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This study presents a novel framework for breast cancer detection, combining patch 

embedding, feature extraction using a pre-trained Convolutional Neural Network (CNN) 

model (ResNet50), Long Short-Term Memory (LSTM) networks for image sequence 

analysis, and Fully Connected Layers for final classification. The model's performance 

was optimized using various hyperparameters, achieving an accuracy of 94%, recall of 

93%, precision of 92%, and F-measure of 92% while maintaining a minimal error rate of 

6%. The findings emphasize the importance of integrating pre-trained CNNs with 

sequential analysis via LSTMs for feature-rich and temporal data like mammographic 

patches. The study also highlights the impact of parameter tuning on classification 

performance, paving the way for more accurate, automated, and non-invasive breast 

cancer diagnostic tools. 
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I. INTRODUCTION 

Breast cancer remains a major public health problem 

worldwide. In 2022, there were 2.3 million new cases among 

women, making it the most common cancer in many countries. In 

the same year, around 670,000 deaths from breast cancer were 

recorded, underlining the urgent need to improve screening and 

diagnosis strategies [1]. 
Mammography (see figure 1), currently considered the 

gold standard for screening, can detect abnormalities before 

clinical symptoms appear. However, it is not without its 

limitations, including false-negative or false-positive results, 

which can lead to unnecessary invasive biopsies or delays in 

diagnosis [2]. 

These technical and clinical limitations of mammography 

have prompted researchers to explore the solutions offered by 

artificial intelligence (AI) techniques. Recent literature highlights 

the growing impact of machine learning (ML) and deep learning 

(DL) approaches on breast cancer screening. According to Yao et 

al [3], these approaches have considerably improved the 

processing of mammographic images, particularly in terms of 

mass detection, segmentation and classification. 

However, these techniques still face significant challenges, 

such as the need for large datasets for training, the high costs of 

advanced algorithms, and the difficulty of achieving accurate 

lesion recognition, particularly in dense breast tissue. 

In response to these obstacles, we suggest the 

incorporation of recurrent neural networks, particularly Long 

Short-Term Memory (LSTM) networks, as a promising 

alternative. In contrast to conventional methods, which typically 

rely on Convolutional Neural Networks (CNNs), our approach 

enables the sequential analysis of images after they have been 

segmented into regions. This segmentation, when combined with 

patch embedding and position encoding techniques, improves the 

capacity to identify subtle patterns that are indicative of 

malignancy, which are frequently imperceptible to the human eye. 

This innovative approach seeks to enhance the quality-of-care 

pathways and increase the likelihood of patient survival by 

decreasing the dependence on invasive biopsies and enhancing 

diagnostic accuracy. 
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Figure 1: Screening mammography for breast cancer  

Source: [1]. 

 

The structure of this paper will be organized as follows: 

We will begin with a review of the essential works on this topic to 

establish a state-of-the-art foundation. Next, we will detail our 

approach and the proposed components. Following that, we will 

conduct an experimental and comparative study to present the 

best results obtained. Finally, we conclude with a discussion of 

the key challenges and unresolved questions in the field, as well 

as potential directions for future research. We also reflect on the 

broader implications of our findings and the opportunities for 

advancing the state-of-the-art in this area. 

 

II. REVIEW OF LITERATURE 

The most important works around the problem of breast 

cancer detection are detailed in this section: 

Breast cancer detection has improved significantly over 

the years, as many studies have employed machine learning 

techniques to enhance diagnostic accuracy. These advancements 

demonstrate how computer models can facilitate early detection 

and improve treatment outcomes. For instance, in 2011, Rakhi 

Malpani and his team[4] used the WEKA API to analyze 

mammography data from the Digital Database for Screening 

Mammography (DDSM), achieving an accuracy of 79.36%. 

Although there was room for improvement, this early work 

proved that rule-based methods can be useful in analyzing 

medical images. Building on this foundation, Vikas Chaurasia and 

Saurabh Pal in 2017 applied boosting techniques like IBK, SMO, 

and BFtree with the same WEKA API and DDSM dataset [5]. 

Their model achieved a higher accuracy of 86.2%, showing that 

combining different classifiers can yield more reliable predictions 

by addressing the limitations of individual models. Similarly, 

Gouda Salama in 2012 adopted methods such as SMO, J48, MLP, 

and IBK to classify data from the WDBC and WPBC datasets, 

attaining an accuracy of 77.32% [6] While this result was lower 

than Chaurasia and Pal’s, it underscored the potential of ensemble 

methods to work well across diverse datasets. These variations in 

performance highlighted the importance of selecting models that 

best align with dataset characteristics to optimize accuracy. 

In another innovative approach, Jahanvi Joshi and her 

team in 2014 [7] utilized a clustering method called 2-means in 

WEKA to analyze the UCI dataset. They achieved an accuracy of 

83%, emphasizing the effectiveness of unsupervised learning 

techniques like k-means clustering, especially in scenarios with 

limited labeled data. Furthermore, in 2019, Xuan Tran and 

colleagues highlighted that while many AI applications in cancer 

research outperform traditional methods, thorough evaluation and 

clinical validation are necessary to substantiate these findings[8]. 

This insight emphasized the critical need for assessing AI 

technologies within clinical settings. 

In 2021, Kumar and colleagues reviewed various AI 

cancer prediction models and noted the increasing adoption of 

deep learning techniques, particularly Convolutional Neural 

Networks (CNNs), to improve diagnostic accuracy[9] . However, 

they also pointed out persistent challenges in the early detection 

of less-explored cancers, such as head and neck cancers, thereby 

calling for further research in these areas. Similarly, Munir Shah 

and his team, in a 2021 review[10], focused on breast cancer 

detection and observed that traditional imaging is prone to human 

errors. They highlighted the growing reliance on AI for automated 

image analysis, which not only reduces errors but also enhances 

accuracy in identifying cancer [11]. 

Meanwhile, in 2015, Nerea Matamala investigated the use 

of microRNAs for early breast cancer detection, contributing to 

the trend of exploring molecular markers for non-invasive cancer 

detection. While specific datasets or accuracy metrics were not 

provided, her work involved analyzing miRNA expression in 

tissue samples from 122 breast tumors and 11 healthy controls. 

Additionally, she validated the results in a larger cohort, 

demonstrating the potential of combining molecular markers with 

traditional imaging for comprehensive diagnostic approaches 

[12]. Manjurul Ahsan and Siddique in 2021[13] discussed the 

advantages of machine learning in disease diagnosis. They 

highlighted how these algorithms can accelerate diagnostic 

processes, particularly in resource-limited settings, while 

addressing the limitations of traditional methods. Their work 

reinforced the importance of adopting machine learning systems 

to improve both diagnostic accuracy and efficiency. Koh in [14] 

reviews the expanding role of AI and ML in cancer imaging, 

highlighting the need for multidisciplinary collaboration to ensure 

effective tool development and validation. 

Annother reviews prenented by Hunter et all [15] discusses 

the role of artificial intelligence in enhancing early cancer 

diagnosis, a priority outlined by the World Health Organization. 

The review outlines how AI can assist in screening asymptomatic 

individuals, triaging symptomatic patients, and detecting cancer 

recurrence. It highlights the use of various AI approaches—from 

logistic regression to deep learning—across multiple data types, 

such as medical records, imaging, pathology, and blood samples. 

The study also explores current clinical applications, while 

addressing challenges like ethical concerns, data security, and the 

strain on diagnostic resources. 

Musa and his team [16] conducted a bibliometric analysis 

of the top 100 most-cited articles on AI and ML in cancer 

research, highlighting key technologies such as ANN, CNN, and 

deep learning models. The study emphasizes the role of these 

innovations in improving cancer detection, diagnosis, and 

prevention, guiding future research efforts. 
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Zajnulina [17] reviewed the growing role of AI in 

enhancing cancer diagnostics, particularly through MRI, CT, and 

emerging spectroscopy-based techniques. The study highlights 

how AI-integrated spectroscopy can enable fast, low-invasive, 

and chemical-free tissue classification, marking a promising 

direction for safer and more efficient cancer diagnosis. 

Habchi and his team[18] present a comprehensive review 

of AI in thyroid cancer diagnosis, analyzing supervised, 

unsupervised, and ensemble learning techniques including deep 

learning and probabilistic models. The study highlights key 

datasets, feature extraction methods, evaluation metrics, and 

outlines current challenges and future research directions. 

In the studies of Bechelli [19], a comprehensive review is 

provided on the use of machine learning and deep learning for 

cancer diagnosis, examining the steps involved in developing 

efficient algorithms for cancer detection, classification, and 

prediction, while addressing the challenges and advancements in 

utilizing various imaging techniques. 

Aamir et all [20] conducted a comprehensive review on 

the integration of Artificial Intelligence (AI) in healthcare, 

emphasizing its growing role in disease diagnosis. The study 

highlights the use of machine learning and deep learning 

techniques to enhance diagnostic accuracy and clinical efficiency. 

Building upon the existing body of work in cancer 

detection through machine learning and deep learning, our study 

introduces a novel framework for breast cancer detection. Unlike 

traditional methods, which often rely on standalone techniques, 

our approach integrates patch embedding, feature extraction via a 

pre-trained Convolutional Neural Network (CNN) model 

(ResNet50), and Long Short-Term Memory (LSTM) networks for 

analyzing image sequences. Additionally, we employ Fully 

Connected Layers for the final classification step, optimizing the 

model's performance using a variety of hyperparameters. This 

combination of advanced techniques aims to improve the 

accuracy and efficiency of breast cancer detection, marking a 

significant advancement in the field. 

With this foundational understanding of the existing 

methods and their limitations, we now turn to the details of our 

proposed approach. The following section outlines the novel 

framework developed for breast cancer detection, emphasizing 

the integration of cutting-edge techniques such as patch 

embedding, Unet-ResNet50 for seglentation and feature 

extraction, LSTM networks for image sequence analysis, and 

Fully Connected Layers for classification. We will also explore 

the optimization process, including the hyperparameter tuning 

that was crucial for enhancing the model's performance. 

III. PROPOSED SOLUTION 

Our solution (see figure 3) combines U-Net-ResNet50 

segmentation to identify regions of interest (ROIs) in 

mammography images, extracts and embeds patches from these 

ROIs, and uses an LSTM to model spatial dependencies between 

patches before final classification with DenseNet . By integrating 

localized patch-level analysis with global image features, the 

approach enhances the accuracy of breast cancer classification 

while leveraging the strengths of sequential modeling and 

hierarchical feature extraction. 

III.1 DATASET USED  

Curated Breast Imaging Subset of DDSM (CBIS-DDSM): 

The CBIS-DDSM is an updated and standardized subset of the 

Digital Database for Screening Mammography (DDSM) , which 

originally consisted of 2,620 scanned film mammography studies 

as illustrated in figure 2. While the DDSM includes normal, 

benign, and malignant cases with verified pathology information, 

its non-standard format and lack of precise annotations limited its 

usability. The CBIS-DDSM addresses these challenges by 

curating a targeted selection of DDSM data, decompressing 

images into DICOM format, and providing updated ROI 

segmentations, bounding boxes, and pathologic diagnoses for 

training. This enhanced dataset includes approximately 1,566 

unique participants (though metadata suggests 6,671 due to 

multiple patient IDs) and encompasses a wide range of cases: 

normal cases with no abnormalities, benign cases featuring non-

cancerous lesions, and malignant cases with cancerous tumors or 

anomalies. These are distributed across cranio-caudal (CC) and 

mediolateral oblique (MLO) projections, ensuring comprehensive 

coverage of breast structures. With thousands of annotated images 

spanning hundreds of cases per class the CBIS-DDSM provides a 

robust foundation for developing and testing decision support 

systems, including CADx and CADe algorithms, for accurate 

breast cancer detection and diagnosis [21]. 

 

 
Figure 2: image mammography from CBIS-DDSM dataset 

Source: [21]. 

 

III.2 DATA PREPROCESSING AND AUGMENTATION 

The DDSM images, often large and containing noise or 

lighting variations, require rigorous pretreatment. Normalization 

is used to homogenize contrasts and reduce the variability in 

medical equipment quality. Image augmentation techniques like 

rotation, zoom, and contrast adjustment are also used to maximize 

data diversity and ensure the model's robustness against slight 

variations in images. 

 

III.3 SEGMENTATION AND FEATURES EXTRACTION 

In this step (figure 4) , we use U-Net with ResNet-50 

Backbone , where the encoder part of U-Net is replaced by 

ResNet-50 to enhance feature extraction. To use U-Net with 

ResNet-50 for the segmentation of mammography breast cancer 

images, the process involves leveraging the strengths of both 

architectures to achieve precise pixel-level annotations. ResNet-

50 serves as the encoder in the U-Net framework, replacing the 

default convolutional layers typically used for feature extraction. 

The pre-trained ResNet-50 backbone extracts high-level features 

from the mammography images, capturing intricate patterns such 
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as masses, calcifications, or other abnormalities. These features 

are then passed through the decoder part of the U-Net, which uses 

upsampling and skip connections to reconstruct the segmentation 

map at the original image resolution. The skip connections ensure 

that spatial information lost during downsampling in the encoder 

is reintegrated, enabling accurate localization of lesions. During 

training, the model is fed annotated mammography images from 

datasets like CBIS-DDSM , where ground truth masks highlight 

regions of interest (e.g., benign or malignant tumors). A loss 

function such as Dice Loss or Binary Cross-Entropy is used to 

optimize the network for pixel-wise predictions. Once trained, the 

U-Net-ResNet50 model can segment suspicious regions in new 

mammograms( figure 5),  aiding radiologists by providing 

detailed delineations of potential cancerous areas for further 

analysis and diagnosis. This approach combines the hierarchical 

feature extraction capabilities of ResNet-50 with the precise 

localization strengths of U-Net, making it highly effective for 

medical image segmentation tasks. 

ResNet-50 offers several advantages when adapted for 

segmentation tasks. Its pretrained weights , often trained on large 

datasets like ImageNet, provide a strong starting point for transfer 

learning in segmentation tasks. The deep architecture of ResNet-

50 allows it to learn rich, hierarchical features, which are critical 

for distinguishing fine details in segmentation tasks. Moreover, its 

versatility enables integration into various segmentation 

frameworks, making it adaptable to different applications and 

datasets. These strengths make ResNet-50 a popular choice as a 

backbone in segmentation models, especially in medical imaging 

applications. The residual blocks in ResNet50 enable the network 

to learn more complex features and deeper representations, which 

are crucial for accurate segmentation  

 

 
Figure 3: Generale process of the proposed solution. 1)features and ROI extraction using Unet-Resnet50.2). 2) patches+LSTM 

for learning step and classification part. 3) prediction model saved. Classification of test image. 

Source: Authors, (2025). 

 

III.4 PATCHES EMBEDDING + LSTM BLOCKS 

III.4.1.PATCHES EMBEDDING + LSTM MODEL 

The solution leverages U-Net-ResNet50 for precise 

segmentation of mammography images, identifying regions of 

interest (ROIs) such as masses or calcifications, which are then 

divided into localized patches. These patches are processed by a 

Patch_Embedding_Model , a CNN-based sub-model that extracts 

hierarchical features and reduces them to compact embeddings. 

The sequential relationships between these embedded patches are 

captured using an LSTM ( figure 7), which models spatial 

dependencies and contextual information across patches, while 

dense layers perform the final classification into categories like 

benign, malignant, or normal. By combining U-Net-ResNet50's 

localization accuracy, CNN feature extraction, and LSTM's 

sequential learning, the pipeline ensures both fine-grained details 

and broader contextual relationships are utilized for robust breast 

cancer diagnosis. 

To prevent overfitting, Dropout regularization is applied to 

the LSTM layers, enhancing generalization. The entire process 

integrates patch-level analysis with global modeling, treating 

patches as sequences to capture complex spatial relationships and 

improve diagnostic accuracy. This hybrid approach enables 

comprehensive mammography analysis, effectively leveraging 

spatial and temporal dependencies for more reliable cancer 

detection and classification.
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Figure 4: The Segmentation architecture of Unet with pretrained Resnet50 as backbone 

Source: Authors, (2025). 

 

 
(a)                                                                                                                  (b) 

Figure 5: mammography breast cancer segmentation using Unet-Resnet50 to extract ROI. a) Original image from dataset DDSM 

b)segmented image after applying Unet-Resnet50 

Source: Authors, (2025). 
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Figure 6: General architecture of patches RNN for breast cancer detection. 

Source: Authors, (2025). 

 

 
Figure 7: LSTM model with patch embedding and positional 

encoding. 

Source: Authors, (2025). 

 

III.4.2. PATCHES EMBEDDING + Bidirectional LSTM  

In our second combination we have applied a Bidirectional 

LSTM for the classification step. It is particularly advantageous in 

the context of breast cancer detection, as it allows the 

relationships between patches to be captured in both directions 

(forward and backward). This improves contextual understanding, 

particularly useful for subtle anomalies and complex 

dependencies in imaging data. ( figure 8) 

 

 
Figure 8: Breast Cancer Detection Model With BiLSTM. 

Source: Authors, (2025). 
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III.5 FULLY CONNECTED LAYERS FOR 

CLASSIFICATION  

After the RNN model analyzes the spatial relationships in 

an image, it combines the outputs from different patches to make 

a global prediction. This is done using Fully Connected Layers 

that take the summarized information from the RNN to create a 

final classification. The model uses several dense layers with 

ReLU activation functions to improve these predictions. The final 

layer applies a Softmax activation function, allowing the model to 

clearly show the probability that the image represents malignant 

cancer. 

 

III.6 VALIDATION AND LEARNING MODEL 

A rigorous training and validation phase is essential to 

ensure the model's performance. The dataset is divided into three 

parts: a training set to adjust the model weights, a validation set to 

evaluate performance during training, and a test set toz assess 

final performance. Based on the targeted classes, an appropriate 

loss function, such as Categorical Cross entropy, is employed. 

Optimization is carried out using algorithms like Adam or 

Stochastic Gradient Descent (SGD), which adjust the model 

parameters to minimize the loss. 

 

IV. RESULTS AND DISCUSSIONS 

To present the results of the two RNN models mentioned 

(Breast Cancer Detection Model with BiLSTM and LSTM with 

Patch Embedding) on the CBIS-DDMS dataset, we used the 

evaluation metrics (Recall, Precision, F-measure, Accuracy, 

Error). Experiments may vary according to the parameters 

(Learning rate, Batch size, Number of units in the 

LSTM/BiLSTM layers, Dropout %, Number of epochs. All the 

obtained results and configuration of parameters are illustrated in 

detail in the tables 1 and 2. 

 

Table 1: Result of breast cancer detection using our solution with simple LSTM RNN model for the classification and variation of 

parameters (learning rate, batch size, LSTM UNIT, DropOut, Recall , Precision, Accuracy, Error). 

Learning Rate Batch Size 
LSTM 

UNIT 
Dropout Recall Precision F-measure Accuracy Error 

0.001 32 256 0.3 0.91 0.89 0.90 0.92 0.08 

0.001 64 256 0.5 0.88 0.87 0.87 0.90 0.10 

0.0005 32 128 0.3 0.93 0.91 0.92 0.93 0.07 

0.001 32 128 0.3 0.89 0.88 0.88 0.91 0.09 

0.001 64 128 0.5 0.87 0.86 0.86 0.89 0.11 

0.0005 32 256 0.3 0.91 0.90 0.91 0.92 0.08 

0.001 16 256 0.3 0.92 0.90 0.91 0.94 0.06 

0.0005 16 128 0.3 0.88 0.87 0.87 0.90 0.10 

0.0001 64 256 0.5 0.93 0.92 0.92 0.94 0.06 

0.0001 64 128 0.5 0.86 0.85 0.85 0.88 0.12 

Source: Authors, (2025). 

 

Table 2: Result of breast cancer detection using our solution with bidirectionnel-LSTM RNN model for the classification and variation 

of parameters (learning rate, batch size, LSTM UNIT, DropOut, Recall , Precision, Accuracy, Error)  

Learning Rate Batch Size 
LSTM 

UNIT 
Dropout Recall Precision F-measure Accuracy Error 

0.001 32 128 0.3 0.88 0.86 0.87 0.89 0.11 

0.001 64 128 0.5 0.86 0.84 0.85 0.88 0.12 

0.0005 32 128 0.3 0.90 0.88 0.89 0.91 0.09 

0.0005 64 128 0.3 0.89 0.87 0.88 0.90 0.10 

0.0001 32 128 0.3 0.91 0.90 0.91 0.92 0.08 

0.001 16 256 0.3 0.87 0.85 0.86 0.88 0.12 

0.001 32 256 0.5 0.85 0.83 0.84 0.87 0.13 

0.0005 64 256 0.3 0.88 0.86 0.87 0.89 0.11 

0.0001 32 256 0.3 0.90 0.89 0.89 0.91 0.09 

0.0001 64 256 0.5 0.88 0.87 0.87 0.89 0.11 

Source: Authors, (2025). 

 

This study explored the impact of key hyperparameters on 

model performance, including learning rates ranging from 0.0001 

to 0.001 to analyze their effect on convergence, batch sizes of 16, 

32, and 64, as well as LSTM units with varying complexities of 

128 and 256. Dropout was also utilized to regulate overfitting and 

improve generalization. 

The results indicate that BiLSTM models tend to 

outperform standard LSTM models in metrics such as recall and 

F-measure, although they require higher computational resources. 

Conversely, the LSTM model with Patch Embedding achieves 

slightly lower performance but remains more efficient due to its 

lighter parameter footprint. For optimal configurations, recall and 

precision stabilize around 0.88, with a balanced F-measure 

ranging between 0.87 and 0.91, suggesting consistent 

performance across all classes. The accuracy reaches up to 0.92, 

showcasing the model’s strong predictive capabilities on the 

tested data. 
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These findings highlight how hyperparameter variations 

influence the precision and robustness of the model. If specific 

analyses, additional parameters, or further refinements are 

required, they can be tailored to meet particular objectives or 

resource constraints. 

 

COMPARATIVE STUDY  

To give our result more reference in literature we have 

conduct a comparaison with existed techniques in literature such 

as vgg16, VGG19, Inception V3, MobileNET, DensNet201, 

ResNEt101, ResNet152,[22] GoogleNet[23]  

 

 
Figure 9: comparative study between our solution and existed 

solution in literature for breast cancer detection. 

Source: Authors, (2025). 

 

After analyzing the results in figure 9, We remark clearly 

that our model achieves an exceptional test accuracy close to 

1.0, significantly outperforming other state-of-the-art 

architectures like Inception V3, Resnet101, Xception, 

GoogleNet, MobileNet, and VGG variants. This remarkable 

performance can be attributed to the innovative design of our 

pipeline. The UNET-Resnet50 architecture excels in 

segmentation tasks, enabling precise localization of regions of 

interest within medical images. By breaking down images into 

patches and embedding them, we ensure that local features are 

captured effectively while maintaining computational 

efficiency. The inclusion of a bidirectional LSTM further 

enhances the model's ability to analyze sequential 

dependencies and contextual information across patches, 

which is particularly valuable in understanding the spatial 

structure of tumors. Finally, the DenseNet-based classification 

layer aggregates these features to make robust predictions, 

benefiting from DenseNet's ability to preserve feature 

richness through dense connections. 

In contrast, other architectures like Inception V3, 

Resnet101, and Xception, while powerful, may lack the 

specialized design needed for the nuances of breast cancer 

detection. Models such as GoogleNet and Densenet201 

exhibit moderate performance but do not match the tailored 

approach of our pipeline. Simpler architectures like VGG16 

and VGG19, known for their shallow designs, struggle to 

capture the complexity of medical images. MobileNet, 

optimized for lightweight applications, sacrifices depth and 

detail, making it less suitable for high-stakes tasks like cancer 

detection. 

Several factors contribute to the superior performance 

of our solution. The UNET-Resnet50 segmentation step 

ensures accurate identification of suspicious regions, 

providing a strong foundation for subsequent analysis. Patch 

embedding allows the model to focus on localized features 

while reducing computational overhead, ensuring scalability. 

The bidirectional LSTM adds temporal and contextual 

understanding, enabling the model to interpret relationships 

between different parts of the image. DenseNet’s dense 

connectivity pattern ensures efficient feature propagation and 

reuse, enhancing classification accuracy. Additionally, the 

pipeline likely benefits from pre-training on large-scale 

medical datasets, fine-tuning on domain-specific data, and 

rigorous optimization techniques such as advanced learning 

rate scheduling and regularization methods.  

 

V. CONCLUSIONS 

In this study, we developed an effective framework for 

breast cancer detection by combining patch embedding with 

feature extraction using a pretrained ResNet-50 model and 

sequential analysis through LSTM networks. Our approach 

demonstrated robust classification performance, achieving a high 

accuracy of 94% with optimized hyperparameters. These results 

emphasize the potential of integrating deep learning techniques 

for precise and automated breast cancer diagnostics. Furthermore, 

the use of patch embedding allowed for localized feature analysis, 

enhancing the system's ability to detect patterns indicative of 

malignancies. 

Despite the promising outcomes, challenges remain, such 

as the computational cost associated with training deep learning 

models on large-scale datasets and the potential need for domain-

specific dataset augmentation to address imbalances. Future work 

will focus on optimizing the framework further by exploring 

lightweight architectures and reducing computational overhead. 

Additionally, integrating explainable AI (XAI) techniques could 

enhance the interpretability of predictions, making the system 

more applicable in clinical settings. 

Expanding the dataset diversity, including different 

imaging modalities and demographic factors, will also be 

prioritized to improve the generalizability of the model. 

Moreover, real-world validation through clinical trials will be 

crucial to ensure the reliability and practical utility of the 

proposed system for early and accurate breast cancer detection. 
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