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This paper analyzes LoRa signal propagation in an urban environment, based on RSSI 

collections conducted at various distances ranging from 10 to 1610 meters. The data were 

analyzed using the log-normal shadowing model, allowing the generation of path loss 

graphs. The coefficient of determination (R²) for the log-normal model was 0.9764, with 

an RMSE of 3.2872 and an MAE of 2.4020, indicating an excellent fit to the data. As a 

comparison between regression methods, the quadratic approximation presented an R² of 

0.9117, RMSE of 6.1397, and MAE of 5.2137, reflecting lower performance. These results 

highlight the impact of distance on signal attenuation and confirm the effectiveness of the 

log-normal shadowing model in representing propagation in urban scenarios. The research 

contributes to understanding LoRa performance in dense environments, providing valuable 

insights for the planning and optimization of LoRa networks, as well as serving as a 

practical guide for future applications in the Internet of Things context.  
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I. INTRODUCTION 

 

LoRa® technology (Long Range) has become one of the 

main solutions for IoT (Internet of Things) networks, offering 

long-distance communication with low energy consumption [1], 

[2]. Its applications span areas such as smart cities (as shown in 

Figure 1), precision agriculture, and environmental monitoring. 

This paper investigates the performance of the LoRa signal in an 

urban environment, focusing on signal propagation at various 

distances. The research validates the results using the log-normal 

shadowing and quadratic approximation models, contributing to 

the development of more accurate propagation models and the 

optimization of LoRa networks in dense urban scenarios. 

The propagation analysis is essential to optimize LoRa 

technology in urban environments, ensuring the efficiency and 

reliability of data transmissions in projects proposed in the 

literature, despite the presence of obstacles. 

The study in [3] proposes a Vehicle Monitoring System 

(VMS) based on IoT to collect environmental and vehicle 

performance data in urban areas. The system uses sensors to 

monitor parameters such as air quality (PM2.5, NO2, CO, O3), 

temperature, and humidity, as well as vehicle information via 

OBD-II and GPS location. The data is transmitted to a cloud 

server via LoRa technology. The system provides a graphical 

interface for real-time data visualization, which can be used by 

both drivers and government authorities for traffic planning and 

environmental decision-making. Expanding the LoRa gateway 

infrastructure in the city could enhance transmission stability and 

contribute to the development of smart cities. 

 

 
Figure 1: A hybrid LoRa and Bluetooth city network. 

Source:[1]. 
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The article [4] presents a collaborative sensor network 

based on LoRa for pollution monitoring in smart cities. The 

system uses geo-located nodes to measure temperature, relative 

humidity, and CO2 concentration, while also considering citizens' 

opinions. Using the collected data and city policies, the system 

controls traffic flow and advises citizens to avoid polluted areas. 

Tested in a real environment, the low-cost system proved 

effective in detecting CO2 levels. Future work aims to expand the 

application to larger areas and include additional parameters such 

as CO and vehicle volume. 

The work done in [5] proposes a Fleet Management and 

Tracking System using LoRa, a low-power, long-range solution 

for monitoring and managing vehicle fleets. Each vehicle is 

equipped with a transmitter that includes an Arduino Nano, GPS 

module, switch, buzzer, and LoRa module. The GPS provides 

real-time location data, which is sent to the receiver unit at the 

management center via LoRa, where it is displayed on an LCD 

screen. The system also allows for emergency alerts and audible 

notifications in case of unauthorized movements or route 

deviations, enhancing security. It is scalable, easy to integrate 

with additional vehicles, and suitable for remote areas where 

traditional cellular networks are limited. This system offers a 

reliable and cost-effective alternative to traditional tracking, 

improving safety and operational efficiency, especially in 

challenging and remote locations. 

In the present work, RSSI (Received Signal Strength 

Indicator) data collection was conducted practically at distances 

ranging from 10 to 1610 meters, covering different propagation 

conditions. The comparative analysis between the log-normal 

shadowing and quadratic approximation models allowed for a 

better understanding of signal attenuation and the challenges 

posed by urban obstacles such as buildings and interference. 

Unlike other studies focused on rural environments [6] or 

line-of-sight scenarios, this paper focuses on the particularities of 

an urban environment, providing valuable insights for planning 

LoRa networks in areas with high construction density. The 

results obtained can be applied to improve coverage and 

efficiency of IoT networks, which is essential for future 

implementations in smart cities and other urban contexts. 

This article is organized into the following sections: 

Section II presents the relevant concepts for conducting the 

studies. Section III presents the materials and methods addressed 

in this study. Section IV outlines the results obtained, and Section 

V presents the conclusion of the research. 

II. THEORETICAL REFERENCE 

II.1 LONG RANGE 

LoRa (Long Range) is a wireless communication 

technology designed to transmit data over long distances with low 

power consumption. Based on Chirp Spread Spectrum (CSS) 

modulation, it offers high reception sensitivity, making it ideal for 

sensor networks and Internet of Things (IoT) applications. 

Operating in unlicensed frequency bands such as ISM (Industrial, 

Scientific, and Medical), it uses specific bands that vary by 

region: 433 MHz, 868 MHz (Europe), and 915 MHz (Americas) 

[7]. 

This operational flexibility allows LoRa to be applied in 

both urban and rural environments, even in locations with 

physical barriers or large distances. LoRa can reach distances of 

up to 15 km in rural areas and 2 to 5 km in urban environments, 

depending on the conditions [8]. Additionally, LoRa offers a 

relatively low data transmission rate but is sufficient for many IoT 

applications, ranging from 0.3 kbps to 27 kbps. This ensures 

efficient communication on a large scale, even in challenging 

network conditions. 

LoRa is an integral part of LoRaWAN networks, which 

offer advanced security features, device management, and support 

for thousands of connected devices. LoRaWAN networks are 

highly scalable, making them suitable for projects involving large 

numbers of connected devices without overloading the network 

infrastructure. The CSS modulation used by LoRa also provides 

greater resilience to interference, ensuring communication in 

crowded environments or areas with many interference sources. 

The technology is widely used in areas such as smart 

agriculture, smart cities, remote metering, and logistics tracking, 

standing out for its combination of range, energy efficiency, 

robustness, and compatibility with different frequency regulations 

worldwide. 

II.2 LOG-NORMAL SHADOWING  

The log-normal shadowing model is widely used to 

analyze the impact of obstacles on the propagation of 

radiofrequency signals [9]. This model is described by the 

equation: 

𝑃𝐿(𝑑) = 𝑃𝐿(𝑑0)  +  10 𝑛 log10 (
𝑑

𝑑0
) + 𝑋𝜎           (1) 

 

where 𝑃𝐿(𝑑) is the path loss at a distance 𝑑, 𝑃𝐿(𝑑0) is the 

reference path loss at a distance 𝑑0, 𝑛 is the path loss exponent, 

and 𝑋𝜎 is the normal deviation component (shadowing 

variability). 

According to the model, after determining the values of 

𝑛 and σ, the received power at distances not included during the 

collection can be estimated using the following equation [10]: 

 

𝑃𝑟(𝑑) = 𝑃𝑟(𝑑0) − 10𝑛 log10 (
𝑑

𝑑0
)                     (2) 

 

where 𝑃𝑟(𝑑)  + 𝑋𝜎 is the estimated received power at 

the distance of interest 𝑑, and 𝑃𝑟(𝑑0) is the received power at the 

reference distance 𝑑0. 

II.3 QUADRATIC APPROXIMATION 

The quadratic approximation is capable of establishing a 

function using only a few points from a curve. Therefore, it can 

be used to estimate parameters of a semi-deterministic model 

and/or predict values for that model [11]. In other words, it can be 

used to create an equation that describes a curve between five 

points from a reading (e.g., RSSI), allowing the estimation of 

RSSI for any distance. 

The quadratic approximation is easily applied in 

experiments that use RSSI, which decreases exponentially with 

the increase in distance, exhibiting second-order behavior. In this 

context, the number of observed points 𝑛 can be greater than the 

degree of the polynomial 𝑔 [11]. 

 

𝑈𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2 +⋯+ 𝑏𝑔𝑥

𝑔                 (3) 

since 𝑔 < 𝑛 − 1. 

The equations can be appropriately described in matrix 

form, as in the system below: 
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𝑋𝑇𝑋𝑎 = 𝑋𝑇𝑓                                        (4) 

 

where 

 

𝑋 = (

1
1
⋮
1

𝑥1
𝑥2
⋮
𝑥𝑛

𝑥1
2

𝑥2
2

⋮
𝑥𝑛
2

⋯
⋯
⋱
…

𝑥1
𝑚

𝑥2
𝑚

⋮
𝑥𝑛
𝑚

), 

𝑋𝑇 is the transpose of the matrix 𝑋, which, for example, contains 

the distance values related to their respective RSSI  

 

 

values present in the matrix 𝑓 = (
𝑓1
⋮
𝑓𝑛

). The matrix 𝑎 = (

𝑎0
𝑎1
⋮
𝑎𝑚

)  

 

represents the coefficients of the quadratic approximation 

polynomial that is to be determined. The equations of this system 

are referred to as normal equations. This nomenclature arises 

because the system can be written as: 

 

 

𝑋𝑇(𝑋𝑎 − 𝑓) = 0                                  (5) 

 

The components of the vector (𝑋𝑎 − 𝑓) are given by the 

residuals of the approximation, and according to the previous 

equation, this vector is orthogonal to the vectors formed by the 

elements of the rows of the matrix 𝑋𝑇, which are in the form 

 

(

 

𝑥1
𝑙

𝑥2
𝑙

⋮
𝑥𝑛
𝑙)

  with 𝑙 = 0, 1, 2, … ,𝑚. 

 

III. MATERIALS AND METHODS 

The tests were conducted using a Kerlink indoor 

LoRaWAN Gateway [12], positioned at a height of 7 meters, 

while the transmitter (LoRa® module) [13], powered by 3.6V 

derived from a 12V and 1.2Ah battery, was transported by car, 

starting 10 meters from the Gateway. 

The Kerlink LoRaWAN indoor gateway, illustrated in 

Figure 2,  connects LoRa sensors to cloud servers, enabling 

indoor IoT networks with Ethernet, Wi-Fi, or cellular 

connectivity, and is used in applications such as smart cities and 

automation. The LoRa® module, illustrated in Figure 3, is a low-

power wireless technology for long-distance point-to-point 

communication. Widely used in IoT networks, it enables smart 

applications like energy management, natural resource control, 

environmental monitoring, and disaster prevention, operating via 

AT commands through the serial port (9600 bps). 

To better model the collected data, a performance 

comparison was made between the log-normal shadowing model 

[10, 14] and quadratic fitting [15], using the metrics coefficient of 

determination (R²), Root Mean Squared Error (RMSE), and Mean 

Absolute Error (MAE) [16]. The coefficient of determination R² 

evaluates the proportion of data variance explained by the model, 

ranging from 0 to 1, with higher values indicating better fit, as 

shown in equation 6. 

 
Figure 2: Gateway LoRaWAN indoor. 

Source: Kerlink, (2024). 

 

 
Figure 3: Módulo LoRa®. 

Source: Iot-Labs, (2024). 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)
2𝑛

𝑖=1

                          (6) 

 

where 𝑦𝑖 are the observed real values, �̂�𝑖 are the values estimated 

by the regression model, �̅� is the mean of the real values, and 𝑛 is 

the total number of observations. 

RMSE measures the average error between observed and 

predicted values, penalizing larger deviations more heavily, as 

shown in equation 7. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

                            (7) 

 

where 𝑦𝑖 are the observed real values, �̂�𝑖 are the values predicted 

by the regression model, and 𝑛 is the total number of 

observations. 

MAE calculates the mean of the absolute errors, being less 

influenced by outliers compared to other metrics like RMSE. The 

formula for MAE is: 
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𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

                           (8) 

 

where 𝑦𝑖 are the observed real values, �̂�𝑖 are the values predicted 

by the model, and 𝑛 is the total number of observations. 

These metrics were employed complementarily, allowing 

for a detailed analysis of the fit quality and error magnitude, 

contributing to the evaluation of model performance under 

different conditions. 

IV. RESULTS 

To analyze the propagation of the LoRa signal, the log-

normal shadowing model was applied to the collected data. Table 

1 summarizes the collected data, presenting the distance (in 

meters) and the corresponding RSSI (in dBm). 

 

Table 1: Data collected. 

Distance (m) RSSI (dBm) 

10 -65 

110 -86 

310 -108 

510 -112 

1010 -121 

1610 -123 

Source: Authors, (2025). 

From approximately 2 km onward, no packets were 

received, highlighting the limitations of the indoor Gateway in 

urban environments. 

The log-normal shadowing model is a widely used 

statistical model to describe signal attenuation in urban 

environments. It accounts for random variations caused by 

obstructions and the dispersion of the signal around an average 

value. In the log-normal propagation model, the path loss (PL) 

can be expressed by the equation 1. 

 

 
Figure 4: RSSI as a function of distance. 

Source: Authors, (2025). 

In short distances between 10 and 110 meters, the initial 

RSSI of -65 dBm gradually decreased, reaching -86 dBm at 110 

meters, as shown in Figure 4. This loss suggests that, even at 

short distances, the urban environment impacts signal propagation 

due to the presence of obstacles and interference. At longer 

distances between 310 and 1610 meters, the signal loss became 

more pronounced, ranging from -108 dBm to -123 dBm. 

The observed behavior reflects the additional challenges 

imposed by urban obstacles such as buildings, vegetation, and 

constructions, which intensify signal fading. For the log-normal 

shadowing model, the coefficient of determination (R²) was 

0.9764, the RMSE was 3.2872, and the MAE was 2.4020. 

 

 
Figure 5: Path Loss as a function of distance. 

Source: Authors, (2025). 

Path loss (PL) was calculated for distances from 10 meters 

to 1610 meters, as shown in Figure 5. The propagation model 

applied in the urban test resulted in a path loss exponent (𝑛) value 

of 2.69 and a standard deviation (𝜎) of 𝜎 =  3.29 dB. These 

values indicate signal attenuation and path loss variability in the 

studied urban scenario, contributing to the understanding of LoRa 

signal behavior at different distances and conditions. 

Additionally, a quadratic curve fitting was applied to the 

collected RSSI data. The fitted curve can be observed in Figure 6. 

 

 
Figure 6: Quadratic approximation of measurements. 

Source: Authors, (2025). 

 

The fitting resulted in the equation 9. 

 
𝑦 = 0.0000425669261𝑥² − 0.0984761724𝑥 − 72.3111221 (9) 
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The coefficient of determination (R²) for the quadratic 

approximation was 0.9117, the RMSE was 6.1397, and the MAE 

was 5.2137, indicating that the quadratic model fits the collected 

data well, reflecting the behavior of the signal as a function of 

distance. For example, path loss increased significantly as the 

distance grew, demonstrating the communication challenges in 

dense urban areas. 

Table 2 presents the statistics of the metrics evaluated for 

the two models compared. 
 

Table 2: Metrics. 

Model R² RMSE  MAE  

Log-normal Shadowing  0.9764 3.2872 2.4020 

Quadratic Approximation  0.9117 6.1397 5.2137 

Source: Authors, (2025). 

The analysis revealed that signal attenuation followed the 

expected behavior, with a marked decrease as the distance 

increased. Obstacles such as buildings and vegetation areas 

generated variability in the RSSI behavior, characterizing the 

urban environment as challenging for LoRa communication. 

By using an outdoor LoRaWAN Gateway, designed for 

external environments, better performance is expected, including 

greater range and better packet reception rate. This upgrade 

should mitigate the limitations identified in this study. 

The log-normal shadowing model outperformed the 

quadratic approximation. It obtained a higher coefficient of 

determination (R²), indicating a greater ability to explain the 

variance of the data. Additionally, it had a lower RMSE, 

reflecting a smaller influence of outliers, and a lower MAE, 

showing reduced mean absolute errors. These results reinforce the 

higher precision and suitability of the log-normal shadowing 

model. 

V. CONCLUSIONS 

Based on the obtained results, the log-normal shadowing 

model demonstrated significantly better performance compared to 

the quadratic approximation. The coefficient of determination 

(R²) of the log-normal shadowing model was 0.9764, indicating a 

greater ability to explain the variance of the data compared to the 

R² of the quadratic approximation, which was 0.9117. 

Additionally, the log-normal shadowing model showed 

lower values of RMSE (3.2872) and MAE (2.4020), reflecting 

lower average errors and less influence from outliers. In contrast, 

the quadratic approximation had an RMSE of 6.1397 and an 

MAE of 5.2137, indicating a less precise fit. Therefore, it can be 

concluded that the log-normal shadowing model is more effective 

and reliable for representing the signal propagation data analyzed, 

proving to be a superior choice compared to the quadratic 

approximation.  

The analysis highlights that LoRa communication is viable 

in urban scenarios, but the signal quality is significantly affected 

by distance and the presence of physical obstacles. The 

implementation of equipment optimized for outdoor use and 

strategies to mitigate urban effects will be essential to improve 

performance and extend the range of LoRa communication in 

dense environments. 

In future work, it is proposed to evaluate the propagation 

of the LoRa signal in multiple urban locations across the city, 

aiming to assess the overall path loss. Additionally, the delay 

spread will be analyzed to better understand the multipath effects 

of the propagated signal. 
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