
Journal of Engineering and Technology for Industrial Applications, 2018. Edition. 13.Vol: 04
https://www.itegam-jetia.org

ISSN ONLINE: 2447-0228
 DOI: https://dx.doi.org/10.5935/2447-0228.20180004

A hardware-software architecture for computer vision systems

Antônio Otavio Fernandes
1
, Luiz Fernando E. Moreira

2
, Glauber Tadeu S. Carmo

3
, José

M. Mata
4

1
Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Brasil.

2
 Invent Vision Sistemas de Imagem e Visão, Belo Horizonte, Minas Gerais, Brasil.

3,4
Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Brasil.

Email: otavio@dcc.ufmg.br, luizf@ivision.ind.br, glaubertadeu@gmail.com, mata@dcc.ufmg.br

Received: January 16
th

, 2018.

Accepted: February 14
th

, 2018.

Published: March 30
th

, 2018.

Copyright ©2016 by authors and
Institute of Technology Galileo of
Amazon (ITEGAM).
This work is licensed under the
Creative Commons Attribution
International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

 ABSTRACT

Computer vision systems are based on capture and processing of images, from which information

for the application is extracted. This paper presents a hybrid platform which can be easily configured

and efficiently used for a large number of applications in computer vision. It consists of a dedicated

processor integrated to the capture element, connected to a general-purpose computer for the high-

level application processing. The camera module consists of a DSP executing a middleware which

provides all the basic functions, such as image capture, low-level image processing, control, and

communication. Experiments showed that good performance is obtained with this platform, and the

framework presented may simplify the development of computer vision systems. An application for

the hardware-software architecture presented here would be the validation and prototyping of

computer vision systems.

Keywords: Computer vision platform, Low-level image processing, Smart camera.

I. INTRODUTION

Computer vision systems are based on capture and

processing of images, from which information for the application

is extracted. Applications include surveillance cameras,

automated visual inspection, and microscopy [7]. Traditional

computer vision systems consist of a camera connected to a

general-purpose computer which runs the application. The result

of the processing can activate complementary actuators or go to

the output device (Figure 1). The whole system can be integrated

in one component, the smart-camera, which includes image

capture, processing, and output (Figure 2).

Figure 1: Traditional computer vision system.

Source: Authors, (2018).

31

https://www.itegam-jetia.org/
mailto:otavio@dcc.ufmg.br
mailto:luizf@ivision.ind.br
mailto:glaubertadeu@gmail.com
mailto:mata@dcc.ufmg.br
http://creativecommons.org/licenses/by/4.0/

 Fernandes, Moreira, Carmo and Mata, ITEGAM-JETIA. Vol. 04, Nº 13, pp 31-35. March, 2018.

Figure 2: Smart camera.

Source: Authors, (2018).

Image representation requires a huge amount of memory,

and image processing requires strong processing power. In the

traditional vision system, the time for transmission between

camera and computer may be extremely long. In the smart-

camera, communication camera-processor is direct, significantly

reducing the time between capture and processing.

Expressive image processing power is obtained through

the use of dedicated processors and especial architectures. On the

other hand, high-level applications run better on general purpose

computers. The development of applications in these dedicated

platforms requires from the developer detailed knowledge of all

its resources; high-level applications may not fit well in these

dedicated processors.

We propose a hybrid architecture, consisting of a

dedicated processor integrated to the capture element, for the low-

level image processing, connected to a general-purpose computer

for the high-level application processing (Figure 3).

 Figure 3: Hybrid architecture.

 Source: Authors, (2018).

In order to ease the programming of the dedicated

processor, we provide a framework for the development of

applications, which did not require detailed knowledge of the

platform. The framework consists of a middleware running in the

dedicated processor and configuration software running in the

general-purpose processor. The middleware provides all the basic

functions, such as image capture, low-level image processing,

control, and communication.

II. COMPUTER VISION SYSTEMS

II.1. REQUIREMENTS

Of the five senses, vision is the one that provides most of

the data we receive. Its function provides us a detailed description

of the surrounding tridimensional world, which changes

constantly. Although it involves a huge amount of information

and complex processing, the human visual system (eye-brain) can

interpret this information easily. Efforts have been made to get

machines to do this work, but the power of these machines is still

far from the power of the human vision [6].

Computer vision can be seen as inverse computer graphics.

In computer graphics the main motivation is the generation of

images, transforming abstract descriptions into images. In

computer vision the abstract description is obtained from the

image, allowing object recognition. The description of a scene,

besides identification of each object, includes position, color,

orientation, and other aspects.

In order to understand the difficulties of implementing

machine vision, let’s consider the object recognition problem.

Recognition involves image capture by the camera, grabbing

image (digitize and store), preprocess (suppress noise and

regularize the image data), and pattern recognition. These tasks

are complex and demand large space and processing time.

An important feature of most of the applications of

computer vision is that they take place in real time: machine

vision must be able to keep up with the ongoing process.

There is a need for tools (hardware and software) to help

the developer of computer vision systems. Hardware platforms

must achieve all the application requirements, and software tools

should ease the programming task. It is desirable that a computer

vision system include other benefits like modularity, portability,

extensibility, and configuration and operation facilities. This

demand led to studies for a better understanding of the steps of

the vision process and to new computer vision development

models, new hardware and software architectures, new dedicated

processors, and new design techniques.

II.2. OPERATIONS

A computer vision system consists basically of three

elements: capture, processing and output. Figure 4 shows the

block diagram of a smart camera [3].

Figure 4: Block diagram of a smart camera.

Source: Authors, (2018).

32

 Fernandes, Moreira, Carmo and Mata, ITEGAM-JETIA. Vol. 04, Nº 13, pp 31-35. March, 2018.

Capture corresponds to transformation of the image into an

abstract description; this is done by sensors (cameras). The main

characteristics of available sensors are resolution (number of

pixels), speed (frames per second), and number of colors.

The tasks of a computer vision application may be

classified into three levels (low, medium, and high), according to

the type of processing, the data access mode, and the control

mode [12]. The type of processing refers to the used resources

and data structures [5][9][12].

Low-level operations work directly with the image or part

of it, being usually called image processing. They are

characterized by the large amount of data processed, although

acting on a few pixels each time. Access to the image is usually

made in an ordered and predictable form. There is possibility of

executing these operations in parallel. Smooth and convolution

are examples of low-level operations.

Medium-level operations usually operate only on a region

of the image; the aim is to extract and to organize information,

like in the segmentation operation. Most of the time access to the

image is also made in an ordered and predictable form, but the

possibility of parallelism is not always evident.

High-level operations make part of the application; they

operate on data structures extracted from the image, obtaining

information for decision making. They consist of complex and

sequential algorithms; access to the image information is random

and non-deterministic. An example of this kind of operation is

object recognition.

The complete processing in a computer vision application

involves three steps. In the first step, low-level operations are

applied to the captured image, with the aim to eliminate noise,

and to get better contrast and other aspects that emphasize a given

characteristic important for the application. The second step

consists of extraction of information relevant to the application,

using medium-level operations. In the third step decisions

dictated by the application are made, using high-level operations,

based on the information obtained in the second step.

II.3. ARCHITECTURE

Analyzing the process of a computer vision application,

one can perceive that the different tasks demand different efforts

from the various computational resources. One can conclude that

a single processor architecture may not be able to carry all these

operations efficiently; there is a need for a hybrid processing

configuration, with specific architectures for each level [11].

Architectures for low-level operations are heavily

explored, due to their specific characteristics and the large amount

of data involved. There is a trend to use SIMD (single instruction

multiple data) parallel architectures for low-level processing, and

a second architecture for medium and high-level operations.

Digital signal processors (DSPs) have also been used for low-

level operations, with good performance [2]. Architectures for

medium and high-level operations have many characteristics in

common with general purpose processors.

Another important aspect is the availability of software,

which should be easy to use and able to fully explore the

hardware capabilities. There are several software packages for

computer vision, like OpenCV (Open Source Computer Vision)

[8], which is a library of programming functions.

III. DSCAM PLATFORM

We developed a hybrid platform which can be easily

configured and efficiently used for a large number of applications

in computer vision. It consists of a dedicated processor integrated

to the capture element, for the low-level image processing,

connected to a general-purpose computer for the high-level

application processing (Figure 5).

Figure 5: DSCAM platform.

Source: Authors, (2018).

The camera module consists of a DSP executing a

middleware which provides all the basic functions, such as image

capture, low-level image processing, control, and communication.

The middleware is responsible for management of all the tasks

executed in this module. The execution flow is defined in a file

sent by the application module. There is a library of image

processing functions; most of the functions were implemented

with the use of the package OpenCV.

The DSP Blackfin 537 from Analog Devices [1] provided

the best cost/benefit relation for the intended applications. Access

to the DSP interfaces is simplified by the use of the platform Ez-

Kit BF537. Management of hardware and software is provided by

the mini operating system uClinux [10].

The configuration and operation software, running on the

general-purpose processor, offers to the user an interface that

allows access to all the platform resources and ways to define the

flow of execution of the operations.

The independence between these two modules allows

independent development and extension. Due to the modular

structure of the platform, extensions can be easily incorporated.

We included, for example, user authentication.

Communication with the sensor can be done in the

Blackfin DSP through the PPI interface. In our prototype, this

33

 Fernandes, Moreira, Carmo and Mata, ITEGAM-JETIA. Vol. 04, Nº 13, pp 31-35. March, 2018.

communication was not implemented; experiments were made

considering that the image was already stored in a file.

 IV. EXPERIMENTS

Two experiments were made, running different

benchmarks on different platforms. The first experiment had the

goal of comparing different platforms, and the second one had the

goal of measuring the performance of the camera module (low-

level operations). For the first experiment, we used part of the

DARPA image understanding benchmark [13], and for the second

experiment we used a simple computer-generated image on which

low-level operations could be applied. Reference [4] presents a

detailed description of the experiments.

Five different platforms were used for the experiments,

including a PC (personal computer) with a 1.8GHz Celeron

processor, SuSE Linux 9.2 operating system, DSP (digital signal

processor) Blackfin 537, uClinux embedded Linux

1. PC + Linux;  

2. PC + middleware + Linux;  

3. DSP;  

4. DSP + uClinux;  

5. DSP + uClinux + middleware.  

As we were interested in the performance of the

processing and control operations, access to input/output devices

was no included in the measurements. Image representation was

previously loaded in the memory.

The DARPA image understanding benchmark specifies

algorithms that involve all three levels of operations on images; it

is used to validate processing architectures, especially parallel

architectures. Its algorithms refer to applications close to real

practice, involving location of rectangular objects in an image.

The first experiment was divided into three parts,

comparing the execution of the DARPA benchmark algorithms on

different platforms. In the first part, we compared platforms 1 and

2, in the second part platforms 4 and 5, and in third part,

platforms 1 and 4.

Analyzing the results, we concluded:

 we can neglect the overhead introduced by the

middleware, in both PC and DSP;  

 medium-level or high-level algorithms have better

performance on the PC;  

 low-level algorithms have similar performance on both

platforms;  

 uClinux introduces an overhead when there are many

mathematical operations;  

 cache memory size has influence on the performance.

In the second experiment, we compared platforms 3 and 4,

trying to evaluate the performance of the camera module, running

low-level algorithms on simple images. Analyzing the results, we

concluded again that uClinux introduces an overhead, due to

mathematical and logical operations, cache use, and other factors.

V. CONCLUSION

In this work, we explored hardware and software platforms

for computer vision systems. In especial we explored the software

architecture for the camera module. Our experiments showed

once more that dedicated processors and especial architectures,

like DSPs, are indicated for low-level image processing, whereas

medium and high-level operations can be executed with good

performance on general-purpose processors.

A framework as presented here may simplify the

development of computer vision systems. The middleware

running in the camera module introduces no significant overhead

to the system. Special attention must be given to the performance

of the embedded operating system used.

An application for the hardware-software architecture

presented here would be the validation and prototyping of

computer vision systems. Due to the modularity and extensibility

of the platform, prototyping of computer vision applications

would be simplified.

VI. REFERENCES

[1] Analog Devices, “Blackfin processors,” [Online]. Available:

http://www.analog.com/en/embedded-processing-

dsp/blackfin/processors/index.html

[2] D. Baumgartner, P. Rossler, W. Kubinger, “Performance

benchmark of dsp and fpga implementations of low-level

vision algorithms,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition”, Minneapolis, June

2007.

[3] A. N. Belbachir, “Smart cameras,” Springer, 2009.

[4] G. T. S. Carmo, “DSCAM: uma plataforma hardware-

software para operações de visão computacional,” M.S.

Thesis, Universidade Federal de Minas Gerais, Brasil, June 2009.

[5] A. Choudhary, J. Patel, N. Ahuja, “Netra: a hierarchical and

partitionable architecture for computer vision systems,” in

IEEE Transactions on Parallel and Distributed Systems, Vol. 4,

no. 10, pp. 1092-1104, October 1993.

[6] E. R. Davies, “Machine Vision: Theory, Algorithms,

Practicalities,” Morgan Kaufmann, 3rd edition, 2005.

[7] InventVision, Sistemas de Imagem e Visão.

www.inventvision.com.br. 

[8] OpenCV: Open Source Computer Vision, version 2.1, April

2010, [Online]. Available: http://opencv.willowgarage.com/wiki 

[9] N. K. Ratha, A. K. Jain, “Computer vision algorithms on

reconfigurable logic arrays,” in IEEE Transactions on Parallel

and Distributed Systems, Vol. 10, no. 1, pp. 29-43, January 1999.

[10] uClinux, “Embedded Linux/Microcontroller Project,”

[Online]. Available: http://www.uclinux.org/

[11] C. L. Wang, P. Bhat, V. Prasanna, “High-performance

computing for vision,” in Proceedings of the IEEE, Vol. 84,

no. 7, pp. 931- 946, July 1996.

[12] C.Weems, “Architectural requirements of image

understanding with respect to parallel processing,” in

Proceedings of the IEEE, Vol. 79, no. 4, pp. 537-547, April 1991.

34

 Fernandes, Moreira, Carmo and Mata, ITEGAM-JETIA. Vol. 04, Nº 13, pp 31-35. March, 2018.

[13] C.Weems, E. Riseman, A. Hanson, A. Rosenfeld, “The

DARPA image understanding benchmark for parallel

computers,” in Journal of Parallel and Distributed Computing,

Vol. 11, no. 1, pp. 1-24, January 1991.  

35

