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In this paper, the African Buffalo Optimization (ABO) is adapted to solve the transmission 

network expansion static planning problem considering security restrictions (TNESPS). The 

problem is formulated as a mixed-integer nonlinear programming (MINLP) problem. The 

ABO is based on the collective intelligence of the African buffaloes searching for food in 

the savannahs. The proposed algorithm uses the direct current model to represent the 

network, the transport model to generate the initial population, and two candidate solution 

improvement procedures, one being cost reduction and the other feasibility of infeasible 

solutions. The analysis of the specialized literature shows that the proposed algorithm has 

never been used to solve the static or dynamic TNESP problem, with or without security 

restrictions. Thus, this paper contributes to a new methodological approach to solving 

TNESPS problems. To evaluate the performance of the proposed algorithm, three systems 

that are often used in evaluations of new methodologies were used: Garver 6-bus system, 

IEEE 24-bus system and the South Brazilian 46-bus system. 
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I. INTRODUCTION 

In a power electric system, the transmission grid is 

responsible for transporting the energy produced in the electric 

power generation centers to the large consumption centers. 

Determining the grid that adequately meets future demand at the 

lowest possible investment cost is a very complex long-term 

expansion planning task, as it involves the need to consider, 

simultaneously, aspects related to: the location of future energy 

generation and consumption centers, the grid size and topology, the 

adoption or not of security criteria (N-0 or N-1 criteria), the costs 

and electrical parameters of circuits (existing and candidate), the 

candidate circuits, the system modeling (alternating current - AC 

or direct current - DC) [1] and the number of planning periods 

(static and dynamic planning), the uncertainties and the solution 

method. 

In static planning [2], it only determines where and how 

many circuits from the candidate list should be added to the initial 

configuration. In dynamic planning [3], where several horizon 

periods are considered, it is also determined when the new circuits 

should be added. 

This work addresses the of transmission network expansion 

static planning problem considering security constraints 

(TNESPS). These types of constraints guarantee that future demand 

will be met even in the event of a simple contingency in any of the 

circuits of the transmission grid. 

This problem presents great mathematical complexity due 

to the following particularities [4], [5]: (a) has integer and 

continuous variables, i.e., it is a mixed integer nonlinear 

programming (MINLP) problem; (b) non-convex search space, 

causing several types of algorithms to prematurely converge to 

local optimal solutions; (c) presents the combinatorial explosion 

phenomenon, causing the amount of candidate solutions to be 

analyzed to grow exponentially as a function of the system size; (d) 

requires high computational effort to find the global optimal 

solution or to find a high quality solution; (e) contains isolated bus. 
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Currently, there is a wide variety of solving techniques that 

can cope with the above-mentioned particularities. In the 

bibliography they are grouped according to the types of algorithms 

used [4-9]: (i) classical optimization algorithms, (ii) constructive 

heuristic algorithms and (iii) metaheuristic algorithms. 

Algorithms based on classical optimization explore the 

entire search space and are guided by the gradients of the objective 

function to move through the search space to find the optimal 

solution. They usually find the global optimal solution for small 

systems. However, for large systems, they present problems related 

to processing time and convergence. Therefore, these algorithms 

often become unsuitable for solving TNESPS [10]. With these 

characteristics, TNESPS can be considered an NP-complete type 

problem [3], that is, there is no method that can solve it in 

polynomial time. 

Constructive heuristic algorithms use simplified procedures 

that have the ability to identify good quality solutions for small to 

medium-sized systems with little computational effort. They rarely 

find the global optimum solution to the problem. 

Metaheuristic algorithms use much more elaborate search 

procedures, usually based on phenomena in nature, to explore the 

search space and escape from local optimum solutions. For this 

reason, metaheuristic algorithms frequently obtain solutions of 

higher quality than the quality of solutions obtained with heuristic 

algorithms. Moreover, they often find high quality solutions and 

even the optimal solution with acceptable computational effort, 

even in large systems [11]. 

One of the main advantages of metaheuristic algorithms 

over the other two algorithms is that they generally require little or 

no information from the TNESPS problem to guide the search 

process, i.e., they require few adjustments to their parameters [12]. 

The advantages cited, along with the good compromise ratio 

(quality of the final solution/computational effort), has caused the 

amount of research performed with metaheuristic algorithms to 

grow in the last decades, as shown in the list of published articles 

described below. 

In all the papers in this list, the DC load flow model was 

used to represent the transmission network. The systems used to 

test the various proposed algorithms were as follows: Garver-6 

bus/15 branches (G-6/15), IEEE-24 bus/41 branches (IEEE-24/41), 

South Brazilian-46 bus/79 branches (SB-46/79), Colombian-93 

bus/155 branches, East Chinese reduced from 18 bus/27 branches 

and the Brazilian-242 bus/467 branches. 

This growth demonstrates the great importance that the 

TNESPS problem has for researchers and the need to develop 

algorithms capable of offering a balance in terms of the final 

quality of the solutions and the computational cost. 

As can be observed, the application of the metaheuristic 

algorithm African Buffalo Optimization - ABO [13], [14] to solve 

the planning problem, both in the static and dynamic versions, with 

or without safety constraints, is not included in the list of published 

articles. This novelty, coupled with the fact that the discussion of 

the TNESPS subject is still open, was what motivated this work. 

The proposed metaheuristic algorithm, named ABON-1 

optimizer uses the concepts of the ABO algorithm, along with the 

two local improvement strategies used by Chu-Beasley (CB) [15], 

successfully used by Silva et al. [16], to solve the TNESPS problem. 

One of the strategies seeks to reduce the cost of feasible solutions 

by removing added circuits that are redundant. The other strategy 

seeks to enable candidate solutions with load shedding, by adding 

new circuits. The joint application of these two strategies is very 

important when the system is large. 

In the ABON-1 optimizer, the TNESPS is formulated as a 

mixed-integer nonlinear programming (MINLP) problem, using the 

DC model to determine the power flows in the transmission 

network circuits. The transportation model [17] is used to help 

generate the initial population. 

Updates and improvements to the initial population 

solutions are made over iterations following the equations and rules 

established by the ABO algorithm. The other population solutions 

are generated through random variations in the circuits of the first 

solution. Throughout the iterations, the initial population solutions 

are updated according to the equations and rules established by the 

ABO algorithm, and Chu-Beasley's local improvement strategies. 

Aiming to contribute with another solving method to the 

TNESPS problem, this paper is organized as follows: Section III 

describes the mathematical model that was used in the problem. 

Section IV presents the solving method that was used to solve the 

problem. Section V presents and discusses the results that were 

obtained by the proposed method in three case studies performed 

with the G-6/15, IEEE-24/41 and SB-46/79 systems. Section VI 

presents the main conclusions. 

 List of Articles 

Silva et al., 2005 [2] - Chu-Beasley Genetic Algorithm (CBGA); 

Gallego et al., 2006 [18] - CBGA; Jin et al., 2007 [19] - Particle 

Swarm Optimization (PSO) based on Model Space Theory; 

Yemula et al., 2008 [20] - Z-bus Based Genetic Algorithm; Verma 

et al., 2008 [21], [22] - Binary Genetic Algorithm; Gang et al., 2008 

[23] - Chaos Optimization Algorithm; Verma et al. 2009 [24] - 

Adaptive PSO Algorithm; Fan et al., 2009 [25] - Niching Genetic 

Algorithm; Limsakul et al. 2009 [26] - Ant Colony Optimization; 

Verma et al. 2010 [27] - Harmony Search Algorithm (HSA); Verma 

et al., 2010 [28] - Bacteria Foraging and Differential Evolution; 

Orfanos et al. 2012 [29] - Improved HSA; Shivaie et al., 2013 [30] 

- Improved HSA; Sarrafan 2014 [31] - Discrete Parallel Particle 

Swarm Optimization; Correa et al., 2014 [32] - Non-dominated 

Sorting Genetic Algorithm; Das et al. 2017 [33] - Artificial Bee 

Colony (ABC); Da Silva et al. 2016 [34] - Adaptive Multi-Operator 

Evolutionary Algorithm; Da Silva et al., 2017 [35] - Constructive 

Heuristic and Evolutionary Metaheuristic; Khandelwal et al. 2019 

[36] - Grey Wolf Optimization;  Nepomuceno et al., 2020 [37] - 

Spotted Hyena Optimization; Fernando et al., 2020 [38] - 

Constructive Metaheuristic Algorithm. 

 

II. MATHEMATICAL MODEL OF THE PROBLEM 

The objective of the TNESPS problem is to define the least-

cost set of circuits that must be added to the base transmission 

network in order to meet the total expected load in the event of any 

simple contingency. 
 

II.1 OBJECTIVE FUNCION OF THE PROBLEM 

The objective function used by the ABON-1 optimizer is 

composed of two terms, as in [2]: the first term evaluates the total 

cost of investments in new circuits and the second evaluates the 

load shedding with the network intact and in simple contingency. 

The second term is necessary in cases where the proposed solution 

is not able to meet the expected load without violating the 

transmission capacities of the circuits. The ABON-1 optimizer 

determines, at each iteration, the set of the least cost circuits such 

that the second term is zero. 
 

𝑀𝑖𝑛 𝑣 = {∑ 𝑐𝑖𝑗𝑛𝑖𝑗 + 𝛼 ∑ (𝑟𝑏
𝑛 + 𝑟𝑏

𝑝
)}(𝑏∈𝛺𝑏)(𝑖,𝑗)∈𝛺𝑟

  (1) 
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In this function, 𝑐𝑖𝑗  is the cost of the circuit added on branch 

ij; 𝑛𝑖𝑗- number of circuits added on branch ij; 𝑟𝑏
𝑛, 𝑟𝑏

𝑝
- load shedding 

at bus 𝑏 ∈ 𝛺𝑏, with the network operating with all network circuits 

and without circuit 𝑝 ∈ Lc, respectively; Lc- contingency list; 𝛺𝑏- 

set of load bars; 𝛺𝑟- set of network branches; α- unit transformation 

parameter. 
 

II.2 EQUALITY CONSTRAINTS 

In the ABON-1 optimizer, the transmission network is 

represented by the DC load flow model [1], [2], since it calculates 

the power flows in the circuits very quickly and accurately 

compatible with the long-term planning horizon. In this simplified 

model only the active loads and generations, and the angles of the 

voltages at the bars are represented. With this simplification, the 

equality constraints used in TNESPS modeling are represented by 

equations (2) and (3), adapted from [2]. The parameters β and δ 

were introduced in order to compact the model. 
 

(1 − 𝛿)(𝑆𝑓𝑛 + 𝑔𝑛 + 𝑟𝑛) + 𝛿(𝑆𝑓𝑝 + 𝑔𝑝 + 𝑟𝑝) =  𝑑  (2) 

(1 − 𝛽)(1 − 𝛿)[𝑓𝑖𝑗
𝑛 − 𝛾𝑖𝑗(𝑛𝑖𝑗

0 + 𝑛𝑖𝑗)(𝜃𝑖
𝑛 − 𝜃𝑗

𝑛)]  + 

 𝛿[𝑓𝑖𝑗
𝑝

− 𝛾𝑖𝑗(𝑛𝑖𝑗
0 + 𝑛𝑖𝑗 − 𝛽)(𝜃𝑖

𝑝
− 𝜃𝑗

𝑝
)] = 0 

(3) 

 

The two sets of linear constraints (2), one for δ=0 and the 

other for δ=1, model, respectively, the energy conservation at each 

bar of the system, for a network operating without and with simple 

contingency. That is, set (2) models Kirchhoff's first law (Law of 

Currents) for the two forms of circuit operation. 

The two sets of nonlinear constraints (3), one for δ=0 and 

one for δ=1, model Kirchhoff's second law (Mesh Law) for the 

transmission network operating without and in simple contingency. 

The value of the parameter β (4) depends on the location of the 

contingent branch p, i.e.: 
 

{
𝑠𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑜 𝑖𝑗 ≠ 𝑝  𝑒𝑛𝑡ã𝑜 𝛽 = 0 
𝑠𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑜 𝑖𝑗 = 𝑝  𝑒𝑛𝑡ã𝑜 𝛽 = 1 

 
(4) 

 

The parameter δ simulates the operating condition of the 

circuits in the network, and was inserted, along with the parameter 

β, to present the constraints in a compact form. δ=0 means that all 

circuits are operating, and δ=1 means that the network is with 

circuit 𝑝 in contingency. 

We therefore have two sets of constraints that together 

model the equality constraints of the problem: one that models the 

network operating without contingency and another that models the 

network operating with contingency. 

In constraints (2) and (3) the meanings of the symbols are 

as follows: S- bus-branch incidence matrix, transposed, of the 

network; 𝑓- vector of active power flows in circuits 𝑖𝑗 with the 

network operating without contingency. Its elements are 𝑓𝑖𝑗; 𝑓𝑛 

and 𝑓𝑝- active power flow vectors with the network operating 

without contingency and with circuit 𝑝 unavailable (in 

contingency). Their elements are 𝑓𝑖𝑗
𝑛 and 𝑓𝑖𝑗

𝑝
; 𝑔𝑛 and 𝑔𝑝- vectors of 

active power generations, with the network operating without 

contingency and with circuit 𝑝 unavailable. Their elements are 𝑔𝑖
𝑛 

and 𝑔𝑖
𝑝

 (𝑖 ∈ 𝛺𝑔); 𝛺𝑔- set of generation bus; d- active loads vector; 

𝑟𝑛 and 𝑟𝑝- load shedding vectors with the grid operating without 

contingency and with circuit 𝑝 unavailable. Its elements are 𝑟𝑏
𝑛 and 

𝑟𝑏
𝑝

; 𝛾𝑖𝑗- susceptance of the added circuit on branch 𝑖𝑗; 𝑛𝑖𝑗
0 - number 

of existing circuits on branch 𝑖𝑗 of the base grid; 𝑛𝑖𝑗- number of 

circuits added on branch 𝑖𝑗; 𝜃𝑖
𝑛, 𝜃𝑗

𝑛 - angles of the voltages of bus 

𝑖 and 𝑗 with the grid operating without contingency; 𝜃𝑖
𝑝
, 𝜃𝑗

𝑝
- angles 

of the voltages of bus 𝑖 and 𝑗 with circuit 𝑝 unavailable. 

II.3 INEQUALITY CONSTRAINTS 

The inequality constraints used in the ABON-1 optimizer are 

related to: the limits of capacities of circuit additions in the 

branches, the limits of active power flows in the circuits, new and 

existing, the limits of active powers produced in the generation bus 

and the limits of load shedding in the load bus. 

Applying the parameters β and δ to the set of inequality 

constraints from [2], the constraints present the compact form 

indicated by inequations (5) to (10). The absolute values are 

necessary since the active power flows in the circuits can flow in 

two directions. 

In constraints (5) to (10): 𝑓�̅�𝑗- maximum transmission 

capacity of circuit 𝑖𝑗; �̅�𝑖𝑗- maximum number of circuits that can be 

added in branch 𝑖𝑗; �̅�- vector of maximum capacities of generators 

(its elements are �̅�𝑖 , 𝑖 ∈ 𝛺𝑔). 
 

(1 − 𝛽)(1 − 𝛿)|𝑓𝑖𝑗
𝑛| + 𝛿|𝑓𝑖𝑗

𝑝
| ≤ 

(1 − 𝛽)(1 − 𝛿)𝛾𝑖𝑗(𝑛𝑖𝑗
0 + 𝑛𝑖𝑗)𝑓�̅�𝑗 + 

𝛿|𝑓𝑖𝑗
𝑝

|(𝑛𝑖𝑗
0 + 𝑛𝑖𝑗 − 𝛽𝛿)𝑓�̅�𝑗 

(5) 

0 ≤ (1 − 𝛿)𝑔𝑛 + 𝛿𝑔𝑝 ≤ �̅� (6) 

0 ≤ (1 − 𝛿)𝑟𝑛 + 𝛿𝑟𝑝 ≤ 𝑑 (7) 

0 ≤ 𝑛𝑖𝑗 ≤ �̅�𝑖𝑗 ,   𝑛𝑖𝑗  𝑖𝑛𝑡𝑒𝑖𝑟𝑜 (8) 

𝑛𝑖𝑗
0 + 𝑛𝑖𝑗 − 1 ≥  0, 𝑖𝑛𝑡𝑒𝑖𝑟𝑜 (9) 

𝑛𝑖𝑗 ≥ 0 𝑒 𝑖𝑛𝑡𝑒𝑖𝑟𝑜 (10) 

 

II.4 COMPLETE PROBLEM MODEL 

The set of equations and inequations (1) to (10), which is 

based on the coupling between active power and the angle of the 

bar voltage [1], [2] is used by the ABON-1 optimizer to model the 

TNESPS problem. The problem formulated in this way has the 

characteristics of a MINLP problem, whose resolution is quite 

complicated. 

When the set of circuits to be added (𝑛𝑖𝑗) is known, problem 

(1) to (10) is reduced to a linear programming (LP) problem, and 

the ABON-1 optimizer only checks whether this solution presents 

load shedding or not. 

 Applying the pairs of values (β=0, δ=0), (β=0, δ=1), (β=1, 

δ=0), (β=1, δ=1) to constraints (2), (3) and (5) to (10) yields fifteen 

constraints, five of which are equality and ten of which are 

inequality. 

III. PROPOSED ALGORITHM 

Write in detail the research project, including background 

and limitations. The selection of materials and methods, procedures 

and equipment must be justified so that the work can be 

reproduced. Modifications or new methods must be described in 

detail. You must clearly define the universe and specify how the 

sample was selected and why it is representative. Data processing 

represents the practical development of a theoretical basis, deriving 

the model equations to program the calculation algorithm, 

according to the need. In materials, they include the technical 

specifications and the quantities, the origin and, if necessary, the 

method for its elaboration. 

 

III.1 CARACTERISTICS OF THE ABO ALGORITHM 

This algorithm, as an optimization method, provides a 

search procedure belonging to swarm intelligence, based on the 

social behavior of animals. It was created by Odili et al. in 2015, 

inspired by the movements of buffaloes in the African savannahs 

in search of food. 
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As with most metaheuristic algorithms, the ABO algorithm 

also uses two strategies for exploring the search space: 

intensification which is directly related to exploring the region 

where the buffalo are grazing and diversification which is related 

to exploring new grazing regions. Each buffalo searches for the 

best grazing region to feed on, and updates its position in the 

grazing region according to the position of the best buffalo (leading 

buffalo) in the herd. 

The ABO algorithm simulates three buffalo characteristics: 

i) memory, to not explore pasture regions already visited; ii) 

cooperation, to exchange information with other buffalo; and iii) 

intelligence, to issue alarm sounds "Waaa", which is used to warn 

of the presence of danger and lead the herd to other pasture regions, 

and alert "Maaa", which is used to encourage buffalo to continue 

grazing in the same region. 

III.2 MAIN STEPS OF THE ABO ALGORITHM 

The main steps that the ABO algorithm performs to position 

buffaloes in pastures are [11]: 

Step 1: Randomly distribute each buffalo in the herd to different 

grassland regions of the savanna; 

Step 2: Identify the best buffalo in the herd, using the evaluation 

function of the problem to be solved; 

Step 3: Move each buffalo to a new nearest pasture region, 

considering its previous position and the position of the leading 

buffalo; 

Step 4: Updates the new position occupied by each buffalo; 

Step 5: Identifies the new best buffalo in the herd; 

Step 6: Tests if the number of iterations has been reached. If yes, 

present the best distribution of buffalo in the grazing areas 

achieved. If no, move each buffalo to a new closest grazing region. 

III.3 ANALOGY ABO X TNESPS PROBLEM 

The search procedure used by the ABO algorithm, to 

optimize the distribution of African buffaloes in savanna grassland 

regions, can be compared to the search procedure used in the 

TNESPS optimization process, to distribute the circuits on the 

branches of a transmission system, by making the following 

analogies: 

 Savannah grassland regions ↔ Candidate solutions space; 

 Herd ↔ Candidate solutions (population); 

 Buffalo ↔ Candidate solution; 

 Leading buffalo ↔ Solution with the lowest overall cost; 

 Quality of grazing ↔ Cost of the solution. 
 

Figure 1 shows four candidate solutions of a hypothetical 

system of four branches and different amounts of circuits added per 

branch. 
 

Branches 1-2 1-4 2-3 2-4 Costs 

 

Added 

Circuits 

3 2 0 0 5 Solution 1 

0 2 0 1 3 Solution 2 

2 0 2 0 4 Solution 3 

1 2 1 2 6 Solution 4 

Figure 1: Representation of candidate solutions. 

Source: Authors, (2021). 
 

According to the adopted analogy, it turns out that: i) The 

herd is composed of four buffaloes; ii) The buffaloes are located in 

pasture regions of different qualities; iii) The worst pasture region 

is region 4; iv) The leading buffalo is grazing region 2. 

III.4 ABO(N-1) OPTIMIZER ALGORITHM 

Figure 2 shows the main steps that the ABO(N-1) optimizer 

performs to solve the TNESPS problem. 

 
Figure 2: Flowchart of the ABO(N-1) optimizer. 

Source: Authors, (2021). 

 Stage 1 

In this step the data for the ABO algorithm is provided, i.e., 

the learning factors lp1 and lp2 used in [14] to adjust the velocities 

of buffalo displacements from the pasture regions in search of food. 

Since TNESPS is a non-convex problem of several local 

optimal solutions, the generation of the initial population has great 

influence on the quality of the initial solutions, and can help the 

search mechanism of metaheuristic algorithms [5], [6]. Thus, the 

ABON-1 optimizer generates the initial population (𝑆𝑜𝑙), composed 

of NI solutions ({𝑠𝑜𝑙1, … , 𝑠𝑜𝑙𝑘 , … , 𝑠𝑜𝑙𝑁𝐼}), as a function of the 

existing network topology, bar data, existing circuit data, candidate 

circuit data, and population size (NI), by performing two steps: 
 

 Step 1: Solve the transport model, represented by LP problem (11) 

to (16) [1], [39], [40], using the linprog function of MatLab, to 

obtain a solution (𝑆𝑜𝑙1). 
 

𝑀𝑖𝑛 𝑣(𝑠𝑜𝑙1) = ∑ 𝑐𝑖𝑗𝑛𝑖𝑗(𝑖,𝑗)∈𝛺𝑟
  (11) 

𝑠. 𝑎:   

𝑆𝑓 + 𝑔 =  𝑑 (12) 

|𝑓𝑖𝑗| ≤ (𝑛𝑖𝑗
0 + 𝑛𝑖𝑗)𝑓�̅�𝑗 (13) 

0 ≤ 𝑔 ≤ �̅� (14) 

0 ≤ 𝑛𝑖𝑗 ≤ �̅�𝑖𝑗 (15) 

𝑛𝑖𝑗 ≥ 0, 𝑖𝑛𝑡𝑒𝑖𝑟𝑜  (16) 
 

Step 2: It then generates the other (NI-1) initial solutions 

{𝑠𝑜𝑙2 , … , 𝑠𝑜𝑙𝑁𝐼}, randomly changing the positions and number of 

circuits of the branches of the solution 𝑠𝑜𝑙1, until the population 

size (NI) is reached. 

 Specifies ABO parameters  
 Generate inicial population - 𝑆𝑜𝑙  

 Calculates costs of initial solutions  
 Identifies the least cost solution - 𝐛𝐠 

Stage 1 

Stage 2 

𝑖𝑡 > 𝑁𝑖𝑡 Global Optimum Solution  𝐛𝐠 
Yes 

No 

 Update the current bg solution  
(Applies the ABO Algoritmo) 

Stage 3 

Stage 8 

bg presents 
load shedding? 

Yes 

Add circuits to 
make 𝐛𝐠 feasible 

No 

bg contains 
idle circuits ? Yes 

Remove circuits 
to cheapen 𝐛𝐠 

No 

 Replace the worst population 
solution with the current solution 𝐛𝐠 

𝑖𝑡 = 𝑖𝑡 + 1  

Stage 4 

Stage 5 

Stage 6 

Stage 7 
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This way of creating the initial population produces some 

infeasible solutions (solutions with load shedding), due to the 

simplified model (11) to (16), which considers only Kirchhoff's 

first law. However, these solutions are systematically eliminated 

over iterations. 

 Stage 2 

This step determines the cost of each initial solution (𝑣𝑐𝑘), the 

respective amounts load shedding (𝑟𝑐𝑘), and the least cost solution 

(𝑏𝑔𝑘). The cost of each solution (𝑣𝑐𝑘) is obtained by the product 

(∑ 𝑐𝑖𝑗𝑛𝑖𝑗), since after the completion of step 1, the circuit set {𝑛𝑖𝑗} 

of each solution (𝑠𝑜𝑙𝑘) of 𝑆𝑜𝑙 and the respective costs (𝑐𝑖𝑗) are 

known. The load cutoff (𝑟𝑐𝑘), associated with each solution (𝑠𝑜𝑙𝑘), 
is obtained by solving LP problem (17) to (22) using the linprog 

function of MatLab. 
 

𝑀𝑖𝑛  𝑟𝑐𝑘 = ∑ (𝑟𝑏
𝑛 + 𝑟𝑏

𝑝
)}(𝑏)∈𝐵   (17) 

𝑠. 𝑎:   
𝑆𝑓 + 𝑟 + 𝑔 =  𝑑 (18) 

𝑓𝑖𝑗 − 𝛾𝑖𝑗(𝑛𝑖𝑗
0 + 𝑛𝑖𝑗)(𝜃𝑖 − 𝜃𝑗) = 0 (19) 

|𝑓𝑖𝑗| ≤ (𝑛𝑖𝑗
0 + 𝑛𝑖𝑗)𝑓�̅�𝑗 (20) 

0 ≤ 𝑔 ≤ �̅� (21) 
0 ≤ 𝑟 ≤ 𝑑  (22) 

 Stage 3 

The purpose of this step is to update the current best solution 

(𝑏𝑔𝑘), modified in step 2, by performing two steps: 

Step 1: Generate new solutions (𝑠𝑜𝑙𝑘+1), as a function of the 

current best solution (𝑏𝑔𝑘)  and the solutions (𝑠𝑜𝑙𝑘), (𝑤𝑘) and 

(𝑝𝑏𝑘), using equation (23), adapted from [13]. The rounding 

operator "round" and the absolute value operator "abs" were 

included because the number of circuits to be added in each branch 

of the system must always be integer and positive. 

𝑠𝑜𝑙𝑘+1 = 𝑟𝑜𝑢𝑛𝑑{𝑠𝑜𝑙𝑘 + 𝑎𝑏𝑠[𝑙𝑝1. (𝑏𝑔
𝑘

‒ 𝑤𝑘) +

                                                       𝑙𝑝2. (𝑝𝑏𝑘‒ 𝑤𝑘)]}  

(23) 

The term 𝑙𝑝1. (𝑏𝑔𝑘‒ 𝑤𝑘) modifies the number of circuits of 

the current solution (𝑏𝑔𝑘), i.e., intensifies the search. Whereas the 

term 𝑙𝑝2. (𝑝𝑏𝑘‒ 𝑤𝑘) modifies the number of circuits of the current 

solution 𝑝𝑏𝑘, i.e., diversifies the search. 
 

Step 2: It obtains a candidate solution 𝑤𝑘+1 updated as a function 

of the solution 𝑠𝑜𝑙𝑘+1 and the solution 𝑤𝑘 by applying equation 

(24), adapted from [13]. 
 

𝑤𝑘+1 = 𝑟𝑜𝑢𝑛𝑑[(𝑤𝑘 + 𝑠𝑜𝑙𝑘+1)/𝜆)], 𝜆 = 𝑙𝑝2/𝑙𝑝1  (24) 
 

In the first iteration of the ABO(N-1) optimizer the solution 

𝑝𝑏𝑘 and 𝑤𝑘 are equal to the solution 𝑠𝑜𝑙𝑘  and are updated at each 

iteration using the costs: 𝑣(𝑠𝑜𝑙𝑘+1), 𝑣(𝑠𝑜𝑙𝑘), 𝑣(𝑝𝑏𝑘), and 𝑣(𝑝𝑔𝑘), 

according to the following rule: 

 If 𝑣(𝑠𝑜𝑙𝑘+1) < 𝑣(𝑠𝑜𝑙𝑘), the current solution 𝑠𝑜𝑙𝑘 is replaced by 

the solution 𝑠𝑜𝑙𝑘+1; 

 If 𝑣(𝑠𝑜𝑙𝑘+1) < 𝑣(𝑝𝑏𝑘), the current solution 𝑝𝑏𝑘 is replaced by the 

solution 𝑠𝑜𝑙𝑘+1; 

 If 𝑣(𝑠𝑜𝑙𝑘+1) < 𝑣(𝑏𝑔𝑘), the current solution 𝑏𝑔𝑘 is replaced by the 

solution 𝑠𝑜𝑙𝑘+1. 

After these updates only the current 𝑏𝑔𝑘 solution is 

submitted to the local improvement procedures to check if it 

presents load shedding or to check if its cost can be reduced. This 

best solution update procedure replaces the procedure used in 

AGCB [2]. 

 Stage 4 

The purpose of this step is to make the current 𝑏𝑔𝑘 solution 

viable in case it has load shedding due to the update done in step 3. 

The feasibility is done by adding circuits in certain branches of the 

𝑏𝑔𝑘  solution so that the load shedding is eliminated. 

The choice of the most attractive circuit set {𝑛𝑖𝑗} for addition 

is done using the sensitivity index (𝐼𝑆𝑖𝑗) (25), proposed in the 

constructive heuristic algorithm (AHC) [41]. 

𝐼𝑆𝑖𝑗 = 𝑚𝑎𝑥 {𝑛𝑖𝑗 . 𝑓
𝑖𝑗

; 𝑛𝑖𝑗 ≠ 0}  (25) 

This algorithm solves, at each AHC step, the LP problem 

(26)-(33), to verify that the added circuits also meet the CC model. 

If not, the most attractive circuit is added to the base grid. In the LP 

problem model, the active power flows in the circuits are separated 

into two groups: flows in the existing circuits and from the circuits 

added by the iterative process of the algorithm. 

In equation (27): 𝑆0- matrix of incidence, transposed, bar-

branch of the base network; 𝑆1- matrix of incidence, transposed, 

bar-branch of the new network; 𝑓0- vector of active power flows in 

the base network circuits, with the network without contingency; 

𝑓1- vector of power flows in the added circuits, with the network 

operating without any contingency. The parameters β and δ were 

introduced to compact the presentation of the model. 
 

𝑀𝑖𝑛 𝑣(𝑏𝑔
𝑘

) = ∑ 𝑐𝑖𝑗𝑛𝑖𝑗(𝑖,𝑗)∈𝛺𝑟
  (26) 

𝑠. 𝑎:   
(1 − 𝛿)(𝑆0𝑓0 + 𝑆1𝑓1 + 𝑔) +  

𝛿(𝑆0𝑓0
𝑝

+ 𝑆1
𝑝

𝑓1
𝑝

+ 𝑔𝑝) =  𝑑 

(27) 

(1 − 𝛽)(1 − 𝛿) [𝑓
𝑖𝑗
0 − 𝛾

𝑖𝑗
𝑛𝑖𝑗

0 (𝜃𝑖 − 𝜃𝑗)] +  

𝛿[𝑓𝑖𝑗
0 − 𝛾𝑖𝑗(𝑛𝑖𝑗

0 − 𝛽)(𝜃𝑖
𝑝

− 𝜃𝑗
𝑝

)] = 0  

(28) 

|𝑓𝑖𝑗
0| ≤ 𝑛𝑖𝑗

0 𝑓�̅�𝑗 (29) 

(1 − 𝛽)(1 − 𝛿) |𝑓
𝑖𝑗

| ≤ 𝑛𝑖𝑗𝑓𝑖𝑗
+  

𝛿[|𝑓𝑖𝑗
𝑝

| ≤ (𝑛𝑖𝑗 − 𝛽)𝑓�̅�𝑗]  

(30) 

0 ≤ (1 − 𝛿)𝑔 + 𝛿𝑔𝑝 ≤ �̅� (31) 
0 ≤ 𝑛𝑖𝑗 ≤ �̅�𝑖𝑗 ,  𝑛𝑖𝑗  𝑖𝑛𝑡𝑒𝑖𝑟𝑜  (32) 
𝑛𝑖𝑗 − 1 ≥  0  (33) 

 

This model specifies that the basic network must satisfy both 

Kirchhoff's laws, and the branches formed by the new circuits 

satisfy only Kirchhoff's first law (Kirchhoff's second law is only 

applied to the basic network). 

If solving this LP model results in 𝑣(𝑏𝑔𝑘) = 0 it means that 

𝑛𝑖𝑗 = 0, ∀(𝑖, 𝑗) ∈ 𝛺𝑟, i.e., the system operates without overloads 

with the base topology circuits together with the added circuits. 

Since these circuits obey both Kirchhoff's laws, then the set of 

added circuits represents a feasible solution for the DC model. 

 Stage 5 

The purpose of this step is to reduce the cost of the current 

𝑏𝑔𝑘 solution if it has unnecessary circuits due to the update 

performed in stage 3 through equations (23) and (24). 

To check if there are any circuits added in 𝑏𝑔𝑘 that are 

redundant, they are sorted in descending order of cost, and then 

each of them is removed from the solution 𝑏𝑔𝑘. If the removal, any 

of them, does not cause load shedding, it means that it is 

unnecessary and is eliminated. So only those circuits will be part 

of the current 𝑏𝑔𝑘 solution that if removed does not cause load 

shedding. 

 Stage 6 

This step is intended to verify whether the solution 𝑏𝑔𝑘 can 

enter the current population as a replacement for the one with the 

worst quality in terms of investment cost and load shedding. 
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Two conditions are imposed for the current solution 𝑏𝑔𝑘 to 

be accepted into the population: 1) 𝑏𝑔𝑘 must be different from all 

other solutions, i.e., it must present a circuit configuration that does 

not exist in the current population, and 2) 𝑏𝑔𝑘 must have a lower 

cost (if feasible) or lower load shedding (if infeasible) than all other 

solutions in the population. 

Three situations are tested: (a) the solution 𝑏𝑔𝑘 is infeasible 

and there are infeasible solutions in the population, then 𝑏𝑔𝑘 

replaces the highest load-cut solution; (b) the solution 𝑏𝑔𝑘 is 

feasible and there are infeasible solutions in the population, then 

𝑏𝑔𝑘 replaces the highest load-cut solution; c) the solution 𝑏𝑔𝑘 is 

feasible and there are no infeasible solutions in the population, then 

𝑏𝑔𝑘 replaces the current highest cost solution. 
 

 Stage 7 

In this step, the ABO(N-1) optimizer checks if the stopping 

criterion is reached, i.e., if the current number of iterations (it) is 

greater than the specified maximum value (Nit), then the iterative 

process is terminated. 
 

 Stage 8 

In this step, the ABO(N-1) optimizer presents the global optimal 

solution 𝑏𝑔 found in NI iterations, in terms of cost and number of 

circuits added in each branch of the base network to meet simple 

contingency. 
 

IV. RESULTS AND DISCUSSIONS 

This section presents the results obtained from applying the 

ABO(N-1) optimizer on three typical systems (G-6/15), IEEE-24/41 

and SB-46/79), which have been widely used by researchers to test 

algorithms. The ABO(N-1) optimizer was implemented in MatLab 

language and simulations were performed on a computer with an 

Intel Core i5-7400T, 2.40 GHz, 8 GB RAM processor. The data 

used to adjust buffalo displacement velocities were lp1=0.9 and 

lp2=0.7 suggested in [14] to obtain a better balance between 

intensification and diversification processes of search space 

exploration. 

Since the ABO(N-1) optimizer generates the candidate 

solutions randomly, there is the possibility of not always obtaining 

the same optimal solution at the end of iterations by performing 

several simulations. This possibility increases even more when the 

system has many bars (NB) and many branches (NR). Therefore, 

to minimize/eliminate this possibility, the population size (NI) and 

the number of iterations (Nit) were defined as a function of NB and 

NR, as shown in rules (34) and (35), except for the Garver system. 
 

𝑁𝐼  ≈ 𝑁𝑅 (34) 
𝑁𝑖𝑡 > 1000(𝑁𝑅/𝑁𝐵) (35) 

 

IV.1 GARVER SYSTEM (G-6/15) 

This small system has the following characteristics: demand 

and generation = 760 MW, NB= 6 (bus 6 isolated) and NR=15 (6 

are existing). Data for existing and candidate bus and circuits are 

available in [37]. A maximum of four circuits per branch was 

allowed. This data results in a total of 515≃3x1010 possible 

combinations of circuit additions, indicating the enormous 

difficulty the algorithms face in solving TNESPS problems. 

In the simulation of this system, a population size NI = 20 

was used and Nit = 100 iterations were performed. 

The global optimal solution found by the ABO(N-1) 

optimizer, without load shedding, contains 10 circuits and costs 

$298,000. 

Figure 3 shows, in red lines, the planned circuits. The graphs in 

Figures 4 and 5, both produced by the ABO(N-1) optimizer, show 

the circuits added to the base network and the evolution of the total 

cost of the best solution. 

 
Figure 3: G-6/15 system -Planned network.  

Source: Authors, (2021).  

 

 
Figure 4: G-6/15 system - Planned circuits. 

Source: ABO(N-1) optimizer, (2021). 

 

 
Figure 5: G-6/15 system: Cost evolution of the best solution. 

Source: ABO(N-1) optimizer, (2021). 
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IV.2 IEEE SYSTEM (IEEE-24/41) 

This system is one of the most used in testing new models and 

optimization techniques for TNESPS problems. It has a demand 

and generation= 8550 MW; NB=24 (generating units are connected 

on 10 bus and loads connected on 17 bars and there are no isolated 

bars); NR=41 (34 existing and 7 new). Data for bus and 

existing/candidate circuits are described in [42]. The generation 

data are from scenario G1. 

A population size NI≈NR=40 was used to solve this system. 

Since the NR/NB ratio of this system is about 1.71, the number of 

simulations used was Nit=1800, since by rule (35), Nit must be 

greater than 1000(NR/NB). 

In the simulation, branches with at most 4 circuits were 

allowed. This gives the total number of circuits to be analyzed 

4x41=164 and the number of possible combinations of additions to 

the branches is about 541≃4.5x1028, i.e., 526 times larger than the 

number of possible combinations of additions to the G-6/15 system. 

The global optimal solution that the ABO(N-1) optimizer found, 

without load shedding, contains 28 circuits, added on 17 existing 

branches (n01-05=2, n03-09=1, n03-24=2, n04-09=1, n05-10=1, n06-10=2, 

n07-08=3, n10-11=1, n11-13=1, n14-16=2, n15-16=1, n15-21=1, n15-24=2, 

n16-17=3, n16-19=2, n17-18=2 and n21-22=1) and costs $1,071 million. 

This same solution was obtained with the following data: a) 

NI=40 and Nit=2000, b) NI=40 and Nit=5000, c) NI=50 and 

Nit=2000. Figure 6 shows, in filled red lines, the 28 circuits (the 

dotted lines are the candidate circuits). 

Figure 7 shows the circuits of the best solution obtained 

with the ABO(N-1) optimizer and Figure 8 shows the evolution of 

the cost of the best solution, where convergence was reached at the 

1199th iteration. 

 
Figure 6: IEEE-24/41 system – Planned network. 

Source: Authors, (2021). 

 
Figure 7: IEEE-24/41 system - Planned circuits.  

Source: ABO(N-1) optimizer, (2021). 
 

 
Figure 8: IEEE-24/41 system - Cost evolution of the best solution. 

Source: ABO(N-1) optimizer, (2021). 

IV.3 SOUTH BRAZILIAN SYSTEM (SB-46/79) 

Monticelli et al., 1982 [43], was the first to use this real system 

to validate an interactive TNESPS solution method and since then 

it has been used to validate several methods. This system is an old 

configuration of the power system in the southern region of Brazil, 

and is therefore a good test for the ABO(N-1) optimizer. 

The data for this system are: demand and generation=6880 

MW; NB=46 (generators are connected on 12 bus and loads on 19 

bus); NR=79 (47 existing/32 new). Existing circuits are connected 

on bus operating at 500 kV and 230 kV voltages). The bus data and 

existing and candidate circuit data are described in [40]. 

This system has 479/541=8x1018 times more possible 

combinations of circuit additions than the IEEE-24/41 system, and 

almost twice as many buses (1.71=41/24), and a greater number of 

isolated bus (11 bus). 

The global optimal solution found by the ABO(N-1) optimizer, 

without load shedding, contains 28 circuits, connected in 18 

branches, (n02-05=1, n12-14=1, n19-21=1, n17-19=1, n14-22=1, n32-43=1, 

n20-21=2, n42-43=3, n46-06=2, n19-25=1, n21-25=1, n31-32=2, n28-31=2, 

n31-41=1, n40-45=1, n24-25=3, n40-41=1 and n05-06=3), and costs 

$356,086 million. 

Figure 9 shows, in red lines, the 28 circuits. Figure 10 shows 

the circuits of the solution produced by the ABO(N-1) optimizer in 

all 6 simulations. 
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Figure 11 shows the evolution of the cost of the best solution, 

where convergence was reached at the 398th iteration. 
 

 
Figure 9: SB-46/79 system – Planned network. 

Source: Authors, (2021). 

 

 

Figure 10: SB-46/79 system - Planned circuits.  

Source: ABO(N-1) optimizer, (2021). 

 

 
Figure 11:  SB-46/79 system - Cost evolution of the best solution. 

Source: ABO(N-1) Optimizer, (2021). 

V. CONCLUSIONS 

This paper presents a new metaheuristic algorithm, called 

the ABO(N-1) optimizer, for solving TNESPS problems with the 

network modeled by a DC power flow. An AC power flow model 

and other metaheuristics can be used in place of the ABO 

algorithm. To solve this complex nonlinear, non-convex 

optimization problem with integer and mixed variables, an 

algorithm based on the movement of African buffaloes in search of 

food was used. 

To reduce costs of feasible candidate solutions and to enable 

candidate solutions with load shedding, Chu-Beasley's local 

improvement procedures used in a genetic algorithm were used. 

Such procedures, in addition to improving the local and global 

exploration of the search space, transform the MINLP problem into 

a PPL problem. 

The results achieved with the ABO(N-1) optimizer, on three 

transmission systems widely used as benchmarks (Garver-6 bus, 

IEEE-24 bus, the South Brazilian-46 bus), attest to its ability to 

solve TNESPS optimization problems efficiently. 

The solutions for the larger systems required longer 

computational times, due to the larger number of possible 

combinations and the need to compute more power flows in all 

branches of the network arising from removing one circuit from 

each branch at a time. 
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