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This article reviews the physical conditions that natural, turbulent flows meet to be 

considered in “Dynamic Equilibrium”, a condition that greatly facilitates the analysis of 

flows, thanks to the concept of “equiprobability”, in such a way that the tracer dyes can give 

an essential information of the dynamics of the current. A general State Function is proposed 

for this dynamic, which allows to study Advection and Dispersion for virtually all types of 

river beds, achieving a series of compact and precise relationships, both in hydraulics and 

thermodynamics. This approach allows us to obviate the limiting use of non-linear 

differential equations, as "mandatory" characterization of fluid dynamics. With this new 

method, a practical case from the technical literature is analyzed, and it is solved in detail, 

comparing it with the classic method of Statistical Moments. Conclusions on results, and 

recommendations are made. 
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I. INTRODUCTION 

With the worsening of environmental problems, derived 

from the intense industrialization and expansion of the urban 

frontier, the availability of powerful methods for the interpretation 

and study of these issues takes on vital importance.  

Paradoxically to this serious situation, since the end of the 

century, the methods of measurement and study of the phenomena 

of water pollution practically advanced a little in the theoretical 

part, and except for the development of increasingly advanced 

digital platforms, and some new ones. Ideas on how to approach 

turbulence from emerging concepts [1], far from the classical 

approximation of non-linear differential equations, the methods 

currently used are practically the same as in the 1990s. For this 

reason, the renewal of approaches and procedures is an important 

point from which you can make up for lost time. 

With this optics in mind, this Article aims to question some 

key points about the conceptualization of the dynamics of channels, 

based on dispersion as a substrate of turbulence, and limited by the 

relative control of fluctuations (steady state), typical of the "linear" 

regime of non-equilibrium thermodynamics. A first basic point in 

this approach is that the energetic conditions are reviewed by which 

it can be understood why natural, turbulent channels, in “normal” 

(not catastrophic) conditions, are in a low or moderately strong 

degree of instability, which allows the entropy production should 

be at a minimum value, and therefore (according to Boltzmann) 

present in the system, condition of “Equiprobability”, leading to a 

“statistical constancy” of the average flow velocity. 

A second point analyzed is a new Dispersion-Advection 

model, which basically depends on the mean velocity of the flow 

and on a “State function” that guides the evolution of the injected 

tracer cloud, and which, being also a “thermodynamic potential”, 

indicates us when the cloud loses degrees of Freedom, of great 

significance when we want to calculate the situation of “Complete 

mixture” for water quality studies.  

Turbulence in “steady state” allows the condition of 

“Equiprobability”, which in turn allows a statistically “constant” 

flow rate. The subsequent dispersion can be defined very precisely.  

Finally, a tracer experiment documented in detail in the 

technical literature is chosen, to which the new model is applied, 

and the results are compared with the classical Moment 

methodology. 
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II. THEORETICAL REFERENCE 

Considering the enormous difficulty that has been the deep 

understanding of turbulence from the Navier-Stokes non-linear 

differential equations, alternative approaches to the problem have 

emerged since the end of the last century. One of them, quite 

different and novel, is Emergent Analysis, in which it is recognized 

that, in real physical processes, the whole is not the sum of the 

parts, this since non-linearity and multiple feedbacks in said 

processes, invalidate the superposition principle, and fill the 

equations with multiple “incomputable” solutions. It had always 

been believed, as a fundamental paradigm of science, that starting 

from the basic processes (at the molecular level, for example) it 

was possible to describe phenomena of a higher level (at the human 

level) as “synthesis” of those previous levels. This is not possible 

due that “the analysis abandons us”, in line with Euler's prophetic 

words. As each level of reality demands its own calculation rules, 

it is necessary then, to formulate “emergent” approaches that cover 

those levels.  

An analysis in this line of thought is to define the conditions 

in which the turbulence remains stable or not, at room temperature, 

without going of course to the complete analysis from the origin, 

via Navier-Stokes, which can be done from the thermodynamics of 

irreversible phenomena. From these results, anticipated by J. 

Frenkel in the last century, certain important conclusions can be 

drawn to give a useful interpretation to river hydraulics, especially 

considering the application of dye tracers. 

 

II.1 REGIMES OF CONTEMPORARY 

THERMODYNAMICS 

Depending on the intensity of the flow of energy or 

substance (entering or leaving) in open real systems, its state can 

be placed in one of the thermodynamic stages according to the 

following classification [2]: 

A - Strict equilibrium, corresponding to totally reversible 

processes, in which causes, and effects disappear, in response to 

the statistical homogeneity of the parameters associated with this 

state. Thus, the “Thermodynamic forces”, F, (temperature, 

concentration, free energy gradients, etc.), and their consequences, 

the “Thermodynamic flows”, J, (rates of heat transport, free 

energy, etc.), they are completely canceled. The fluctuations 

disappear quickly by the physicochemical control mechanisms. 

And it is proper to define “thermodynamic potentials” that allows 

establishing criteria for evolution towards maximums or 

minimums. For example, in this case, the Entropy Production, σ, 

null. 

B - Quasi-equilibrium, or Linear Irreversibility close to 

equilibrium, in which the forces and thermodynamic flows are not 

zero, but are proportional to each other, for this reason, this stage 

is called “linear”, close to equilibrium. Likewise, fluctuations do 

not disappear completely, but they are an important aspect of 

instabilities, without producing catastrophic effects. In this case, 

when the Forces and Thermodynamic Flows are proportional to 

each other, the Entropy Production is set at a minimum value, 

according to a famous theorem of I, Prigogine [3]. According to the 

probabilistic concept of L. Boltzmann [4], a maximum entropy in 

a system implies that the probabilities at each point are equal [5], 

which is called as the “Equiprobability” condition. If the entropy 

according to Boltzmann is: 

 

∑ 𝐿𝑜𝑔 𝑝𝑖𝑖 ~𝑀𝑎𝑥𝑖𝑚𝑜  (1) 

 

This implies that: 

𝑝1 + 𝑝2 + 𝑝3 + ⋯ + 𝑝𝑛 ≈ 1.0                       (2) 

 

And that: 

 

𝑝1 = 𝑝2 = 𝑝3 = ⋯ = 𝑝𝑛                          (3) 

 

In other words, for a maximum entropy, the probabilities at 

each point in the system are equal. Now, for this maximum 

condition, the entropy production is a Minimum. 

 

𝑆 → 𝑀𝑎𝑥,   𝜎 → 𝑀𝑖𝑛                             (4) 

 

C -Dissipative Non-Equilibrium, or distant Irreversibility, 

a state in which there is no proportionality between Forces and 

Flows and their relationship is non-linear, which is why this phase 

is precisely called “non-linear”. The production of entropy grows 

and is no longer a minimum, and the fluctuations grow to levels 

close to the average value of their set. In this extreme state, new 

structures appear in matter, combining order and disorder. 

 

II.2 PROBABILISTIC DISTRIBUTIONS AS A SUITABLE 

DESCRIPTION OF NATURAL PROCESSES 

The vision of irreversible molecular phenomena has 

focused primarily on the “Probabilistic distributions”, or Gibbs 

statistical entities [6], defined as follows, for a case “j” (of “n”) 

possible: 

 

𝜌𝑗 = 𝜌(𝑝𝑗 , 𝑞𝑗 ,𝑡𝑗)                                (5) 

 

This value indicates the probability of finding the values of 

linear momentum, p, and coordinates, q, at time, t. In practice this 

Distribution indicates the density of points in a certain finite region 

of the phase space. Figure 1. 

 
Figure 1: Probabilistic distribution in a physical system. 

Source: Authors, (2021). 

 

Unlike the original conception of Gibbs and Einstein, in 

which the Probabilistic Distributions were fundamentally due to 

our ignorance regarding the inaccessible massive phenomena of the 

micro world, the modern view assigns them a much more 

fundamental role, as only coherent models of the dynamics at that 

level, since the “trajectories” have disappeared as their basic 

description, since they are “divergent” by the “Poincaré 

resonances” on their coupled modes for the innumerable degrees of 

freedom. Therefore, they are dynamic entities, inherently non-

deterministic, that replace the “trajectories” of the particles, which 

are essentially “incomputable”, since in irreversible material 

assemblages, the Fourier spectral harmonic interferences, due to 
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the couplings between the multiple “Degrees of Freedom” lead to 

dividers that cancel out, giving divergence effects, which destroy 

these trajectories [6]. 

Now, for stages A-Strict Equilibrium and B - Linear Quasi-

equilibrium, the compliance with the “Equiprobability” condition 

is of course different in each case, since only in the second case 

there is irreversible heat generation, increasing velocity 

fluctuations to a significant level. If the effect of these fluctuations 

is assimilated to an “absolute error” [7], which affects the value of 

the distribution, it can then be written for both cases:  

 

𝜌(𝐴) ≈< 𝜌𝐴 > ±𝜀𝐴                                (6) 

 

And 

𝜌(𝐵) ≈< 𝜌𝐵 > ±𝜀𝐵                                (7) 

 

Therefore, // εA // <// εB //, and the degree of inequality 

between these two values, will correspond to the relative deviation 

of the “Equiprobability” condition for the system.  

Thus, by way of simplified comparison, Figure 2 shows 

three significant cases of flow: A) Strict equilibrium, B) “Linear” 

quasi-equilibrium, and C). Far from Equilibrium. 

 

 
Figure 2: Diferent type of thermodynamic flows. 

Source: Authors, (2021). 

 

In A, there is only one Probabilistic Distribution compatible 

with the strict Boltzmann Equivalence. In B, there are only a very 

few distributions. In C, there are many distributions, numbered 

according with “n”. The relative error increases depending on the 

case, from A to C. 

 

II.3 NATURAL WAYS AS OPEN SYSTEMS EVOLVING 

UNDER CONDITION OF “DYNAMIC EQUILIBRIUM 

Since the “Stable State” corresponding to the irreversible, 

“Linear” thermodynamic stage, close to equilibrium, is important 

for the fluvial dynamics under usual conditions, it is necessary to 

establish the physical conditions that make this stage possible. 

For chemical reactions, strict thermodynamic equilibrium 

requires that microscopic reversibility be fully met, that is, that 

there is a “Detailed Balance” between contrary reactions. This 

condition is fulfilled when the cause of the flows, the Gibbs free 

energy, which in this case is defined as “Affinity”, A, is zero. In 

the regime close to equilibrium, for a mole of substance, this 

condition is slightly modified as follows: 

 

(
𝐴

𝑅𝑇
) ≪ 1                                      (8) 

 

Here R≈8.31 J/(K * Mol) is the gas constant and T is the 

Kelvin temperature, which for the usual cases is taken as 300 K. 

Therefore, the thermal molecular energy is approximately 2.5 

KJoules/mol. In most chemical reactions, the molar energies 

involved are in the range of 10-100 KJ/mol, that is, they do not 

meet the "linearity" condition of expression (6), and it can be said 

that these types of effects, at usual temperatures, are in the non-

linear regime of irreversible thermodynamics [8]. 

For the mechanical effects present in natural flows, the 

criterion of “thermodynamic linearity” must be expressed 

differently. If the velocity fluctuations in the fluids that make up 

these flows are small, it is presumable that the instabilities do not 

lead the turbulent system to a situation of “runaway”, which would 

be the way in which the system loses its stability. What is the main 

factor for the water to remain as “still” as possible in the presence 

of dynamic instabilities? This factor is undoubtedly the “fluidity” 

of the liquid [9], which is precisely the property of not resisting 

shear stress. The more “fluid” a liquid is, the more easily it will 

dampen the fluctuations that occur within it, and the more difficult 

it will be for it to move out of the “stable state” in which it is close 

to equilibrium.  

According to the liquid model developed by J. Frenkel in 

socialist Russia in the 1920s and 1930s, the liquid state under 

normal conditions resembles crystalline solids much more than 

gases, as is usually the case. it is assumed. The difference between 

one and the other is more one of degree than of essence, the crystals 

being much more ordered, especially in the “long range”, where the 

liquids no longer present any “three-dimensional lattice” 

characteristics. It is therefore important to numerically characterize 

the “Fluidity” property from a physical-molecular point of view.  

Fluidity can be defined (according to Frenkel) as the 

situation in which the molecules of the liquid vibrate occupying 

transient equilibrium positions in their quasi-crystalline lattice, 

jumping from time to time to a new empty neighboring position, 

called “hole”. For this reason, liquid molecules yield much more 

easily to tangential stresses, reducing external disturbances. The 

molecules of crystalline solids for their part remain vibrating in 

these equilibrium positions, much longer, almost permanently, that 

is, their “half-life time at equilibrium point”, called τ, is much 

greater than the of the liquid. Figure 3. 

 

 
Figure 3: Mechanism of Fluidity in liquids and crystalline solids. 

Source: Authors, (2021). 

Page 20



 
 
 

 

Constain, Olarte and Guzman, ITEGAM-JETIA, Manaus, v.7, n.30, p. 18-28, Jul/Aug, 2021. 

 

 

It has been established that this "Half-life time” in 

equilibrium position" for quasi-crystalline liquids and solid crystals 

has the following molar shape, as a function of the value of the 

inherent period of molecular vibration, τo≈10-13 sec: 

 

𝜏 ≈ 𝜏𝑜 𝑒
𝑊

𝑅𝑇                                           (9) 

 

The difference between crystalline solids and quasi-

crystalline liquids (for the same ambient temperature) is of course 

the value of the potential energy, W, called “activation energy”. 

For water, in a range from 300 ° K to 800 ° K, this energy per mole 

is between 0.57 KJ/mol, and 2.40 KJ/Mol. For crystalline solids 

under similar conditions, the range of this energy is between 4.8 

KJ/mol and 14.4 KJ/Mol. That is, 9 times greater than for water. 

It can then be said that, at room temperature (300 ° K), the 

water meets the following “linear” thermodynamic stability 

criterion: 

(
𝑊

𝑅𝑇
) ≈ (

0.57

2.50
) ≈ 0.23                          (10) 

Namely: 

(
𝑊

𝑅𝑇
) < 1.0                                 (11) 

 

Therefore, turbulent water partially meets the numerical 

criterion, not as strict as in expression (8) but allowing a relatively 

good control of fluctuations due to a significant Fluidity effect. 

Turbulent water is therefore between the “linear” zone and a 

catastrophic zone in which this property cannot prevent runaway.  

According to equations (6) and (7) in different channels 

there will be different errors, but it will be possible to apply without 

fear the concept of “Equiprobability”, and consider the statistical 

constancy of its dynamic parameters  

One way to really appreciate what is the meaning of the 

value expressed in equation (11) is to calculate and compare 

different values for equation (9) that describes the “mobility” of the 

water molecules from their equilibrium sites, for several cases 

significant of the ratio (W/RT): 

 

A - W/RT≈0.023 

𝑒0.023 ≈ 1.023                                 (12) 

B - W/T≈ 0.23 

𝑒0.23 ≈ 1.26                                   (13) 

C - W/T≈ 2.3 

𝑒2.3 ≈ 9.97                                 (14) 

 

It is seen that the time ratio (τ / τo) varies approximately 

between 1.02, 1.3 and 10.0, that is, that this ratio for the conditions 

(W/RT) ≈0.01 and (W/RT) ≈0.23, changes only 23% and it remains 

well within the same order, close to unity, justifying the great 

“mobility” of the water molecules at room temperature, and its 

facility to dampen turbulent fluctuations, to the extent that (W/RT) 

decreases. Figure 4. 

 

 
Figure 4: Control of turbulent fluctuations by means of the ratio 

(W/RT). 

Source: Authors, (2021). 

II.4 EQUIPROBABILITY CONDITION IN THE NATURAL 

WAYS AND STATISTICAL CONSTANCE OF DYNAMIC 

PARAMETERS IN “DYNAMIC EQUILIBRIUM” 

Based on what was explained in the previous Section, and 

considering numerous experimental results, the researchers of river 

hydraulics have warned that, under “normal” conditions (not 

catastrophic), natural channels evolve as open systems, 

(exchanging energy and substance with its environment), within 

the thermodynamic regime of “Quasi-equilibrium”, or of “linear” 

irreversibility. Therefore, the “Dynamic Equilibrium” or “Stable 

State” will be the thermodynamic regime that is chosen to analyze 

its physical dynamics, regarding the contemporary study of 

turbulence [10][11]. 

The condition of “Equiprobability” in natural channels can 

be translated as a situation of constancy of the mass transport rate 

since this transfer from one point to another will be between points 

of equal dynamic probability. In Figure 5 the local mass transfers 

are shown as red paths.  

The global (integral) result of these local mass transfers, 

between equiprobable points, entails the constancy of the mean 

flow velocity [12]. This speed coincides with the value that defines 

the Chezy-Manning equation, since the tracer absorbs and expels 

heat from friction processes in the flow, with “n” as Roughness, R, 

as Hydraulic Radius, and S, as Longitudinal slope. 

 

𝑈 ≈
𝑅

2
3

𝑛
√𝑆                                          (15) 

 

 
Figure 5: Statistical constancy of mass transfer. 

Source: Authors, (2021). 

 

II.5 TRACERS AND THEIR DYNAMICS IN A 

TURBULENT FLOW 

The tracers are inks with special properties that are poured 

into natural flows to measure and interpret the flow parameters, 

injecting a certain mass at a point “upstream” of the channel, and 

measuring the cloud or “plume” of the solute, passing through the 

“downstream” monitoring point. Once injected into the flow, the 

mass of the tracer substance is mixed by the effect of turbulence 

and shear forces that depend on the average flow velocity. 

The dynamics of the tracer pen is therefore consistent with 

the Law of Conservation of Energy, that is, it is a “non-localized” 

measurement, unlike other measurement methods (such as the 

Pinwheel or the ultrasound profiler). They operate by means of the 

Law of Conservation of Momentum and are therefore a more 

restricted measure of the “local” type. From this perspective, the 

density of information provided by tracers is important since it 

depends on a broad set of laws that condition advection and 

dispersion in natural flows. 
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The dye tracer substance used must have certain 

characteristics, such as: A - Be soluble in water, B - Be 

environmentally neutral, C - Have a physicochemical characteristic 

that allows it to be detected (measured) by an instrument, D - Have 

a cost compatible with the amounts to be used, and E. - Have a 

simple protocol for handling and interpretation of the substance and 

the technology to measure it. Figures 6, 7 and 8. 

 

 
Figure 6: Rhodamine WT as a fluorescent dye substance. 

Source: Authors, (2021). 

 

 
Figure 7: Fluorometric tracer advancing in a river. 

Source: Authors, (2021). 

 

 
Figure 8: Tracer Measurement “real-time” Instrument. 

Source: Authors, (2021). 

 

The tracer ink that is usually used in field experiments is 

Rhodamine WT (RWT), which is fluorescent, and therefore can be 

detected with a special optical sensor. The equipment shown 

measures RWT and common salt in “real time”, saving field tasks 

in memory, or transmitting them over the internet to the cloud. 

Modern tracer technologies and methodologies allow 

accurate and fast measurements even in large rivers. From the 

information contained in the flared curve (Fickian Curve) that 

results from the measurement, with convenient values of mass, M, 

and cross-sectional area A. Co is the background concentration of 

the flow, and E is the longitudinal coefficient of dispersion:  

 

𝐶(𝑡, 𝑋) ≈
𝑀

𝐴√4𝜋𝐸 𝑡
 𝑒−

(𝑋𝑜−𝑈∗𝑡)2

4 𝐸 𝑡 + 𝐶𝑜  (16) 

Experimenters in the 1960s and after found that the actual 

tracer curves had a "bias" that was not consistent with the equation 

above. This bias was significant at the beginning of injection to 

flow and decreases over time. Co is the basic concentration of the 

tracer in the flow. Figure 9. 

 

 
Figure 9: Characteristic Fickiana curve of a tracer. 

Source: Authors, (2021). 

 

The bias is a deformation of its symmetry, showing an 

extended “tail”, the explanation of which has taken over a good 

number of theories of all kinds, but without providing a complete 

justification that satisfies everyone. 

A successful theory to describe this variable bias has been 

formulated by the authors [13][14], insofar as it provides 

appropriate quantitative answers to various questions, without 

having to resort to “Ad-hoc” formulations, such as some of the 

most common models [15] [16]. This new theory is based on the 

definition of a State Function, Ф (U, E, t), which describes the 

thermodynamic evolution of the tracer plume in turbulent flow. 

This function depends on the mean flow velocity, U, of the 

Longitudinal Dispersion Coefficient, E, of the Feingenbaum 

Constant, δ≈4. 6692, and of time, t. 

 

Ф ≈
1

𝑈
√

2∗𝐸∗𝛿

𝑡
   (17) 

 

It should be noted that clearing the average velocity; U, 

from the previous equation, there remains a second-order algebraic 

definition of a formal nature like the Chezy-Manning equation. The 

classical expression, equation (15), is a function of mechanical 

forces, while the new equation (18), is a function of 

electrochemical forces. 

 

𝑈 ≈
1

Ф
√

2∗𝐸∗𝛿

𝑡
   (18) 

 

The magnitudes U, E, and t are state parameters, and 

therefore the Schwartz condition is satisfied: 

 

∮ 𝑑Ф(𝑈, 𝐸, 𝑡) = 0  (19) 

Notable values of the state function are: (tp, 2.16) and (to, 

0.38), corresponding to the concentration peak, tp, and now when 

the tracer loses the transverse degree of freedom, to, and 

homogeneously fills the cross section of the stream tube through 

which the tracer advances (“Complete Mix” Condition). Figures 10 

and 11. 
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Figure 10: Graph of Ф (U, E, t) at notable times. 

Source: Authors, (2021). 

 

The State Function, Φ(t), in its evolution, describes the loss 

of “Degrees of freedom” of the system, but it also corresponds to 

the decrease of “Free Energy” in that system. 

It must be remembered that when a tracer is injected into the 

turbulent flow, this mass carries a certain “Energy of formation”, 

which is a potential energy that can be transformed into useful 

work. 

 
Figure 11: “Complete Mix” condition in flow cross section. 

Source: Authors, (2021). 

 

This “Free Energy”, G, is gradually used up as the tracer 

plume advances, generating heat due to the irreversible friction 

processes in the liquid. Likewise, the principle of entropy increase 

must be met, and the consequent decrease in entropy production, 

σ, which tends to a minimum value, when the tracer pen has 

vanished, and the system is thermodynamically connected with its 

environment, in the “Dynamic Equilibrium”. Figure 12. 

 

 
Figure 12: Correspondence between Ф and G and σ. 

Source: Authors, (2021). 

The state function, Φ(t), then describes the transition 

between the "pure" dispersion, at the beginning of the injection of 

the tracer, until the moment of thermodiamic coupling, when there 

is “pure” turbulence. 

A somewhat general model of this “tracer-turbulence 

coupling”, in condition of Dynamic equilibrium of the flow, can be 

made from the thermodynamic analysis of the tracer plume, from 

the instant of injection: 

 

𝐺 = 𝐻 − 𝑇 ∗ 𝑆   (20) 

 

Where H is the so-called enthalpy of formation of the tracer 

solute (constant value depending on the type of substance and its 

mass), and G is the Gibbs Free Energy, which decreases as the 

entropy increases. It must be understood that the tracer plume itself, 

when evolving in the turbulent flow, does not differ essentially 

from its environment, except for containing that decreasing Free 

Energy. Figure 13. 

 

 
Figure 13: Tracer plume evolving on turbulent flow with an 

excess of free energy. 

Source: Authors, (2021). 

 

In the previous figure, under the condition of a linear 

“steady state” in the flow, Equiprobability entails a single 

probabilistic distribution, to which the tracer plume is quite close, 

until it is completely integrated with its environment, and 

participates exactly in all its thermodynamic characteristics. 

On the other hand, entropy, S, and entropy production, σ, 

are inverse values, while the former increases monotonically to a 

maximum value, the latter gradually decreases to a minimum value. 

Figure 14. 

 

 
Figure 14: Relationship between Entropy and Entropy production 

in a linear system. 

Source: Authors, (2021). 
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Therefore, if “a” is a constant of proportionality, it can be 

established approximately that: 

 

𝑆(𝑡) ≈
𝑎

𝜎(𝑡)
                                          (21) 

 

On the other hand, both the state function, Φ (t) and the free 

energy, decrease monotonically, and it can be said that they are 

proportional, by means of the constant “b”: 

 

𝐺(𝑡) ≈ 𝑏 ∗ 𝛷(𝑡)                               (22) 

 

Then, equation (20) becomes: 

 

𝑏 ∗ 𝛷(𝑡) ≈ 𝐻 − 𝑇 ∗ (
𝑎

𝜎(𝑡)
)                          (23) 

 

From this equation in general, it can be verified that the 

State Function and the Entropy Production are related. 

 

II.6 A NEW MODEL OF TRACER EVOLUTION IN A 

TURBULENT FLOW 

Starting from the classic Fick equation, clearing the value 

of the Coefficient E, from equation (18) and replacing it in the 

classic Fick equation, equation (16), with Q, as discharge, it holds: 

 

𝐶(𝑡, 𝑋) ≈
𝑀

𝑄∗𝛷∗𝑡∗1.16
 𝑒

−
(𝑡𝑣−𝑡)2

(
2
𝛿

)∗(Փ∗𝑡)2
+ 𝐶𝑜                 (24) 

 

It is useful with respect to the previous equation, to define a 

“dilution factor” corresponding to the decrease of the peak 

concentration (the first factor of the right limb) with time. 

 

𝐶𝑝 ≈
𝑀

𝑄∗Փ∗𝑡∗1.16
   (25) 

 

The subsequent analysis of the basic equation of the State 

Function, Φ(t), equation (17), the following expression can be 

established, which relates Ф with σt (standard deviation in time), 

and with tp, the time of the peak:  

 

Ф ≈ 2.16 (
𝜎𝑡

𝑡𝑝
)                (26) 

 

An important characteristic of the State Function 

Application Method is that its computations are made based on the 

Peak Time, tp, and not based on the “Centroid Time”, ts, as is the 

case with most of current methods. As is known, this time 

corresponds to the center of gravity of a physical system, that is, 

where the center of mass is located. Figure 15. 

 

 
Figure 15: Peak time, and Centroid time. 

Source: Authors, (2021). 

Now, although apparently this value has a remarkable 

physical significance for a dynamic system, it has the problem that, 

in general, there is only one statistical formula for its calculation, 

which makes it difficult to use in practice. A detailed analysis of 

this parameter indicates that the difference between the Peak Time 

and the Centroid Time decreases as the tracer pen advances, 

indicating that in a certain way this concept reflects that the bias of 

the curve Fickiana is eliminated at the end, so that she can actively 

join the dispersal [17]. 

This non-availability of mass is maintained in practice until 

the moment in which the tracer homogeneously covers the cross 

section of the stream tube through which the pen advances, that is, 

when the State function is equal to Ф≈0.38, as shown in Figure 10. 

In this case the Centroid Time is only 13% greater than the Peak 

Time. 

Now, with the remarkable values of the curve in Figure 6, it 

is possible to draw the two approximate real Fickiana curves, with 

different data, as shown in Figure 16.  

 

 
Figure 16: Tracer curves with different skew. 

Source: Authors, (2021). 

 

Two important aspects should be noted: A - The bias of the 

first curve is much more accentuated than that of the second curve, 

and B.- That the concentration of the second curve is slightly lower 

than that of the first, as expected since the mass of the tracer is 

expanding. 

The initial curve (yellow) corresponds to the immediate 

injection point, when Ф≈2.16, its maximum value, here it is 

fulfilled that σt1≈tp1; the second curve (blue) corresponds to a 

further point, when Ф≈0.382, the value for "Complete Mix" on the 

flow cross section. 

The reason for the decreasing bias in the tracer Fickian 

curves is that the state function, Ф(t), decreases with time, and 

suppressing sequentially degrees of freedom in the system, 

releasing  mass from its initial cohesive volume. Simultaneously 

the free energy of the tracer is spent, and the production of entropy 

is tending to a minimum. In this way, the tracer is coupling with its 

environment, which is in a "stable state" condition of the 

thermodynamic linear region. 

 

III. APPLICATION TO AN EXPERIMENTAL CASE: 

COOPER CREECK, VA. USA (1963) 

To apply and adjust various river measurement 

methodologies in the 1950s, the United States Geological Survey 

(USGS) performed tracer measurements at selected sites, including 

the Cooper Creeck River near Gage City, Virginia. The river flow 

when the measurements were made (1959) was in a range of 10 to 

15 m3/s [18]. 

To analyze the data from this experiment, Godfrey & 

Frederick made an initial analysis of the field data, and Thackston, 
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Hays & Krenkel then carried out a detailed analysis of the possible 

theoretical alternatives to calculate the Longitudinal Coefficient of 

Dispersion, since the curves obtained experimentally, they showed 

some bias (of the Pearson-III type), and the conventional methods 

of the time did not allow adequate accuracy. For this reason, it was 

preferred to use the Moments method, which does not recognize 

the so-called “convective period” (recognized by most other 

methods), which prevented its application in the early phase of the 

tracer's evolution. This method only requires that the velocity be 

approximately constant [19]. 

To apply and adjust various river measurement 

methodologies in the 1950s, the United States Geological Survey 

(USGS) performed tracer measurements at selected sites, including 

the Cooper Creeck River near Gage City, Virginia. The river flow 

when the measurements were made (1959) was in a range of 10 to 

15 m3/s [20]. 

To analyze the data from this experiment, Godfrey & 

Frederick made an initial analysis of the field data, and Thackston, 

Hays & Krenkel then carried out a detailed analysis of the possible 

theoretical alternatives to calculate the Longitudinal Coefficient of 

Dispersion, since the curves obtained experimentally, they showed 

some bias (of the Pearson-III type), and the conventional methods 

of the time did not allow adequate accuracy. For this reason, it was 

preferred to use the Moments method, which does not recognize 

the so-called “convective period” (recognized by most other 

methods), which prevented its application in the early phase of the 

tracer's evolution. This method only requires that the velocity be 

approximately constant [21]. 

To compare the results of the classical Method of Moments 

and the Method based on the application of the State Function, 

presented in this Article, the experiment in the Cooper Creek River, 

VA is analyzed. USA, previously documented. Thus, pouring 

tracer at an “upstream” point, and measuring the passage of the 

tracer “downstream”, at X1≈2.40 Km, and X≈4.10 Km. The data 

were shown in Table 1. 

Table 1: Concentration data. Source: Prepared by the authors 

based on (McCutcheon & Martin, 1999). Source: Prepared by the 

authors based on (McCutcheon & Martin, 1999). 
Tiempo (s) Concentración 1 (ppb) Concentración 2 (ppb) 

0   

600   

1200   

1800 0,02  

2400 3,92  

3000 39,5  

3600 97,3 0,01 

4200 107 0,41 

4800 71,9 5,11 

5400 34,6 24,1 

6000 13,2 57,1 

6600 4,24 82 

7200 1,2 80,9 

7800 0,31 59,8 

8400 0,01 35,3 

9000  17,4 

9600  7,4 

10200  2,79 

10800  0,95 

11400  0,3 

12000  0,09 

12600  0,02 

13200  0,01 

13800   

14400   

15000   

Source: Authors, (2021). 

 

The next Figure 17 presents the graphing of the sequential 

curves corresponding to the data in Table 1. 

 

 
Figure 17: Plotting of the tracer data over time. Source: Authors' 

elaboration. 

Source: Authors, (2021). 

 

The statistical technique of Moments, operates under the 

assumption that the flared tracer curve can be assimilated to a 

Gaussian curve, in an approximate way, and thus the Longitudinal 

Dispersion Coefficient, E. 

 

𝐸 ≈ 0.5 (
𝑑𝜎𝑥

2

𝑑𝑡
)              (27) 

As the discrete experimental data are normally available as 

a function of time, the above equation can be transformed as 

follows: 

𝐸 ≈
𝑈2

2
[

𝜎𝑡2   −  
2  𝜎𝑡1

2

<𝑡2 >−<𝑡1>
]                    (28) 

That is, the reason for the differences in the temporal 

variances at the two measurement points, and the mean times at 

those points. 

Properly manipulating the experimental data and applying 

the corresponding equations to this method, we have for the two 

points considered, both the centroid times of the curves, as well as 

the variances. For these calculations, usual statistical formulas are 

applied [22]. 

 

𝑡𝑐1 =
∫ 𝑡∗𝐶𝑑𝑡

∫ 𝐶𝑑𝑡
=

26298 𝑚𝑖𝑛∗𝑢𝑔/𝑙

373,2 𝑢𝑔/𝑙
≈ 70,47 𝑚𝑖𝑛            (29) 

𝑡𝑐2 =
∫ 𝑡∗𝐶𝑑𝑡

∫ 𝐶𝑑𝑡
=

45581 𝑚𝑖𝑛∗𝑢𝑔/𝑙

373,7 𝑢𝑔/𝑙
≈ 118,8 𝑚𝑖𝑛           (30) 

And: 

𝜎𝑡12 =
∫ 𝑡2∗𝐶𝑑𝑡

∫ 𝐶𝑑𝑡
− 𝑡𝑐

2 =
1926000 𝑚2∗

𝑢𝑔

𝑙

373,2
𝑢𝑔

𝑙

− (70,47 min)2 ≈ 195,0 𝑚𝑖𝑛2    (31) 

𝜎𝑡22 =
∫ 𝑡2∗𝐶𝑑𝑡

∫ 𝐶𝑑𝑡
− 𝑡𝑐

2 =
5537766 𝑚2∗

𝑢𝑔

𝑙

373,7 
𝑢𝑔

𝑙

− (118,2 𝑚𝑖𝑛)2 ≈ 319,8 𝑚𝑖𝑛2     (32) 

Now, the average flow velocity is calculated in this method 

by the following formula: 
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𝑈 =
𝑋2−𝑋1

𝑡𝑐2−𝑡𝑐1
≈

(4100−2400)𝑚

(118,8−70,47)𝑚𝑖𝑛
≈ 35,17 𝑚/𝑚𝑖𝑛           (33) 

Therefore, the Longitudinal Coefficient of dispersion in this 

case is: 

 

𝐸 =
𝑈2

2
∗

(𝜎𝑡2
2 − 𝜎𝑡1

2 )

(𝑡2−𝑡1)
≈

(35,17 𝑚/𝑚𝑖𝑛)2

(118,8−70,47)𝑚𝑖𝑛
∗ (319,8 − 195)𝑚2 ≈ 1595 𝑚2/𝑚𝑖𝑛 (34) 

 

Transforming this expression from minutes to seconds we 

have: 

 

𝐸 ≈ 27,0 𝑚2/𝑠                           (35) 
 

This is then the average value of the Longitudinal 

Dispersion Coefficient in the section studied, obtained with the 

classic statistical method of Moments. 

The next step is to apply the method that includes the State 

function and compare the results with the previous data. This 

analysis is part based on the following Figure 18. 

For this figure, tv1 and tv2 are the times for the peak of each 

distribution, and tpp1 and tpp2 are the times of the first particles of 

each distribution. Likewise, δ´1 and δ´2 are the standard deviations 

of each distribution in time, multiplied by two. 

For the concrete calculations of the State Function theory, 

we have the following approximate formulas, based on the 

properties of the Gaussian function. 

 

Ф(t)≈(δ´)/tv                                   (36) 

 

It is now possible to calculate the values of the State 

Functions at each time of interest. 

 

 
Figure 18: Data for corresponding calculations. 

Source: Authors, (2021). 

 

Ф1(4200) =
𝛿′

1

𝑡𝑣1
=

1890

4200
= 0,45                 (37) 

Ф2(6600) =
𝛿′

2

𝑡𝑣2
=

2430

6600
= 0,37                (38) 

Note that the available documentation of this experiment 

does not report neither the mass nor the flow, data that are needed 

to model tracer curves, equation (24). To solve this fault, the ratio 

"M / Q" is calculated. For the first curve: 

Cp1~107.0 (ugr/L), Ф1 ~0.45 and tv1~4200 s 

(
𝑀

𝑄
)1 ≈ 107 (

𝑢𝑔𝑟

𝑙
) ∗ 0,45 ∗ 4200 ∗ 1,16 ≈ 234587     (39) 

Curve 1 modeling: 

With these data, the first tracer curve can be modeled, 

applying equation (24). The blue curve is the experimental data, 

while the built model is the green curve. Figure 19. 

 

 
Figure 19: Experimental curve 1 and model with Ф (t). 

Source: Authors, (2021). 

 

Now, the slight lag observed in the modeling of the 

experiment in curve 1 can be improved with changes in the time of 

the peak, and in the data of the state function, for that specific point, 

like this: 

 

Cp1~108.9 ug/L,    Ф1~0.41,  and  tv1~4100 s. 

 

These changes are included in equation (24), which 

describes the Fickian curve 1, shown below. Figure 20: 

 
Figure 20: New modelling of first curve with small changes. 

Source: Authors, (2021). 

 

Curve 2 modeling:  

We now proceed to model the curve at point 2, considering 

the corresponding data: 

 

Cp~82.0 (ugr/l), Փ~0.37,  and   tv~6600 s. 

 

For this new curve, the ratio "M / Q" must be recalculated, 

from the attenuation factor that is valid there. For this new curve, 

the ratio “M/Q” must be recalculated, from the attenuation factor 

that is valid there. 

(
𝑀

𝑄
)2 ≈ 82 (

𝑢𝑔𝑟

𝑙
) ∗ 0,37 ∗ 6600 ∗ 1,16 ≈ 232283    (40) 

This value for the second curve is virtually the same as that 

calculated for the first curve, indicating good precision for the 
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implicit value of the flow rate (whatever it is). For the modeling of 

curve 2, the procedure used in curve 1 is repeated. Figure 21. 

 

 
Figure 21: Experimental curve and model with Ф (t).  

Source: Authors, (2021). 

 

Again, it is seen that between the theoretical model (gray) 

and the experimental data (orange) there is an evident lag between 

the curves. Now, if the data in table 1 is analyzed in detail, it can 

be observed that in this area of the peak (of abrupt variation), the 

temporal separation of the sequential measurements is “greater” 

than the required temporal resolution. So, the “true” time of the 

peak (for the model) is a little further to the right in time. We then 

have the following characteristic set: 

Cp2~ 82.0 (ugr/L) ,  Ф2~0.344,   and  tv~6650 s 

With these values in equation (24), we have that quite 

coincident curves are obtained. Figure 22. 

 

 
Figure 22: Refined curve with better data. 

Source: Authors, (2021). 

 

From the “optimal” data (which corresponds to the curves 

in Figures 20 and 22), previously established for the section under 

study, the value of the Longitudinal Dispersion Coefficient is 

calculated and compared with the original data established by the 

Method of Moments.  

Curve 1: 

The optimal data set is: 

Cp1~108.9 ug/L,    Ф1~0.41, and  tv1~4100 s. 

Therefore: 

𝐸1 ≈
𝜑2∗𝑈2∗𝛽∗𝑡𝑣

2
≈

0,412∗0,592∗0,214∗4100

2
≈ 25,7 𝑚2/𝑠 (41)      

Curve 2: 

The optimal data set is: 

Cp2~ 82.0 (ugr/L) ,  Ф2~0.344,  and  tv~6650 s 

Therefore: 

𝐸2 ≈
𝜑2∗𝑈2∗𝛽∗𝑡𝑣

2
≈

0.3442∗0,622∗0,214∗6650

2
≈ 32.4   𝑚2/𝑠 (42) 

  

An average value for the two curves 1 and 2 is: 

< 𝐸 >≈
25.7+32.4

2
≈ 26,7 𝑚2/𝑠                  (43) 

As can be seen, the value of the Longitudinal Dispersion 

Coefficient calculated with the State Function Method is 

remarkably close to that calculated with the classical Method of 

Moments, with a relative error of 1%. The State Function Method 

works with the velocity of the peak of the concentration and does 

not recognize an initial period in which Fickian physical theories 

cannot be applied for its interpretation. Nor does it need the concept 

of “Centroid” (difficult to calculate) which is explained in a natural 

way, because of the unavailability of mass for dispersion, which is 

measured by the decaying values of the State Function. 

It also offers a direct explanation of the skew characteristic 

of these curves. Finally, calculating the peak velocities for the two 

measurement points, U1≈0.59 m / s and U2≈0.62 m / s, the 

established by L. Leopold [23] is verified in that the average 

velocities of a natural channel in “Dynamic equilibrium” are 

approximately constant, as already explained, ensuring in a certain 

way, the accuracy of the Moments method. 

 

IV. RESULTS, DISCUSSIONS AND 

RECOMMENDATIONS 

1 - As analyzed in detail in this Article, the “linear” nature 

of turbulence responds to a relatively small value of the notable 

factor (W/RT), which defines the “fluidity” of liquid water at room 

temperature and facilitates attenuation. of speed fluctuations. This 

condition allows the application of Prigogine's theorem of the 

minimum entropy production, and therefore of the fulfillment of 

the “equiprobability” in the system. 

In this circumstance, what is described in Figure 4, about 

the statistical constancy of the mass transfer between points of the 

system, and consequently of a “constant” average flow velocity 

along the course of the channel, is approximately fulfilled. The real 

degree of compliance with this condition is reflected in a lower or 

greater absolute error, equations (6) and (7).  

2 - The dynamics of the tracers in turbulent flows is not 

independent of the turbulence itself. With the injection of the tracer 

to the flow, the local thermodynamic condition of the same is 

disturbed, since the plume carries a certain amount of Free Energy, 

which is spent by irreversible effects, as the plume advances in time 

and space, as in Figure 13. 

3 - The above indicates that said irreversible evolution of 

the tracer in turbulent flow is governed by the general laws of 
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thermodynamics, and therefore it is essential to determine a “State 

function” that describes said evolution. The authors have presented 

a model of such a function in this regard. This function is applied 

to a specific case of a tracer experiment, taken from the technical 

literature, and is compared with the classical numerical results of 

the Statistical Moments method. The comparison between the two 

methods is completely satisfactory, supporting the theoretical 

assumptions on which the new method was based.  

4 - A hardware-software tracer device is presented that 

operates in “real time” and incorporates the new tracer evolution 

state function. 

5 - Further research should determine the values of the 

constants "a" and "b" of the equations that link the state function 

and the production of entropy. 
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