 

loading are presented in Table 3. It can be seen that mode ‘b’ is the 

critical mode for case ‘A’ and case ‘F’ as depicted in Figure 3 and 

Table 3.  Mode ‘c’ is undergoing Hopf bifurcation for case ‘B’ and 

case ‘C’. The values of V6, V7 and V9 at critical loading P6 equal to 

5.2703 p.u. for case ‘A’ are 0.7638 p.u., 0.9227 p.u., and 0.9606 

p.u. respectively. The values of V6, V7 and V9 at critical loading P7 

equal to 4.8366 p.u. for case ‘B’ are 0.9072 p.u., 0.7732 p.u. and 

0.9625 p.u. respectively. The values of V6, V7 and V9 at critical 

loading P9 equal to 5.3714 p.u. for case ‘C’ are 0.9199 p.u., 0.9352 

p.u. and 0.8683 p.u. respectively. Load flow doesn’t converge 

beyond λ6 equal to 3.2054 and λ7 equal to 4.3130 for cases ‘D’ and 

‘E’ respectively. Hence the load flow results at loading of λ6 and λ7 

for cases ‘D’ and ‘E’ gave the values of V6, V7 and V9 as 0.7071, 

0.9172, 0.9541and 0.8972, 0.7071, 0.9569 p.u. respectively. The 

values of V6, V7 and V9 at critical loading λ9 equal to 4.4985 for 

case ‘F’ are 0.9217 p.u., 0.9408 p.u. and 0.7870 p.u. respectively. 

The locus of mode ‘b’ for cases A, D, E and F is showcased in 

Figure 3 whereas the locus of mode ‘c’ for cases B, C, D and E is 

depicted in Figure 4. 
 

 
Figure 3: Locus of mode ‘b’ for cases A, D, E and F 

corresponding to CC load. 

Source: Authors, (2025) 
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Table 4: Eigenvalue analysis corresponding to cases A-F for CZ type of load representation at increased loading. 

Case ‘A’  Case ‘B’ Case ‘C’ Case ‘D’  Case ‘E’ Case ‘F’ 

-0.8021 ±12.7157ia -0.9434 ±12.4524ia -0.6827 ±13.2105ia -0.8770 ± 12.6651ia -0.9056 ± 12.5878ia -0.7877 ± 12.7764ia 

-0.1804 ± 8.4371ib -0.2166 ± 7.8690ib -0.0001 ± 9.4076ib -0.1968 ± 7.8018ib -0.2070 ± 7.8753ib -0.0002 ± 9.1413ib 

-2.0965 ± 2.7039ic -1.4274 ± 4.6266ic -0.5633 ± 5.1919ic -2.3133 ± 2.9785ic -2.1429 ± 3.4784ic -0.7761 ± 5.4474ic 

-4.2353 ± 1.2171i -3.9993 ± 0.9247i -3.4867 ± 0.8158i -4.2068 ± 1.3023i -4.0591 ± 1.0184i -3.2609 ± 0.9956i 

-2.8017 ± 1.8685i -2.7338 ± 1.3046i -2.6337 ± 1.5575i -2.7769 ± 1.4511i -2.7239 ± 1.1688i -2.6179 ± 1.4716i 

-0.1397, -1.6851 -0.1324, -2.2182 -0.1240, -3.2915 -0.1420, -1.6083 -0.1379, -2.0701 -0.1327, -3.7022 

-4.5763, -3.2258 -4.5077, -3.2258 -4.8035, -3.2258 -4.2516, -3.2258 -4.2045, -3.2258 -4.6927, -3.2258 

a), b) are swing modes associated with G3 and G2 respectively, c) Exciter mode of G1. 

Source: Authors, (2025) 

 

Table 5: Eigenvalue analysis corresponding to cases A-F for IND type of load representation at increased loading. 

Case ‘A’  Case ‘B’ Case ‘C’ Case ‘D’  Case ‘E’ Case ‘F’ 

-0.8512 ±12.6942ia -1.4340 ±11.7076ia -0.9609 ±12.1849ia -0.9369 ±12.6315ia -1.3526 ±11.9576ia -1.0828 ±12.0213ia 

-0.0004 ± 8.0582ib -0.2585 ± 7.9714ib -1.3752 ± 7.2085ib -0.1876 ± 7.4743ib -0.1681 ± 8.0306ib -0.8617 ± 7.9821ib 

-0.2307 ± 6.3536ic -0.0016 ± 6.6884ic -0.0001 ± 5.8430ic 0.0035 ± 7.0330ic 0.0000 ± 7.1063ic -0.0000 ± 6.3276ic 

-4.4259 ± 1.2514i -4.1699 ± 1.0823i -4.0229 ± 1.0967i -4.3210 ± 1.3538i -4.1091 ± 1.0773i -3.7576 ± 1.0324i 

-2.7501 ± 1.4001i -2.7728 ± 1.3759i -2.6714 ± 1.6017i -2.7733 ± 1.3029i -2.8113 ± 1.3604i -2.6565 ± 1.5797i 

-0.1383, -1.4017 -0.1373, -1.7911 -0.1379, -2.1158 -0.1378, -1.4435 -0.1375, -1.9195 -0.1386, -2.6056 

-4.4824, -3.2258 -4.4339, -3.2258 -4.6279, -3.2258 -4.2458, -3.2258 -4.1444, -3.2258 -4.5374, -3.2258 

a), b) are swing modes associated with G3 and G2 respectively, c) Exciter mode of G1. 

Source: Authors, (2025) 

 

Table 6: Eigenvalue analysis corresponding to cases A-F for EV type of load representation at increased loading. 

Case ‘A’  Case ‘B’ Case ‘C’ Case ‘D’  Case ‘E’ Case ‘F’ 

-0.8104 ±12.7079ia -1.0123 ± 12.0948ia -0.9633 ± 12.4625ia -0.8805 ±12.6703ia -0.9193 ±12.5059ia -0.9007 ± 12.4753ia 

-0.0111 ± 9.0028ib -0.3182 ± 7.6866ib -0.3303 ± 8.6146ib -0.0001 ± 7.7103ib -0.2353 ± 7.8946ib -0.0002 ± 8.9506ib 

-1.6566 ± 3.6309ic -1.1562 ± 5.3749ic -0.0000 ± 5.8380ic -1.3882 ± 4.6642ic -1.9829 ± 4.0069ic -0.4935 ± 5.8933ic 

-4.2505 ± 1.2411i -4.0168 ± 0.9094i -3.3080 ± 0.8574i -4.2300 ± 1.3464i -4.0849 ± 1.0019i -3.1924 ± 1.0484i 

-2.7526 ± 1.7397i -2.7737 ± 1.3957i -2.6412 ± 1.6177i -2.7187 ± 1.4396i -2.7970 ± 1.3223i -2.6194 ± 1.4972i 

-0.1408, -1.6766 -0.1333, -2.1876 -0.1287, -3.6718 -0.1447, -1.5939 -0.1371, -2.0393 -0.1344, -3.8633 

-4.6114, -3.2258 -4.4649, -3.2258 -4.8137, -3.2258 -4.4037, -3.2258 -4.1360, -3.2258 -4.7056, -3.2258 

a), b) are swing modes associated with G3 and G2 respectively, c) Exciter mode of G1. 

Source: Authors, (2025) 

 

III. 2. DISCUSSION REGARDING CZ TYPE 

The results of eigenvalue analysis for cases A-F at higher 

loading are presented in Table 4. It can be seen that mode ‘b’ is the 

critical mode for case ‘C’ and case ‘F’ as seen in Table 4. It is 

undergoing Hopf bifurcation as seen in Figure 5. The values of V6, 

V7 and V9 at stressed loading P6 equal to 5.39 p.u. for case ‘A’ are 

0.7160 p.u., 0.9034 p.u., and 0.9490 p.u. respectively. Beyond the 

loading of 5.39 p.u. at bus 6, the load flow doesn’t exists. The 

values of V6, V7 and V9 at stressed loading P7 equal to 4.98 p.u. for 

case ‘B’ are 0.8845 p.u., 0.7164 p.u., and 0.9498 p.u. respectively. 

Beyond the loading of 4.98 p.u. at bus 7, the load flow doesn’t 

exists. The Hopf bifurcation occurs at a loading of 5.67 p.u. at bus 

9  as seen in Table 4 for case ‘C’ where the values of V6, V7 and V9 

are 0.8959 p.u., 0.9117 p.u. and 0.8366 p.u. respectively. Load flow 

does not converge beyond λ6 equal to 3.2054 and λ7 equal to 4.3130 

for cases ‘D’ and ‘E’ respectively. Hence the load flow results at 

loading of λ6 and λ7 for cases ‘D’ and ‘E’ gave the values of V6, V7 

and V9 as 0.7071, 0.9172, 0.9541 and 0.8972, 0.7071, 0.9569 p.u. 

respectively. The values of V6, V7 and V9 at critical loading λ9 equal 

to 4.6012 for case ‘F’ are 0.9142 p.u., 0.9337 p.u. and 0.7706 p.u. 

respectively. The locus of mode ‘b’ for cases A-F are displayed in 

Figure 5. 

 

 
Figure 4: Locus of mode ‘c’ for cases B, C, D and E and F 

corresponding to CC load. 

Source: Authors, (2025) 
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Figure 5: Locus of mode ‘b’ for cases A- F corresponding to CZ 

load. 

Source: Authors, (2025) 

III. 3. DISCUSSION REGARDING IND TYPE 

The results of eigenvalue analysis for cases A-F at higher 

loading are presented in Table 5. The Hopf bifurcation occurs at a 

loading of P6 equal to 5.0028 p.u. in mode ‘b’ for case ‘A’ as in 

Table 5. At this loading, the values of V6, V7 and V9 are 0.8135 

p.u., 0.9432 p.u. and 0.9728 p.u. respectively. The Hopf  

bifurcation occurs at a loading of P7 equal to 4.6761 p.u. in mode 

‘b’ for case ‘B’ as in Table 5. At this loading, the values of V6, V7 

and V9 are 0.9204 p.u., 0.8062 p.u. and 0.9701 p.u. respectively. 

The Hopf  bifurcation occurs at a loading of P9 equal to 5.13303 

p.u. in mode ‘c’ for case ‘C’ as in Table 5. 

At this loading, the values of V6, V7 and V9 are 0.8135 p.u., 

0.9432 p.u. and 0.9728 p.u. respectively. The Hopf bifurcation 

occurs at a loading of λ6 equal to 3.0087 in mode ‘c’ for case ‘D’ 

as in Table 5. At this loading, the values of V6, V7 and V9 are 0.7686 

p.u., 0.9389 p.u. and 0.9677 p.u. respectively. The Hopf bifurcation 

occurs at a loading of λ7 equal to 4.1638 in mode ‘c’ for case ‘E’ 

as in Table 5. At this loading, the values of V6, V7 and V9 are 0.9113 

p.u., 0.7474 p.u. and 0.9650 p.u. respectively. The Hopf bifurcation 

occurs at a loading of λ9 equal to 4.2797 in mode ‘c’ for case ‘F’ as 

in Table 5. At this loading, the values of V6, V7 and V9 are 0.9349 

p.u., 0.9534 p.u. and 0.8164 p.u. respectively. Figure 6 shows the 

locus of mode ‘b’ for case A and locus of mode ‘c’ for cases B-F. 

 

 
Figure 6: Locus of mode ‘b’ for case A and mode ‘c’ for cases B-

F corresponding to IND load. 

Source: Authors, (2025) 

III. 4. DISCUSSION REGARDING EV TYPE 

The results of eigenvalue analysis for cases A-F at higher 

loading are displayed in Table 6. Load flow doesn’t exists beyond 

the value of P6
 equal to 5.39 p.u. for case ‘A’. At the value of P6 

equal to 5.39 p.u., the values of V6, V7 and V9 are 0.7160 p.u., 

0.9034 p.u. and 0.9490 p.u. respectively. Load flow doesn’t exists 

beyond the value of P7
 equal to 4.08 p.u. for case ‘B’. At the value 

of P7 equal to 4.08 p.u., the values of V6, V7 and V9 are 0.8845 p.u., 

0.7164 p.u. and 0.9498 p.u. respectively. At the critical loading of 

P9 equal to 5.74264 p.u., Hopf bifurcation is seen in mode ‘c’ for 

Case ‘C’ as shown in Table 6. The Hopf bifurcation occurs at a 

loading of λ6 equal to 3.19955 in mode ‘b’ for case ‘D’ as in Table 

6. At this loading, the values of V6, V7 and V9 are 0.7686 p.u., 

0.9389 p.u. and 0.9677 p.u. respectively. Load flow doesn’t exists 

beyond the value of λ7 equal to 4.3130. Hence the eigenvalue 

analysis at this loading for case ‘E’ is given in Table 6. Hopf 

bifurcation is seen in mode ‘b’ for a loading factor λ9 equal to 

4.65303 as seen in 6th column of Table 6 for case ‘F. Figure 7 and 

8 shows the locus of mode ‘b’ and ‘c’ respectively for all the cases 

A-F. 

 

 
Figure 7: Locus of mode ‘b’ for cases A-F corresponding to EV 

load. 

Source: Authors, (2025) 

 

 
Figure 8: Locus of mode ‘c’ for cases A-F corresponding to EV 

load. 

Source: Authors, (2025) 

III. 5. COMPARISION OF VOLTAGE DEPENDANT LOAD 

MODELS WITH CONSTANT POWER MODEL 

DESCRIBED IN [14] 

The following discussions pertain to Tables 3-6. Hopf 

bifurcation occurs in mode ‘c’ for CP type of load representation 

for case ‘C’ at P6 value of 4.64123 p.u. [14]. By including IND type 

of load representation at all load buses, Hopf bifurcation is 

extended till 5.1330 p.u. for Case ‘C’ which is more than the value 

obtained for CP case as in [14]. Inclusion of CC type of load model 

extended the dynamic instability limit till P6 value of 5.3714 p.u. 

which is more than CP and IND cases. By representing loads as 

CZ, the Hopf bifurcation limit is extended till 5.6700 p.u. which is 

more than CP, IND, CC cases. When the small signal static EV 

load model is represented at all load buses, the value of P6 for case 

‘C’ was obtained as 5.74264 which is highest among all the five 
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types of load models thus proving the ability of EV load model in 

extending the Hopf bifurcation limit via linearized analysis. 

 

IV. CONCLUSIONS 

Small signal stability analysis with AVR in WSCC system 

was done by using various exponential load models like CC, CZ 

and ZIP based industrial and EV load models. A comparison of 

damping ratios of complex modes of specific interest like swing 

modes and exciter mode of reference generator was compared with 

the non-voltage dependent load model presented in earlier work. 

The locus of critical mode for each load model was sketched after 

generating six cases reflecting increased loads and generation 

scenario to capture the Hopf bifurcation phenomenon.  

 

VI AUTHOR’S CONTRIBUTION 

Conceptualization: Ghousul Azam Shaik and Lakshmi Devi 

Aithepalli. 

Methodology: Ghousul Azam Shaik and Lakshmi Devi Aithepalli. 

Investigation: Ghousul Azam Shaik and Lakshmi Devi Aithepalli. 

Discussion of results: Ghousul Azam Shaik and Lakshmi Devi 

Aithepalli. 

Writing – Original Draft: Ghousul Azam Shaik and Lakshmi 

Devi Aithepalli. 

Writing – Review and Editing: Ghousul Azam Shaik and 

Lakshmi Devi Aithepalli. 

Resources: Ghousul Azam Shaik and Lakshmi Devi Aithepalli. 

Supervision: Ghousul Azam Shaik and Lakshmi Devi Aithepalli. 

Approval of the final text: Ghousul Azam Shaik and Lakshmi 

Devi Aithepalli. 

 

VI. ACKNOWLEDGMENTS 

The first author thanks University Grants Commission 

(UGC), New Delhi, India for granting Junior Research Fellowship 

to do Ph.D. research work at Department of Electrical and 

Electronics Engineering, SVU College of Engineering, Sri 

Venkateswara University, Tirupati, India.  

 

VII. REFERENCES 

[1] G.A. Shaik, and L.D. Aithepalli, “Application of Runge Kutta method for 
performing the time domain simulation on single machine infinite bus system with 

automatic voltage regulator,”. In: V.I. George, K.V. Santhosh, S. 

Lakshminarayanan (eds) Control and Information Sciences. CISCON 2018. Lecture 
Notes in Electrical Engineering, vol 1140. Springer, Singapore. 2024. 

https://doi.org/10.1007/978-981-99-9554-723. 

 
[2] C. Concordia, and S. Ihara, “Load representation in power systems stability 

studies,” IEEE Transactions on Power Apparatus and Systems, vol. 101, no. 4, pp. 

969–977, 1982. 
 

[3] W.W. Price, C.W. Taylor, and G.J. Rogers, “Standard load models for power 

flow and dynamic performance simulation,” IEEE Transactions on Power 
Systems, 10(CONF-940702), 1995. doi: 10.1109/59.466523. 

 

[4] Y. Kongjeen, K. Bhumkittipich, N. Mithulananthan, I.S. Amiri, and P. Yupapin, 
“A modified backward and forward sweep method for microgrid load flow analysis 

under different electric vehicle load mathematical models,” Electric Power Systems 

Research, vol. 168, pp. 46-54, 2019. https://doi.org/10.1016/j.epsr.2018.10.031. 
 

[5] Ramya, and Rex Joseph, “A comparative analysis of constant impedance and 

constant power loads in a distribution network,” International Journal of Electrical 
and Computer Engineering, vol. 14, No.6, pp. 6111-6121, 2024. 

http://doi.org/10.11591/ijece.v14i6.pp6111-6121. 

 
[6] R.K. Ranjan, M.A. Pai, and P.W. Sauer, “Analytical formulation of small signal 

stability analysis of power systems with nonlinear load models,” Sadhana, vol. 18, 

pp. 869-889, 1993.  

 
[7] B.K. Jha, A. Kumar, D.K. Dheer, D. Singh, and R.K. Misra, “A modified current 

injection load flow method under different load model of EV for distribution 

system,” International Transactions on Electrical Energy Systems, vol. 30, no. 4, 
pp. 1-25, 2020.  https://doi.org/10.1002/2050-7038.12284. 

 

[8] K. Yenchamchalit, Y.  Kongjeen, K. Bhumkittipich, A. Stativa, and N. 
Mithulananthan, “Control of low-frequency oscillation on electrical power system 

under large EV-charging station installation using PSO technique for turning PSS 

parameters,” International Review of Electrical Engineering, vol. 16, no. 5, pp. 401-
408, 2021. https://doi.org/10.15866/iree.v16i5.20753. 

 

[9] J.Guckenheimer, and P. Holmes, Nonlinear Oscillations, Dynamical Systems, 

and Bifurcations of Vector Fields (Vol. 42), Springer Science & Business Media, 

2013. 
- 

[10]  Z.D. Georgiev, I.M. Uzunov, T.G. Todorov, and I.M Trushev, “The Poincaré–

Andronov–Hopf bifurcation theory and its application to nonlinear analysis of RC 

phase‐shift oscillator” International Journal of Circuit Theory and Applications, 

52(3), pp.1399-1437. 2024. doi.org/10.1002/cta.3783. 

[11] Y. Zhi, H. Wajid, V.M. Venkatasubramanian, W. Ji, P. Panciatici, F. Xavier, 

and T. Gilles, “Computational methods for nonlinear analysis of Hopf bifurcations 
in power system models,” Electrical Power System Research, vol. 212, pp.108574. 

2022. https://doi.org/10.1016/j.epsr.2022.108574. 

 
[12] M.E. Bento, and R.A. Ramos, “An approach for monitoring and updating the 

load margin of power systems in dynamic security assessment,” Electrical Power 

System Research, vol. 198, pp.107365, 2021. 
 

[13] J. Wei, G. Li, and M. Zhou, “Numerical bifurcation and its application in 

computation of available transfer capability,” Applied Mathematics and 
Computation. 2015, vol. 252, pp. 568-574. 

https://doi.org/10.1016/j.amc.2014.12.003. 

 
[14] G.A. Shaik, and L.D. Aithepalli, “Identification of Hopf  bifurcation point 

using small signal stability analysis in a power system with increased lad and 

generation,” Third International Conference on Advances in Electrical, Computing, 

Communication and Sustainable Technologies (ICAECT), Bhilai, India, pp. 1-4, 

2023. Doi.org/10.1109/ICAECT57570.2023.10118189.  

 
[15] M.J. Laufenberg, M.A. Pai, and K.R. Padiyar, “Hopf bifurcation control in 

power systems with static var compensators,” Electrical Power and Energy Systems, 

vol. 19, no. 5, pp. 339-347, 1997. 
 

[16] M.A. Pai, D.P. Sen Gupta, and K.R. Padiyar, Small Signal Analysis of Power 

Systems, Narosa Publishing House, New Delhi, 2004. 
 

[17] P.W. Sauer, M.A. Pai, and J.H. Chow, Power System Dynamics and Stability, 

Wiley-IEEE Press, New Jersey, 1998. 

Page 49

https://doi.org/10.1007/978-981-99-9554-723
https://doi.org/10.1016/j.epsr.2018.10.031
http://doi.org/10.11591/ijece.v14i6.pp6111-6121
https://doi.org/10.1002/2050-7038.12284
https://doi.org/10.15866/iree.v16i5.20753
https://doi.org/10.1016/j.epsr.2022.108574

