
Journal of Engineering and Technology for Industrial Applications

ITEGAM-JETIA

Manaus, v.11 n.51, p. 236-242. January/February., 2025.

DOI: https://doi.org/10.5935/jetia.v11i51.1505

RESEARCH ARTICLE OPEN ACCESS

Journal homepage: www.itegam-jetia.org

ISSN ONLINE: 2447-0228

STEALING SOME NOTATION FROM BIG O NOTATION TO DEVELOP A

NEW MULTITHREADING PRIORITY FORMULA

Abdulamir Abdullah Karim1, Yaser Ali Enaya2 and Ghassan Abdulhussein Bilal3

1 Department of Computer Science, University of Technology, Baghdad, Iraq.
2, 3 Department of ElectroMechanical Engineering, University of Technology, Baghdad, Iraq.

1https://orcid.org/0000-0002-8420-5681 , 2https://orcid.org/0000-0002-0669-1282 , 3https://orcid.org/0000-0002-5090-103X

Email: abdulamir.a.karim@uotechnology.edu.iq, 50111@uotechnology.edu.iq, ghassan.bilal@uotechnology.edu.iq

ARTICLE INFO ABSTRACT

Article History

Received: December 25, 2024

Revised: January 20, 2025

Accepted: January 25, 2025

Published: February 28, 2025

This work aims to develop the CPU industry by distributing its time between the threads

efficiently. To do so, an unprecedentedly developed equation is suggested as a new powerful

software to increase the CPU performance. This proposed equation dedicates to solve the

problem of children inheriting their parents priorities equivalently without a thoughtful basis

in multithreading by involving big O to give threads different values, whose importance is

inversely proportional to their O(n)s. The second originality is breaking complexity rule,

which considers loop iterations if the threads have the same O(n), since usually threads run

on the same computer. Therefore, the ratio (No. of loop’s iterations to go/total iterations

multiplied by O(n)) determines thread importance inversely. The third novelty is replacing

Round Robin with Big O and iteration ratio. A parser is applied to seek “for” and “while”

tokens for O(n) measuring purposes. Three threads, p1 O(n2), p2 O(n), and p3 O(n2),

approved the equation with results of 32, 51, and 8 time slices, respectively, during the

period 0-1000 ms. Meanwhile, Round Robin gives the children the same slice number.

Keywords:

thread,

priority,

time complexity,

big O,

inversion,

starvation.

Copyright ©2025 by authors and Galileo Institute of Technology and Education of the Amazon (ITEGAM). This work is licensed

under the Creative Commons Attribution International License (CC BY 4.0).

I. INTRODUCTION

In modern computer systems, threads are preferred over

processes, and multithreading over multitasking [1].

Multithreading has a problem that has not touched before which is

the equivalency among the priorities of threads. This problem

prevents exploiting the full multithreading utilities efficiently since

its objective is to decrease CPU idle time in order to improve

system performance, use less memory, and execute context

switching in order to share memory and speed up thread switching

(scheduling) [2]. The scheduling policy includes these rules: the

threads with higher priority receive more CPU time than those with

lower priority; a higher priority thread may preempt a lower

priority thread; and threads with equal priority receive equal CPU

time [3]. The problem is with the third rule because the scheduler

gives equal priorities to the children threads without studying their

background. For example, any Java program that is executed starts

its code from the main function. In order to begin running the code

included in the main function, the JVM generates a thread which is

referred to as "main thread". The main thread is crucial to

understand since it inherits the priority of all other threads, is the

source from which they are formed, and must be the last thread to

complete execution at all times as depicted in Figure 1 [4]. Each

new process is therefore formed with a single thread that competes

using priority over its parent process for the processor with the

threads of other processes and shares the private segment and other

resources [5].

Therefore, they are given arbitrarily the same priority

causing unfair competitive between high and low priorities threads

as can be seen in the priority techniques that are used by Java and

IBM. So, as known, Java is fully based object-oriented which

operates in a multithreading environment where a thread scheduler

allocates the processor to a thread based on its priority. Java

requires that every thread be given a priority when it is created.

Priorities can vary from 1 to 10, with 10 being the highest priority.

With IBM, for each thread, the kernel keeps track of a priority

value, also known as the scheduling priority. The significance of

the thread corresponds in reverse with the priority value, which is

a positive integer. In other words, a thread with a lower priority

value has higher priority. [6], [7].

Moreover, there are two types of thread priorities: fixed and

nonfixed; the fixed-priority has an unchanged value, whereas a

nonfixed-priority adjusts depending on the processor-usage

penalty, the thread's nice value (20 by default), and the least priority

https://orcid.org/0000-0002-8420-5681?lang=en
https://orcid.org/0000-0002-0669-1282
https://orcid.org/0000-0002-5090-103X

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 236-142, January/February., 2025.

of user threads (40). A thread's priority value is subject to quick

and frequent adjustments. The scheduler’s priorities recalculation

method is the consequence of the ongoing movement. However,

for threads with fixed-priority, this is not the case. Meanwhile, the

time slice is the maximum amount of time that a thread can be in

charge before it risks being displaced by another thread [8].

There are many efforts has been done to improve the

priority or utilize it in other systems. For instant, in [9], Based on

the RTCOP framework and using multithreading, an architecture

for preemptive layer activation called as PLAM has been

presented. The non-exception handling layers can be triggered

concurrently using PLAM. More work, the majority of complicated

processing issues can be solved by applying the Chip

Multiprocessor (CMP) technique, which is known for its good

performance and high speed for personal computers and

Smartphone [10], [11]. For example, in [12] and [13]

Multithreading on Android Matrix multiplication program run on

single and multi-core for comparing purposes in order to determine

the constraints that stand up as obstacles against accomplishing the

best execution of time reduction.

Additionally, multithreading middleware for sensor

virtualization is built in both the sensor node and the gateway,

which lessens the latency brought on by the virtualization of the

sensors. Otherwise, scheduling policy, energy use, and memory

resources are the three fundamental networking challenges; [14-

16] offer prioritization approach to resolve these problems by

spotting in the thread priorities' derivation mechanism that is based

on inputs from three different sources: threads, the operating

system, and external sources like timers to meet the needs of their

unique nature. Else, [17] and [18] demonstrate that, in the best

instances, the schedulable utilization for the hardware under

consideration is roughly multiplied compared to partitioned

scheduling without SMT. On the other hand, time complexity is a

crucial component for efficient usage on real platforms to decrease

the executing time of the algorithm and the completion time of

applications, which results in lowering user waiting time [19].

The size of the input is multiplied by the time complexity of

an algorithm to determine how long it will take to run [20]. Time

complexity involves in many pieces of research specially these are

related to the algorithms. For example, designing algorithms to

reduce the schedule time for linear and binary PSO, [21] Develops

an algorithm to address the issue of the subsequence matching's

inherent time complexity.

Other studies, [22] and [23] identify the most effective

Traveling Salesman Problem algorithm by evaluating complexity,

which has been confirmed to be polynomial equation. All these

works are the most related pieces of research to our paper, and it is

noticeable that they are located either in multithreading priority

field or time complexity field without combining between them

which makes this paper the first attempt. So, in this study, a new

priority equation is developed to involve time complexity for

deciding the next run thread among threads that have equal

priorities. Furthermore, an iteration ratio supports the time

complexity taking decision among the same polynomial rank

threads.

II. METHODOLOGY

This work suggests a developed Multithreading priority

equation to solve the equivalent priorities problem by involving

constant O(1) and polynomial O(ni) times from Big O notation as

one of its terms for the first time in the priority world.

Figure 1: Priority inheriting: P1, P2, and P3 inherit the priority M

of the parent Main when they are created. P11 inherits the P1

priority at its creating time t1 = M1. P31 and P32 inherit the P3

priority at their creating time t3= M3.

Source: Authors, (2025).

The big O task is the engaging in the equation calculation,

Eq. (1), whenever there are equivalent priorities to give them

different values which their importance is being inversely with

their O(ni) levels. The second originality is breaking the rule of

time complexity which is the number of loop iterations taking part

in the equation calculation, Eq. (2), if the threads have the same

O(ni) since usually threads run at the same computer and operating

system. Therefore, Eq. (2) is multiplied by O(ni) to decide thread

importance inversely as well. Third novelty is replacing the Round

Robin method, which gives the same slice number to all threads

with the sane priorities, by Big O and iteration ratio. The time slice

is the time that a thread is allowed to consume without interrupting

by the scheduler and swapping it with another same priority thread.

In this algorithm, the priority value is increased by the CPU usage

counter causing lowering the priority since the relation between

them is reciprocal. A thread's most recent CPU usage is utilized to

determine the processor penalty. At the end of each time slice (10

ms), the recent processor usage value or counter grows by 1, until

reaching the value 120 when the swapper recalculates it for all

threads. The swapper recalculates the recent processor usage values

every second as well. The minimum priority and the nice value in

Eq. (1) equal the defaults 40 and 20 respectively [6].

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑏𝑎𝑠𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 + 𝑛𝑖𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 +
((𝑡𝑖𝑚𝑒 𝑠𝑙𝑖𝑐𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) × (𝑠𝑐ℎ𝑒𝑑𝑜 − 𝑜 𝑠𝑐ℎ𝑒𝑑_𝑅)) +

 (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 × 𝑂(𝑛)) (1)

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑜𝑝’𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑔𝑜

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 (2)

Where nice value is the factor that controls the priority and

considered a measure of how much the thread cooperates in sharing

the CPU, schedo is a CPU scheduler tuning by changing its

parameters that are used to calculate threads’ priority [6].

For complexity and the iteration ratio part, the formula is

applied as is follows:

1- The priority of thread = swapper calculation, if its iteration

ratio × O (ni) is the lowest among all threads.

2- If the thread has the lowest (iteration ratio × O (ni)) among all

threads with same O (ni), then its priority = highest priority among

all threads of O (ni-1) + 1.

3-If the thread has higher (iteration ratio × O (ni)) than other threads

which have the same O (ni), then the thread priority = Highest

priority among these threads + 1.

Page 237

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 236-142, January/February., 2025.

So, instead of giving arbitrary equal priorities for all threads

at time zero, time complexity assigns actual priorities at the same

time.

II.1 MULTITHREADING

In a multithreading, the priority is assigned to thread by the

scheduler of the operating system. There are multi priority levels

where each thread is granted a specific priority level according to

its importance [24], [25]. With large number of threads and limited

resources execution environment, control the priority becomes

very crucial to organize threads competing for CPU time [26].

Different operating systems implement different priority

scheduling algorithms such as Earliest Deadline First (EDF),

Multilevel Feedback Queue Scheduling (MLFQ), and Fixed-

Priority Scheduling (FPS). Developing any priority scheduling

algorithm always faces two major deficiencies that are thread

inversion and starvation. Thread inversion is holding resource by

low priority thread when the higher priority thread demands it.

Starvation, on the other hand, is depriving a thread with lower

priority of CPU time consistently because of overtaking by higher

priority threads [27]. Figure 2 illustrates these problems, where

threads P1 and P2 share S1 and S2 resources, according to these

scenarios: if P1 priority > P2 priority and holds S1 or S2 without

releasing and P2 demands that resource, then the starvation occurs.

On the other hand, if the same scenario is happened, but with P1

priority < P2 priority, then inversion occurs. These two scenarios

are represented by the vertical gray and white box in the figure and

vice versa if P2 holds S1 or S2 which may enter P1 into starvation

or inversion state represented by the horizontal light gray box in

the figure. So, in this work, these two problems are solved by

limiting the count of successive time slices that thread may get

them. Each algorithm offers advantages and trade-offs, but no one

solves the equivalent multithreading priorities, which is unique to

this research, by abolition this disorder using a new priority

equation, Eq. (1) that has a new pathless concept [28], [29].

II.2 TIME COMPLEXITY

Run time and scalability are the most important parameters

to evaluate the algorithms’ performances. Since the relation

between these features is reversible, algorithms’ worst-cases

measuring is represented by runtime growth rate verses the

increasing of the input size, and big O notation is the tool that is

used as measurement for these algorithms which is called a

complexity [30], [31]. The complexity of an algorithm is a scale of

the data segment that is needed for processing in order to function

sufficiently. The number of times the algorithm must execute,

relative to the length of the input, is known as time complexity [32],

[33]. Since other factors such as operating system, processor

power, and programming language are considered, time

complexity is not working as a measure of how long a specific

algorithm taking to run. Time complexity depicts the run time

needed to finish the whole algorithm, not measures exact running

time in second or millisecond [34]. So, one of the tools to describe

the algorithm time complexity is the Big O notation that applies

mathematical equations. These equations include constant time

O(1), divide and conquer O(log(n)), polynomials O(ni),

exponentials O(2ⁿ), factorials O(n!) [35]; Table 1 shows some of

the runtimes for various algorithms.

Figure 2: Threads P1 and P2 Starvation and Inversion diagram.

P1 execution is represented as x-axis (arrow) and P2 is waiting.

P2 execution is represented in the y-axis (arrow) and P1 is

waiting.

Source: Authors, (2025).

Where:

 = P1 & P2 request resource S1.

 = P1 & P2 request resource S2.

 = Starvation or Inversion starting region of P1 or P2.

 = Starvation or Inversion region of P1.

 = Starvation or Inversion region of P1.

 = Starvation or Inversion region of P2.

 = Possible progress path of P and Q.

Horizontal portion of path indicates P is executing and Q is

waiting. Vertical portion of path indicates Q is executing and P is

waiting.

Since this work is the first work that Big O notation is

involving in multithreading priority, just two of its equations,

constant and polynomials times, have been chosen to prove the idea

since the basic concept is the same for all equations just needed to

extend the parser. Figure 3 is the flowchart that illustrates the

individual algorithmic loop process to measure the thread

complexity that is used in this work by finding nested loop with the

highest depth to use it later to specify the thread priority. By

tracking the flowchart path, two things are gotten as outputs: first,

the highest depth among nested loops, and second, the loop with

the largest remaining iteration count. So, from the “into” and “out

of” the flowchart the dominant loop is specified which is taking the

largest part to the algorithm's runtime. Next, the growth rate of the

dominant loop is used in the algorithm’s time complexity

calculation. So, let’s take the bubble sort algorithm as an example

to calculate the complexity where the goal of the algorithm is

sorting unarranged members. To do so, the number of nested loops

is calculated guiding to complexity of O(n2) because the algorithm

needs two loops (nested) to reorder the members [36-38]. A parser

Page 238

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 236-142, January/February., 2025.

program in C++ has been written to seek “for” and “while” tokens

for O(ni) measuring purposes. The flowchart in Figure 3, depicts

the parser flow of the thread algorithm to get its complexity

according to the count of nested loops in order to use it in to assign

priority to the thread. The second output of the flowchart is the loop

with highest remaining iteration count, which is used as priority

backup plan to differentiate threads with same complexity.

Table 1:Runtime complexity for various algorithms with least

numbers of consecutive operations.

Algorithm Runtime Complexity
Consecutive

Operation

Recurrent O(n) O(n)

Transformer O(n2) O(1)

Sparse

Transformer
O(n √𝑛) O(1)

Reformer O(n log(n)) O(log(n))

Source: Authors, (2025).

III. IMPLEMENTATION

For the implementation, this paper applies an experiment

with three threads: p1 O(n2), p2 O(n), and p3 O(n2) as its steps are

shown below where they are started at time T = 0 and ended at T =

1000 msec. By running the three threads, this information is gotten:

p2 needs 70 time slices, meanwhile p1 and p3 need 2817 and 4205

time slices respectively; Figures 4-6 are the screenshots of the

number of slices calculation program that are needed by each

thread to finish their whole executions. Therefore, p2 should have

higher priority and that would not be discovered without time

complexity. Furthermore, the iteration ratio supports time

complexity by differentiating threads with the same complexity.

So, p2 runs first, and then gives up the processor after time slice

number 8 because its priority value rises and becomes equivalent

to p1 priority values because of CPU usage counter.

Next, iteration ratio gives the control to p1 since iteration

numbers of p1 and p2 are 10000000, 15000000 respectively. Here,

the iteration ratio is not applied at time zero because it is always

equals 1 for all threads. So, the equation assigns at T = 0 the

priorities 61, 60, 62 to p1, p2, and p3 respectively. Below is the

actual calculations based on Eq. (1).

T = 0 p2 = 40 + 20 + (0 * 4/32) = 60

 p2 takes the control

 T = 0 p1 = p2 + 1 = 61

 T = 0 p3 = p1 + 1 = 62

 T = 10 ms p2 = 40 + 20 + (1 * 4/32) = 60

 T = 20 ms p2 = 40 + 20 + (2 * 4/32) = 60

 T = 30 ms p2 = 40 + 20 + (3 * 4/32) = 60

 T = 40 ms p2 = 40 + 20 + (4 * 4/32) = 60

 T = 50 ms p2 = 40 + 20 + (5 * 4/32) = 60

 T = 60 ms p2 = 40 + 20 + (6 * 4/32) = 60

 T = 70 ms p2 = 40 + 20 + (7 * 4/32) = 60

 T = 80 ms p2 = 40 +20 + (8 * 4/32) = 61

 p2 releases control

 T = 90 ms p1 = 40 + 20 + (9 * 4/32) = 61

 ………

T = 160ms p1 = 40 + 20 + (16 * 4/32) = 62

 p1 releases control

Figure 3: Parser flowchart to get thread complexity according to

the count of nested loop with highest depth.

Source: Authors, (2025).

Page 239

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 236-142, January/February., 2025.

 Reset counter = 9

 T = 170ms p2 = 40 + 20 + (9 * 4/32) = 61

 ………

 T = 240ms p2 = 40 + 20 + (16 * 4/32) = 62

 p2 releases control

Apply Eq. (1):

P1 = 40 + 20 + (17 * 4/32) + ((10000000–

26418)/10000000 × 2) = 63.9947164

P2 = 40 + 20 + (17 * 4/32) + ((40000000–

49835804)/40000000 × 1) = 62.8754

P3 = 40 + 20 + (17 * 4/32) + (15000000/15000000 × 2) =

64

Therefore, p2 = 62, p1 = 63, p3 = 64, so p2 takes control

 T = 250ms p2 = 40 + 20 + (17 * 4/32) = 62

 ………

 T = 320ms p2 = 40 + 20 + (24 * 4/32) = 63

 T = 330ms p1 = 40 + 20 + (25 * 4/32) = 63

 ………

 T = 400ms p1 = 40 + 20 + (32 * 4/32) = 64

 Reset counter = 25

T = 410ms p2 = 40 + 20 + (25 * 4/32) = 63

 ………

T = 480ms p2 = 40 + 20 + (32 * 4/32) = 64

Apply Eq. (1):

P1 = 40 + 20 + (33 * 4/32) + ((10000000–26418)/10000000 × 2)

= 65.9894326

P2 = 40 + 20 + (33 * 4/32) + ((40000000–9937962)/40000000 ×

1) = 64.75155095

P3 = 40 + 20 + (33 * 4/32) + (15000000/15000000 × 2) = 66

Therefore, p1 = 65, p2 = 64, p3 = 66, so p2 takes control

 T = 490ms p2 = 40 + 20 + (33 * 4/32) = 64

 ………

 T = 560ms p2 = 40 + 20 + (40 * 4/32) = 65

 T = 570ms p3 = 40 + 20 + (41 * 4/32) = 65

 ………

 T = 640ms p3 = 40 + 20 + (48 * 4/32) = 66

 (Skipping forward to 1000msec or 1 second)

 .

 T = 1000ms p2 = 40 + 20 + (60 * 4/32) = 67

 T = 1000ms swapper recalculates the accumulated

CPU usage counts of all processes. For the above process:

new_CPU_usage = 67 * 31/32 = 64 (if d=31)

After decaying by the swapper: p = 40 + 20 + (64 * 4/32)

= 68

Apply the equation:

P1 = 40 + 20 + (64 * 4/32) + ((10000000–26418)/10000000 × 2)

= 69.9788174

P2 = 40 + 20 + (64 * 4/32) + ((40000000–15600330)/40000000 ×

1) = 68.6099917

P3 = 40 + 20 + (64 * 4/32) + ((15000000-20896)/15000000 × 2)

= 69.997213866

Therefore, p1 = 69, p2 = 68, and p3 = 70

Table 2 is a tracing example of p1, p2, and p3, which its

explanation is as follows:

At T = 0, p1 = 61, p2 = 60, p3 = 62, therefore, p2 controls

the CPU since it has the lowest time complexity.

At T = 90, p2 relinquishes the control since its priority value

becomes equivalent to the p1 priority value = 61. Therefore, p1

takes the control since the iteration ratios for both of p1 and p3 =1,

Figure 4: P1’s total execution slice number calculation.

Source: Authors, (2025).

Figure 5: P2’s total execution slice number calculation.

Source: Authors, (2025).

Figure 6: P3’s total execution slice number calculation.

Source: Authors, (2025).

Table 2: Tracing of p1, p2, and p3.
T (ms) p1 Priority p2 Priority p3 Priority CPU control Counter

0 61 60 62 p2 0

90 61 61 62 p1 1

160 62 61 62 p2 9 reset

240 63 62 64 p2 10

320 63 63 64 p1 11

400 64 63 64 p2 25 reset

480 65 64 66 p2 26

560 65 65 66 p3 27

1000 69 68 70 p2 31

Source: Authors, (2025).

but the number of p1 iterations = 10000000 < 15000000 the

number of p3 iterations making p1 = 61 and p3 =62.

At T = 160 ms, p1 gives up the control to p2 again since its

value rises to 62 while p2 value = 61. But before that, the algorithm

reset the counter to 9 the start of value 61 because it reaches 62

while p2 value = 61 which means that p2 will give up the slice right

away. For example, the p2 value after one round if the equation

applied without resetting the counter is p2 = 40 + 20 + (17 * 4/32)

= 62 making the algorithm useless.

At T = 240 ms, p2 releases the control since its value rises

up to 62 and becomes equal to p1 and p3 values. Since all the

Page 240

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 236-142, January/February., 2025.

threads have equal priorities p1 = p2 = p3 = 63, the equation is

applied to assign new real priorities. Therefore, the new priorities

are p1 = 63, p2 = 62, and p3 = 64. Therefore, p2 takes the control.

At T = 320 ms, p2 = 63 relinquishes the control to p1 = 63

for the second time.

At T = 400 ms, p1 = 64 relinquishes the control to p2 = 63

after resetting counter to 25.

At T = 480 ms, p2 = 64 relinquishes the control. Since p1 =

p2 = p3 = 64, the equation is applied and the new proprieties are:

p1 = 65, p2 = 64, and p3 = 66. p2 takes the control.

At T = 560 ms, p2 = 65 releases control to p3 = 66 in spite

of p1< p3 since p1 has the control two consecutive times.

At T = 1000 ms (1 sec), swapper recalculates the

accumulated CPU usage counter, when thr1, thr2, and thr3 had 32,

51, and 8 time slices respectively and the number of completed

iterations for each thread are 26418, 15600330, and 20896

respectively. Therefore, p1 = 69, p2 = 68, and p3 = 70, so p2 takes

the control.

From the trace, it is clear that the goal is accomplished since

p2 has 51 slices, p1 has 32 slices, and p3 has 8 slices during the

period of time 0-1000 ms. Meanwhile, traditional method, which

applies Round Robin, gives the same opportunity to the all threads

with the sane priorities. The concept of this experiment is giving

thread with lowest time complexity and loop iterations more time

slices. Therefore, they are involving in the equation whenever the

priorities of all threads become equivalent because this state turns

the equation to Round Robin and gives equal time slices for every

thread. So, the task is giving different priorities for each thread

whenever this state occurs. Completing the concept, any state

rather than the above one, the time complexity will not involve in

the priority calculation, but instead Round Robin is replaced with

it. So, every time there are two or more threads with the same

priority but not all threads, the time complexity and iteration ratio

decide the next thread to control the CPU instead of FIFO, which

is used by Round Robin method. To avoid starvation among

threads with the same time complexity, the algorithm takes the

control from the thread with lower iteration ratio and gives it to the

other threads after every two consecutive turns. For example, in

this work, thr1 iteration number = 10000000, while thr3 iteration

number = 15000000, so thr1 is always taking the control since its

iteration number to go is always decreasing, meanwhile thr3 time

to go iteration number stays still 15000000.

IV. CONCLUSION

1- This work represents a new generation where is no

concept of multithreading with equivalent priorities.

2- The technique acts as Round Robin with multithreading

that have constant time for all threads since there is no loops to

calculate their iteration ratios

3- This equation rules out the first in first out approach

including Round Robin from multithreading system.

4- This work does not work with threads having time

complexity involving log, exponential, and factorial times, but

extending the parser to include them solve it.

5- The starvation avoidance can be manipulated by changing

the number of consecutive call times.

6- The probability that the next time slice is allocated to a

thread which has allocated many time slices recently is decreasing.

7- Since time complexity considers the time of iterations’

numbers trivia, the equation works more efficient with single-

processor than multi-processor.

V. AUTHOR’S CONTRIBUTION

Conceptualization: Abdulamir Abdullah Karim, Yaser Ali Enaya

and Ghassan Abdulhussein Bilal.

Methodology: Abdulamir Abdullah Karim, Yaser Ali Enaya.

Investigation: Abdulamir Abdullah Karim and Yaser Ali Enaya

and Ghassan Abdulhussein Bilal.

Discussion of results: Abdulamir Abdullah Karim, Yaser Ali

Enaya and Ghassan Abdulhussein Bilal.

Writing – Original Draft: Abdulamir Abdullah Karim and

Ghassan Abdulhussein Bilal.

Writing – Review and Editing: Abdulamir Abdullah Karim and

Yaser Ali Enaya.

Resources: Yaser Ali Enaya and Ghassan Abdulhussein Bilal.

Supervision: Yaser Ali Enaya and Ghassan Abdulhussein Bilal.

Approval of the final text: Abdulamir Abdullah Karim, Yaser Ali

Enaya and Ghassan Abdulhussein Bilal.

VI. REFERENCES

[1] Nikolić, Goran, Bojan Dimitrijević, Tatjana Nikolić, and Mile Stojčev. "Fifty

years of microprocessor evolution: from single CPU to multicore and manycore

systems." Facta universitatis-series: Electronics and Energetics 35, no. 2 (2022):
155-186. https://doiserbia.nb.rs/Article.aspx?ID=0353-36702202155N

[2] He, Zichen, Lu Dong, Changyin Sun, and Jiawei Wang. "Asynchronous
multithreading reinforcement-learning-based path planning and tracking for

unmanned underwater vehicle." IEEE Transactions on Systems, Man, and

Cybernetics: Systems 52, no. 5 (2021): 2757-2769. DOI:
10.1109/TSMC.2021.3050960

[3] Lopez, Tomas A., and Nobuyuki Yamasaki. "Prioritized Asynchronous Calls for
Parallel Processing on Responsive MultiThreaded Processor." In 2022 Tenth

International Symposium on Computing and Networking (CANDAR), pp. 46-55.

IEEE, 2022. DOI: 10.1109/CANDAR57322.2022.00014

[4] Beronić, Dora, Paula Pufek, Branko Mihaljević, and Aleksander Radovan. "On

Analyzing Virtual Threads–a Structured Concurrency Model for Scalable
Applications on the JVM." In 2021 44th International Convention on Information,

Communication and Electronic Technology (MIPRO), pp. 1684-1689. IEEE, 2021.
DOI: 10.23919/MIPRO52101.2021.9596855

[5] Tsai, Chun-Jen, and Yan-Hung Lin. "A Hardwired Priority-Queue Scheduler for
a Four-Core Java SoC." In 2018 IEEE International Symposium on Circuits and

Systems (ISCAS), pp. 1-4. IEEE, 2018. DOI: 10.1109/ISCAS.2018.8351129

[6] https://www.ibm.com/docs/en/aix/7.1?topic=calculation-priority.

[7] Syuhada, Rahmad. "Multi-threading on Linux Operating System Using
Scheduling Algorithm." Jurnal Mantik 5, no. 2 (2021): 1334-1340.

https://iocscience.org/ejournal/index.php/mantik/article/view/1506

[8] Kalla, Ron, Balaram Sinharoy, and Joel M. Tendler. "IBM Power5 chip: A dual-

core multithreaded processor." IEEE micro 24, no. 2 (2004): 40-47. DOI:

10.1109/MM.2004.1289290

[9] Liu, Zihan, Ikuta Tanigawa, Harumi Watanabe, and Kenji Hisazumi. "PLAM:

Preemptive Layer Activation Architecture based on Multithreading in Context-
Oriented Programming." In Proceedings of the 12th ACM International Workshop

on Context-Oriented Programming and Advanced Modularity, pp. 1-8. 2020.

https://doi.org/10.1145/3422584.3422766

[10] Albazaz, Dhuha. "Design a mini-operating system for mobile phone." Int. Arab

J. Inf. Technol. 9, no. 1 (2012): 56-65. https://www.iajit.org/PDF/vol.9,no.1/1614-
7.pdf

[11] Yaser Ali Enaya. “Password-free Authentication for Smartphone Touchscreen
Based on Finger Size Pattern”, International Journal of Interactive Mobile

Technologies, vol. 14, no. 19, 2020, pp. 163–179. DOI: 10.3991/ijim.v14i19.17239.

[12] Sallow, Amira B. "Android Multi-threading Program Execution on single and

multi-core CPUs with Matrix multiplication." International Journal of Engineering

& Technology 7, no. 4 (2018): 6603-6608. DOI: 10.14419/ijet.v7i4.29340

Page 241

One, Two and Three, ITEGAM-JETIA, Manaus, v.11 n.51, p. 236-142, January/February., 2025.

[13] Khalid, Zubair, Usman Khalid, Mohd Adib Sarijari, Hashim Safdar, Rahat
Ullah, Mohsin Qureshi, and Shafiq Ur Rehman. "Sensor virtualization Middleware

design for Ambient Assisted Living based on the Priority packet processing."

Procedia Computer Science 151 (2019): 345-
352.https://doi.org/10.1016/j.procs.2019.04.048

[14] Enaya, Yaser Ali, and Kalyanmoy Deb. "Network path optimization under
dynamic conditions.", In 2014 IEEE Congress on Evolutionary Computation

(CEC), IEEE, 2014, pp. 2977-2984. DOI: 10.1109/CEC.2014.6900603

[15] Enaya, Yaser Ali, Abdulamir Abdullah Karim, Suha Mohammed Saleh, and

Salam Waley Shneen. "Adapting Wired TCP for Wireless Ad-hoc Networks Using

Fuzzy Logic Control." Journal Européen des Systèmes Automatisés 57, no. 5,
(2024). pp. 1377-1386. https://doi.org/10.18280/jesa.570513

[16] Yaser, E., Abdulamir Abdullah Karim, Mohammed Qasim Sulttan, and Salam
Waley Shneen. "Applying Proportional–Integral–Derivative Controllers on Wired

Network TCP’s Queue to Solve Its Incompatibility with the Wireless Ad-Hoc

Network." ITEGAM-JETIA 10, no. 49 (2024): 228-232.
https://doi.org/10.5935/jetia.v10i49.1346

[17] Osborne, Sims Hill, Shareef Ahmed, Saujas Nandi, and James H. Anderson.
"Exploiting simultaneous multithreading in priority-driven hard real-time systems."

In 2020 IEEE 26th International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA), pp. 1-10. IEEE, 2020. DOI:
10.1109/RTCSA50079.2020.9203575

[18] Shomron, Gil, and Uri Weiser. "Non-blocking simultaneous multithreading:
Embracing the resiliency of deep neural networks." In 2020 53rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 256-269.

IEEE, 2020. DOI: 10.1109/MICRO50266.2020.00032

[19] Mapetu, Jean Pepe Buanga, Zhen Chen, and Lingfu Kong. "Low-time

complexity and low-cost binary particle swarm optimization algorithm for task
scheduling and load balancing in cloud computing." Applied Intelligence 49 (2019):

3308-3330. https://doi.org/10.1007/s10489-019-01448-x

[20] Asif, Muhammad, Muhammad Adnan Khan, Sagheer Abbas, and Muhammad

Saleem. "Analysis of space & time complexity with PSO based synchronous MC-

CDMA system." In 2019 2nd international conference on computing, mathematics
and engineering technologies (iCoMET), pp. 1-5. IEEE, 2019. DOI:

10.1109/ICOMET.2019.8673401

[21] Mapetu, Jean Pepe Buanga, Zhen Chen, and Lingfu Kong. "Low-time

complexity and low-cost binary particle swarm optimization algorithm for task
scheduling and load balancing in cloud computing." Applied Intelligence 49 (2019):

3308-3330. https://doi.org/10.1007/s10489-019-01448-x

[22] Chao, Zemin, Hong Gao, Yinan An, and Jianzhong Li. "The inherent time

complexity and an efficient algorithm for subsequence matching problem."

Proceedings of the VLDB Endowment 15, no. 7 (2022): 1453-1465.
https://doi.org/10.14778/3523210.3523222

[23] Ramirez, Anthony, and Vyron Vellis. "Time complexity of the Analyst's
Traveling Salesman algorithm." arXiv preprint arXiv: 2202.10314 (2022).

https://doi.org/10.48550/arXiv.2202.10314

[24] Abd Almahdi, Wijdan, Hussein Attia Lafta, and Yossra Hussain Ali.

"Intelligent Task Scheduling Using Bat and Harmony Optimization." Iraqi Journal

of Science (2023): 4187-4197. DOI: https://doi.org/10.24996/ijs.2023.64.8.38

[25] Suha Dh. Athab, Abdulamir A. Karim. A “Tagging Model using Segmentation

Proposal Network”. Fusion: Practice and Applications. 2023; 13(2): 136-144.
https://doi.org/10.54216/FPA.130212.

[26] Attiya, Hagit, Ohad Ben-Baruch, Panagiota Fatourou, Danny Hendler, and
Eleftherios Kosmas. "Detectable recovery of lock-free data structures." In

Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pp. 262-277. 2022.
https://doi.org/10.1145/3503221.3508444

[27] Sánchez, Jesus Gerardo Ávila, Francisco Eneldo López Monteagudo, Francisco
Javier Martinez Ruiz, and Leticia del Carmen Ríos Rodríguez. "Detection of traffic

accidents using artificial intelligence." ITEGAM-JETIA 10, no. 46 (2024): 15-21.

DOI: https://doi.org/10.5935/jetia.v10i46.1109.

[28] Zhao, Shuai, Xiaotian Dai, and Iain Bate. "DAG scheduling and analysis on

multi-core systems by modelling parallelism and dependency." IEEE transactions

on parallel and distributed systems 33, no. 12 (2022): 4019-4038. DOI:
10.1109/TPDS.2022.3177046

[29] Ahmed WS, Abdul amir A. Karim. “The impact of filter size and number of
filters on classification accuracy in CNN”. In2020 International conference on

computer science and software engineering (CSASE) 2020 Apr 16 (pp. 88-93).

IEEE. DOI: 10.1109/CSASE48920.2020.9142089.

[30] Xu, Y., Liu, S., & Wang, Z. (2022). “Complexity Analysis of a Parallel

Algorithm for the All-Pairs Shortest Paths Problem on Road Networks.” IEEE
Transactions on Parallel and Distributed Systems 33(9), 2205-2218.

[31] Abdulateef, Isra H., and Dhia A. Alzubaydi. "An Evolutionary Algorithm with
Gene Ontology-Aware Crossover Operator for Protein Complex Detection." Iraqi

Journal of Science (2023): 1975-1987. https://doi.org/10.24996/ijs.2023.64.4.34

[32] Zhou, Houji, Yi Li, and Xiangshui Miao. "Low-time-complexity document

clustering using memristive dot product engine." Science China Information

Sciences 65, no. 2 (2022): 122410. https://doi.org/10.1007/s11432-021-3316-x

[33] Ayad, Hayder, Nidaa Flaih Hassan, and Suhad Mallallah. "A modified

segmentation approach for real world images based on edge density associated with
image contrast stretching." Iraqi Journal of Science (2017): 163-174].

https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/6237

[34] Sohrabi, Somayeh, Koorush Ziarati, and Morteza Keshtkaran. "Revised eight-

step feasibility checking procedure with linear time complexity for the Dial-a-Ride

Problem (DARP)." Computers & Operations Research 164 (2024): 106530.
https://doi.org/10.1016/j.cor.2024.106530

[35] Shi, Feng, Frank Neumann, and Jianxin Wang. "Time complexity analysis of
evolutionary algorithms for 2-hop (1, 2)-minimum spanning tree problem."

Theoretical Computer Science 893 (2021): 159-175.

https://doi.org/10.1016/j.tcs.2021.09.003

[36] BH, Krishna Mohan, Padmaja Pulicherla, M. Purnachandrarao, and P.

Nagamalleswararao. "Quantum machine learning: bridging the GAP between
classical and quantum computing." ITEGAM-JETIA 10, no. 48 (2024): 122-128.

DOI: https://doi.org/10.5935/jetia.v10i48.943

[37] Menghani, Gaurav. "Efficient deep learning: A survey on making deep learning

models smaller, faster, and better." ACM Computing Surveys 55, no. 12 (2023): 1-

37. https://doi.org/10.1145/3578938

[38] Ghosh, Sourav Kumar, Sumon Hossain, Hafijur Rahman, Naurin Zoha, and
Mohammad Arif-Ul Islam. "Developing a linear programming model to maximize

profit with minimized lead time of a composite textile mill." ITEGAM-JETIA 6,

no. 22 (2020): 18-21. DOI:https://dx.doi.org/10.5935/2447-0228.20200012

Page 242

