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Solar photovoltaic energy is a renewable, clean and safe energy source that is currently used 

worldwide. However, it presents a dynamic and intermittent behavior, caused by the 

variation of climatic conditions. Due to this, it has been necessary to develop different 

methods for the prediction of the energy generated in photovoltaic systems. The present 

work is focused on analyzing the prediction of the power generated in a photovoltaic plant 

connected to the grid, by means of the Long Short-Term Memory (LSTM) deep learning 

model. In order to carry out the study, a database obtained from the photovoltaic plant of the 

Central University "Marta Abreu" of Las Villas (UCLV) with a nominal installed power of 

1.1 MW is used. Initially, the correlation between the different variables with respect to the 

photovoltaic power generated is analyzed, then the LSTM model is implemented to make 

the prediction. The results obtained show that the predictions made for different time 

horizons and for days with different behavior are adequate, which demonstrates the 

effectiveness of this prediction method.  
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I. INTRODUCTION 

Currently, the planet shows an increase in energy needs 

driven by the technological and economic development of society. 

One of humanity's major problems is its dependence on fossil fuels, 

as they cause a strong environmental impact, in addition to various 

changes in the economic sphere. The challenge is to ensure that 

renewable energy sources gradually replace traditional fossil fuels. 

The main advantage of renewable energies is their lower 

environmental impact, as they reduce the number of pollutants in 

the atmosphere, as well as their less concentrated territorial 

distribution. They are continuous and inexhaustible energy 

sources, making them the alternative of the future [1]. 

One of the most widely used renewable sources today is 

solar energy. Photovoltaic (PV) systems connected to electrical 

grids are one of the distributed generation technologies with the 

greatest impact and growth in recent years. In fact, the world's 

annual solar PV capacity has increased exponentially over the last 

ten years. It is now the cheapest type of energy in a large number 

of countries due to substantially lower production costs of PV 

modules [1]. 

Atmospheric variables, such as solar irradiance, 

temperature, humidity and cloud properties, can directly and 

indirectly influence PV power generation. The dependence of the 

electrical energy generated in a photovoltaic farm on weather 

conditions, and the high variability of these conditions, make the 

problem of predicting the energy generated in a photovoltaic farm 

a complex task [2].  

The future time period for PV generation prediction, or the 

duration between the actual time and the effective time of 

prediction is the forecast horizon [3]. Some researchers propose 

three categories for the forecast horizon: short term (up to 24 

hours), medium term (1 day-1month), and long term (1month-

1year). Others have added a fourth category based on the 

requirements of the decision-making process for smart grids or 

microgrids, aptly named very short-term or ultra-short-term (less 

than 1 hour) forecast horizon. However, so far there is no 

universally agreed classification criterion [4]. 

The large-scale penetration of PV in today's power systems 

requires forecasting models to operate the power grid economically 

and reliably [5]. Accurate solar forecasting eliminates the impact 

of uncertainty of solar PV power production, improves system 
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stability, increases the penetration level of the PV system, and 

reduces the maintenance cost of auxiliary devices. In addition, it is 

a powerful tool that helps power system operators and designers to 

model and manage solar PV plants efficiently [6]. 

Since the very emergence of photovoltaic plants, several 

techniques have been developed to achieve predictive models that 

contribute to the improvement of the management of these plants. 

Currently, intensive work is being done in the application of 

artificial intelligence tools for the development of these types of 

models, based on the proven capacity of these techniques in the 

handling of information contained in large volumes of data 

obtained from the systems under study.  

The photovoltaic plant of the Central University "Marta 

Abreu" of Las Villas (UCLV), in the province of Villa Clara in 

Cuba, has a nominal power of 1.1 MW, was put into operation in 

2019 and is located in the southwest area of the Faculty of 

Electrical Engineering of the Central University "Marta Abreu" of 

Las Villas, at 22.4° north latitude and 79.96° west longitude. 

This photovoltaic plant has the necessary characteristics to 

develop prediction models that can contribute to the above 

mentioned. In particular, it has a large group of historical 

measurements of the following variables: solar irradiance, ambient 

temperature, temperature of the photovoltaic modules and power 

generated. In other words, we have the necessary elements to carry 

out the study in this plant. Therefore, the main objective of this 

work is to predict the power generated in the UCLV photovoltaic 

plant using the Long Short-Term Memory (LSTM) deep learning 

model. 

 

II. THEORETICAL REFERENCE 

II.1 PREDICTIVE MODELS BASED ON ARTIFICIAL 

INTELLIGENCE TECHNIQUES WITH MACHINE 

LEARNING 

Different international publications have addressed the 

issue of predicting the different variables associated with 

photovoltaic systems using artificial intelligence techniques.  

Reference [7] presents a hybrid model for the long-term 

prediction of the photovoltaic power generated in a photovoltaic 

installation based on Artificial Neural Network (ANN) and fuzzy 

logic. It uses temperature, dew point, wind speed and direction, and 

solar irradiance as input variables. The proposed model is 

compared with other prediction models and in all cases presented 

a superior performance with a Mean Absolute Percentage Error 

(MAPE) value of 29.60 %. 

In reference [8] a Neural Network Ensemble (NNE) 

prediction model trained by Particle Swarm Optimization (PSO) is 

proposed to predict the day-ahead power in a smart grid. The model 

uses as inputs historical data of PV power, solar irradiance, wind 

speed, temperature and humidity.  The performance of the model 

was measured against five other prediction methods and the NNE 

method was superior with a MAPE value of 9.75%. 

Reference [9] presents a Support Vector Regression (SVR) 

model to predict the power output of a PV plant for a short-term 

time horizon. It uses as inputs PV power measurements and solar 

irradiance forecast from the Numerical Weather Prediction (NWP). 

The model is able to generate good predictions for clear and cloudy 

sky conditions with a Root Mean Square Error (RMSE) value of 

less than 15%. The results obtained are compared with a physical 

model. 

 

 

II.2 PREDICTIVE MODELS BASED ON DEEP LEARNING 

ARTIFICIAL INTELLIGENCE TECHNIQUES 

Most conventional approaches to solar power forecasting 

are not capable of digging deep into the time series and uncovering 

implicit and relevant information. With the huge data of the modern 

power system, the use of conventional approaches is not adequate 

to ensure accurate prediction. Deep learning approaches are 

becoming increasingly popular due to their good ability to describe 

dependencies in the time series. Recently, deep learning 

approaches have emerged as powerful tools that enable 

complicated pattern recognition, regression and prediction analysis 

[10], [11].  

Reference [12] proposes an LSTM deep learning model for 

predicting PV power. The proposed model is compared with two 

other models and proved to be the best performing model with an 

RMSE value of less than 21%. 

Reference [13] presents a LSTM model coupled with a deep 

neural network. The model is used to predict the load and PV power 

generated in a smart grid. The performance of the model is 

compared with other models and a satisfactory result is obtained. 

In [14], a Deep Convolutional Neural Network (DCNN) 

model is used to predict the power of a PV system. The accuracy 

of the model is compared with a persistent model and a SVR model 

resulting superior with a Normalized Mean Absolute Percentage 

Error (nMAPE) value of 11.80%. 

Reference [15] proposes a forecasting algorithm to predict 

PV power generation using a LSTM neural network and a synthetic 

weather forecast. The proposed model is compared with several 

machine learning models: a Recurrent Neural Network (RNN), a 

Generalized Regression Neural Network (GRNNN) and an 

Extreme Learning Machine (ELM) and the results of the LSTM 

model were superior in all cases analyzed. 

 

III. MATERIALS AND METHODS 

III.1 RECURRENT NEURAL NETWORKS 

Recurrent neural networks (RNN) [16] are a type of neural 

networks in which the connections between units form a directed 

cycle. This creates an internal state of the network that allows it to 

exhibit dynamic temporal behavior. Unlike feed-forward neural 

networks, RNNs can use their internal memory to process arbitrary 

sequences of inputs. 

The key idea of RNNs is to use sequential information. In a 

traditional neural network, all inputs and outputs are assumed to be 

independent of each other. However, for many applications, this 

assumption is not always true. RNNs are called recurrent because 

they repeat the same task for each element of a sequence, and the 

output depends on previous computations. In other words, RNNs 

have a memory that captures information about what has been 

computed so far [16]. 

Figure 1 illustrates a typical RNN structure, where 𝑥𝑡    is the 

input at time step t , 𝑠𝑡   is the hidden state at the at time step t, and 

𝑜𝑡 is the output at time step t. In detail, it is shown how an RNN is 

unfolded into a complete network. By unfolding the RNN, the 

network is presented in a full sequential format. 

Note that the hidden state at time step t is also known as the 

network memory and is calculated from the hidden state at the 

previous time step and the input at the current time step, as 

suggested in the following equation: 

 

𝑠𝑡 = 𝑓(𝑈𝑠𝑡 + 𝑊𝑠𝑡−1
)                          (1) 
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Figure 1: Basic structure of an RNN. 

Source: [16]. 

 

RNNs use the same model to perform the sequence 

prediction at different time instants t. Due to this property, they can 

be used to process variable and large sequences. When working 

with RNNs, it is first necessary to select the type or architecture of 

RNN to be used, since the transition function and the handling of 

the internal state of the network will depend on the RNN 

architecture [17]. 

After selecting the RNN architecture, it is recommended to 

preprocess the data beforehand, so that the model can use them 

efficiently. After preprocessing the data, the best model is selected 

based on a performance measure. While the RNN model has 

proven to be a powerful tool in terms of handling the data sequence 

assuming that the current time step depends on previous time steps; 

it also suffers from some limitations, as it has little ability to learn 

long-term dependencies due to rapid or explosive gradient decay as 

it propagates through layers or time instants. To address this 

problem, new RNN architectures have emerged among which are 

LSTM recurrent neural networks [17]. 

 

III.2 RECURRENT NEURAL NETWORKS OF THE LSTM 

TYPE 

The Long Short Term Memory model (LSTM) [17], [18] 

arises to overcome the problem of gradient vanishing and thus to 

learn long term dependencies. In this model, the hidden layer nodes 

are replaced by special nodes called memory cells. Figure 2 shows 

the structure of a memory cell of the LSTM model. 

 

 
Figure 2: Structure of a memory cell of the LSTM model. 

Source: [18]. 

 

Each memory cell has a recurring connection with a fixed 

weight, ensuring that the gradient as it propagates through time 

does not rapidly diminish or explode. A memory cell is composed 

of single nodes in a specific connection pattern. Between the nodes 

that make up a memory cell are a series of gates that are responsible 

for managing the flow of information in the unit. The components 

of a memory cell are detailed below [18]: 

1. Input node: the input node performs the linear 

combination of the input vector 𝑥𝑡 and the output of the 

hidden layer at the previous instant ℎ𝑡−1. This node 

delivers new information to the memory cell. 

2. Internal state (𝑐𝑡): is the main node of the LSTM model, 

it uses a linear activation function and fixed weights. 

Since a fixed weight is used in the internal state 

recurrence, the error propagates through time without the 

problems of gradient disappearance or explosion. 

3. Input gate (𝑖𝑡): is the first gate used by the LSTM 

network, it controls the flow of information entering the 

memory cell, if the value of the gate is zero, no new 

information enters the memory cell, on the other hand if 

it is one, all new information enters the memory cell. 

4. Forgetting gate (𝑓𝑡): this gate allows to restrict the 

information kept in the internal state of the memory cell. 

5. Output gate(𝑜𝑡): the output gate controls the flow of 

information out of the memory cell. The value finally 

delivered by a memory cell is given by the internal state 

of the unit and the output gate. 

6. Candidate memory cell (�̃�𝑡): the LSTM model needs to 

calculate the candidate memory cell �̃�𝑡, its calculation is 

similar to that of the three gates (input, forgetting and 

output), but uses a 𝑡𝑎𝑛ℎ function as the activation 

function with a range of values between [-1,1]. 

7. Hidden state (ℎ𝑡): the 𝑡𝑎𝑛ℎ function ensures that the 

value of the hidden state element is between [-1,1]. Note 

that when the output gate is approximately one, the 

information in the memory cells is passed to the hidden 

state to be used by the output layer; and when the output 

gate is approximately zero, the information in the memory 

cells is retained by itself. 

Given an input sequence {𝑥0, 𝑥1, … , 𝑥𝑡  } and using the 

memory cell components, the basic behavior of the LSTM model 

is described by the following equations: 
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𝑖𝑡 =  σ(𝑥𝑡 ∙ 𝑤𝑥𝑖 + ℎ ∙ 𝑤ℎ𝑖 + 𝑏𝑖)  (2) 

𝑓𝑡 =  𝜎(𝑥𝑡 ∙ 𝑤𝑥𝑓 + ℎ𝑡−1 ∙ 𝑤ℎ𝑓 + 𝑏𝑓  (3) 

𝑜𝑡 =  σ(𝑥𝑡 ∙ 𝑤𝑥𝑜 + ℎ𝑡−1 ∙ 𝑤ℎ𝑜 + 𝑏𝑜)  (4) 

�̃�𝑡 = tanh (𝑥𝑡 ∙ 𝑤𝑥𝑐 + ℎ ∙ 𝑤ℎ𝑐 + 𝑏𝑐)   (5) 

𝑐𝑡 = �̃�𝑡 ∙ 𝑖𝑡 + 𝑓 ∙ 𝑐𝑡−1    (6) 

ℎ𝑡 = tanh(𝑐𝑡) ∙ 𝑜𝑡   (7) 

Where 𝑤𝑥𝑐 , 𝑤𝑥𝑖 , 𝑤𝑥𝑓 , 𝑤𝑥𝑜 and 𝑤ℎ𝑐 , 𝑤ℎ𝑖 , 𝑤ℎ𝑓 , 𝑤ℎ𝑜 are the 

weights connecting the layers, t is the time instant of the sequence, 

𝑡-1 is the previous time instant, ℎ𝑡−1is the output value of the 

hidden layer of the network at the previous time instant; 

𝑏𝑐 , 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜  are the bias parameters, 𝑡𝑎𝑛ℎ and σ are the hyperbolic 

and sigmoid tangent activation functions respectively. 

The goal of LSTM neural networks is to learn when to let 

new information into the internal state and when to let information 

out of the memory cell. Back-Propagation Through Time (BPTT) 

is used for learning, and the weights of the gates and the input and 

output nodes are adjusted [18].  

In practice, the LSTM model has a better ability to learn 

long-term dependencies compared to simple RNNs. 

 

III.3 FORECAST MODEL PERFORMANCE 

Performance estimation is critical for assessing the accuracy 

of a model's predictions. Common tools include: Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE) and Root 

Mean Square Error (RMSE). MAE estimates the average 

significance of the errors in a forecast data set, averages the 

differences between actual observations and predicted outcomes 

across the entire test sample, and assigns all individual 

discrepancies equal weight. Similarly, RMSE estimates the mean 

value of the error by the square root of the average of the squared 

differences between the predicted values and the actual 

observations. It is therefore more robust in dealing with large 

deviations that are especially undesirable, giving the researcher the 

ability to identify and eliminate outliers. However, both average 

metrics (MAE and RMSE) can vary from zero to infinity. In 

contrast, MAPE is a standard prediction technique that measures 

prediction accuracy and justifies the diversity of predictions for real 

data sets [1]. The equations for these metrics are as follows: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑗 − 𝑡𝑗|𝑁

𝑖=1         (8) 

𝑅𝑀𝑆𝐸 = √1

𝑁
∑ (𝑦𝑗 − 𝑡𝑗)𝑁

𝑖=1

2
       (9) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑗−𝑡𝑗|

𝑡𝑗

𝑁
𝑖=1 × 100%   (10) 

Where 𝑦𝑗 and 𝑡𝑗 are the corresponding predicted and 

measured values of PV power and N is the number of test samples. 

 

III.4 PROPOSED METHODOLOGY 

Figure 3 shows a summary of the methodology used to 

predict the power generated in a photovoltaic installation using the 

LSTM model. 

This process takes into account several fundamental steps 

that include obtaining historical data from the PV plant and 

preprocessing them to eliminate outliers in each of the time series.  

Then, a data filtering process is applied in order to reduce 

the computational load of the prediction models and the training 

time; in this process, all the measurements corresponding to the 

nighttime hours when the plant does not generate active power are 

removed from the database. Therefore, only 14 measurements are 

analyzed each day, corresponding to the plant's working hours 

between 6:00 am and 20:00 pm. A statistical analysis of the data is 

also performed, including the correlation analysis between the 

meteorological variables and the power generated, in order to 

define the inputs of the prediction model.  

Subsequently, data normalization is performed to avoid 

distortion or deviation of the results and to achieve a more accurate 

prediction, then the data is divided into training data and test data. 

Then the characteristics of the model are defined and its training is 

performed, after which the proposed model is validated and tested. 

Several statistical indicators (MAE, RMSE, MAPE) are used to 

quantify the accuracy of the developed model. Finally, the designed 

LSTM model can be used for energy production prediction. 

 

 
Figure 3: Methodology for PV generation prediction. 

Source: Authors, (2021). 

 

IV. RESULTS AND DISCUSSIONS 

IV.1 STATISTICAL ANALYSIS OF THE DATA 

A database was compiled containing measurements of 

active power generated (expressed in MW), solar radiation 

(expressed in W/m²), PV module temperature (expressed in °C), 

ambient temperature (expressed in °C), wind speed (expressed in 
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m/s) and wind direction (expressed in 0°-360°). Those 

measurements were taken with a temporal resolution of one hour 

from July 2018 to April 2021. Figure 4 shows a fragment of the 

database. 

 
Date Wind direction Wind speed Solar irradiance T modulo T ambient PV power 

‘17-jul-2018 06:00:00’ 109 0 0 22.5 23.9 0 

‘17-jul-2018 07:00:00’ 114.2 0 83.5 25.3 29 0.09 

‘17-jul-2018 08:00:00’ 103.8 1.8 340.5 32 32.1 0.31 

‘17-jul-2018 09:00:00’ 88.8 2.6 566.4 35.1 32.4 0.54 

‘17-jul-2018 10:00:00’ 90.6 2.6 762.5 38 32.6 0.75 

‘17-jul-2018 11:00:00’ 84.8 1.8 970.1 42.4 34.1 0.86 

‘17-jul-2018 12:00:00’ 96 1.1 1118.9 41.8 34.5 0.96 

‘17-jul-2018 13:00:00’ 92.5 1.1 1116.2 45.2 34.9 0.94 

‘17-jul-2018 14:00:00’ 91.8 1.1 969.5 46 36.8 0.88 

‘17-jul-2018 15:00:00’ 93.4 1.8 301.4 39.5 34.9 0.29 

‘17-jul-2018 16:00:00’ 50.4 1.8 594.1 43.1 35.4 0.54 

‘17-jul-2018 17:00:00’ 82 1.8 373 39 35.8 0.33 

‘17-jul-2018 18:00:00’ 82.3 1.8 22.7 31.2 31.2 0.01 

‘17-jul-2018 19:00:00’ 57.4 0 0 28.5 29.6 0 

‘18-jul-2018 06:00:00’ 118.9 0 0 22.3 24.1 0 

‘18-jul-2018 07:00:00’ 138.2 1.1 86.3 25.6 29.8 0.09 

‘18-jul-2018 08:00:00’ 131.6 1.8 369.6 31.6 31.1 0.33 

‘18-jul-2018 09:00:00’ 114.6 1.1 566.4 36.8 33 0.53 

‘18-jul-2018 10:00:00’ 111.8 1.8 748.4 41.1 33.1 0.72 

‘18-jul-2018 11:00:00’ 15 1.1 947.1 47.9 33.8 0.82 

‘18-jul-2018 12:00:00’ 58.5 1.8 1040.5 54.2 34.8 0.86 

‘18-jul-2018 13:00:00’ 178.6 1.8 1026.9 52.1 35.8 0.9 

Figure 4: Fragment of the UCLV photovoltaic plant database. 

Source: Authors, (2021). 

 

 

Tables 1, 2, 3, 4, 5 and 6 summarize the main statistical 

indicators of the variables active power generated, solar irradiance, 

PV module temperature, ambient temperature, wind speed and 

wind direction for each year that was present in the database. 

When analyzing the results shown in the tables above, it can 

be said that in general the quality of the data was acceptable, 

although there were values that at first glance could be considered 

erroneous.  

Among these were, for example, minimum values of 

ambient temperature and PV module temperature equal to zero, 

maximum values of ambient temperature higher than 40°C, solar 

irradiance values higher than 1300 W/m² and power values higher 

than 1.1 MW, evidently all the above mentioned measurements 

were outliers for each of the time series.  

To solve these problems and improve data quality, an outlier 

cleaning process was applied that took into account the extreme 

limits of each time series. As for missing measurements, if these 

corresponded to small data segments (≤ 1 h) they were replaced by 

the average value of four observations, two points before and two 

points after to maintain the originality and length of the input 

sequences.  

Finally, when there were large sequences (from several 

hours to weeks) of missing or defective data, imputation was 

performed, although this problem was practically absent in the 

available database. 

 

Table 1: Statistical analysis of the active power generated 

variable. 
Year 2018 2019 2020 2021 Total 

Average 0.31 0.38 0.34 0.39 0.35 

Standard deviation 0.33 0.33 0.32 0.32 0.33 

Minimum 0 0 0 0 0 

Maximum 1.03 1.05 1.05 1.01 1.03 

Source: Authors, (2021). 

 

 

 

Table 2: Statistical analysis of the solar irradiance variable. 
Year 2018 2019 2020 2021 Total 

Average 340.02 410.61 297.91 438.78 360.81 

Standard deviation 370.34 369.99 357.28 380.41 370.80 

Minimum 0 0 0 0 0 

Maximum 1259.50 1354.20 1401.50 1382.60 1401.50 

Source: Authors, (2021). 

 

Table 3: Statistical analysis of the temperature of the PV modules 

variable. 
Year 2018 2019 2020 2021 Total 

Average 26.15 30.32 22.72 28.72 26.69 

Standard deviation 11.99 8.19 14.39 8.26 12.29 

Minimum 0 0 0 0 0 

Maximum 59.30 48.90 49.10 50.40 59.30 

Source: Authors, (2021). 

 

Table 4: Statistical analysis of the ambient temperature variable. 
Year 2018 2019 2020 2021 Total 

Average 23.95 28.30 21.44 26.82 24.91 

Standard deviation 11.73 5.97 13.03 6.20 10.53 

Minimum 0 0 0 0 0 

Maximum 37.50 39.50 38.60 40.60 40.60 

Source: Authors, (2021). 

 

Table 5: Statistical analysis of the wind speed variable. 
Year 2018 2019 2020 2021 Total 

Average 0.87 1.10 0.86 1.35 1 

Standard deviation 1.10 1.13 1.11 1.23 1.14 

Minimum 0 0 0 0 0 

Maximum 8.70 10.20 7.20 6.40 10.20 

Source: Authors, (2021). 

 

Table 6: Statistical analysis of the wind direction variable. 
Year 2018 2019 2020 2021 Total 

Average 95.17 127.44 94.13 129.76 110.01 

Standard deviation 88.72 97.53 97.43 98.89 97.55 

Minimum 0 0 0 0 0 

Maximum 359.20 359.40 359.40 359.20 359.40 

Source: Authors, (2021). 
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The correlation analysis of the data was a very important 

aspect, since it allowed defining which variables were to be taken 

into account in a prediction model.  

In this case, a database of the UCLV photovoltaic plant was 

available, which contained time series of several variables for a 

period of time close to 3 years. The variable to be predicted was 

the PV power generated at the facility. Therefore, in the correlation 

analysis, each of the variables was analyzed with respect to the PV 

power generated.  

Table 7 shows the values obtained for the correlation of the 

different meteorological variables with respect to the photovoltaic 

power generated.  

As can be seen, the highest correlation was presented by the 

solar irradiance variable, followed by module temperature, ambient 

temperature and wind speed. These correlation values were 

considered strong, therefore, these variables were selected as inputs 

to the prediction model. 

The wind direction variable presented a very weak 

correlation and was not considered as an input to the prediction 

model. 

 

Table 7: Correlation between PV power generated and 

meteorological variables. 

Input variables 

Correlation coefficient with respect to 

photovoltaic power generated 

Year 

2018 

Year 

2019 

Year 

2020 

Year 

2021 
Total 

Solar irradiance 0.9868 0.9916 0.9902 0.9875 0.9890 

PV module 

temperature 
0.7898 0.7781 0.7752 0.7819 0.7812 

Ambient 

temperature 
0.7242 0.6840 0.6683 0.6890 0.6964 

Wind speed 0.4367 0.4148 0.4204 0.4317 0.4259 

Wind direction 0.0946 0.1041 0.1094 0.1032 0.1028 

Source: Authors, (2021). 

 

IV.2 PREDICTION RESULTS USING THE DEEP 

LEARNING MODEL LSTM 

To perform the prediction of the power generated at the 

UCLV photovoltaic plant, a deep learning model LSTM was 

implemented, currently recommended in a considerable number of 

publications, due to its advantages and its proven effectiveness in 

learning long-term dependencies compared to simple RNNs.  

The model that was implemented contained two hidden 

layers and each layer possessed 200 memory cells. For its training 

the initial learning rate was set to 0.05, the Adaptive Estimation of 

Momentum (ADAM) algorithm was used as the optimizer, the 

number of training epochs was 250. In the training process of the 

LSTM model, different variants of data splitting were tested. In this 

process, one of the options that provided the best results was the 

division of the data according to the seasons of the year. In other 

words, the measurements of one year of work of the photovoltaic 

plant were taken and divided into periods of three months so that 

each period corresponded to a season of the year under study. For 

the training of the LSTM model, 90% of the station data was used 

and the remaining 10% was used to test its performance. The model 

was implemented in MATLAB 2019a and run on a computer with 

Intel(R) Core(TM) i3 CPU at 2.4 GHz and 8 GB of memory. 

To analyze the performance of the proposed model, 

predictions of the power generated in the PV system were made for 

three days of different behavior (sunny day, cloudy day and 

partially sunny day). In this case, a short-term prediction was made 

(for 14 hours of the following day). The results of these predictions 

are shown in Figures 5, 6 and 7 respectively. 

 
Figure 5: Short-term forecast of PV generation for a sunny day in 

July 2020. 

Source: Authors, (2021). 

 

 
Figure 6: Short-term PV generation forecast for a cloudy day in 

May 2020. 

Source: Authors, (2021). 

 

 
Figure 7: Short-term PV generation forecast for a partly sunny 

day in January 2021. 

Source: Authors, (2021). 

 

As can be seen in the previous figures, the predictions made 

by the LSTM deep learning model accurately reflected the PV 

power generation patterns on each day analyzed, even though the 

behavior of each of these days was different. Evidently the highest 

accuracy of the prediction model was obtained for the sunny day 

and the highest uncertainties in the prediction were presented in the 

cloudy day as expected. 

Table 8 shows the prediction accuracy of the LSTM deep 

learning model for a short-term time horizon (14 hours) and for 

each of the analyzed day types. Three fundamental metrics were 
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used to determine the quality of the predictions made (RMSE, 

MAE and MAPE). 

The lowest prediction errors were obtained for the sunny 

day, followed by the partly sunny day and the cloudy day. As the 

incident cloudiness over the PV plant increased, there was more 

variation and intermittency in the incident solar radiation and thus 

in the generated power.  

The high variability made generation prediction more 

difficult and resulted in higher prediction errors compared to other 

days with more stable behavior. 

 

Table 8: Prediction accuracy for a short-term horizon for different 

day types.  

Type of day 
Metrics used to evaluate prediction error 

RMSE (kW) MAE (kW) MAPE (%) 

Sunny day 25.22 16.38 5.86 

Cloudy day 43.45 32.32 19.25 

Partial sunny day 32.14 23.21 9.48 

Source: Authors, (2021). 

 

The model performance was also evaluated for a medium-

term forecast horizon. Figure 8 shows a medium-term forecast that 

was performed with the LSTM deep learning model for six days in 

the month of February 2021 (February 5 - 10, 2021). 

 

 
Figure 8: Medium-term forecast of PV power generation from 

February 5 to February 10, 2021. 

Source: Authors, (2021). 

 

The previous figure shows that the predictions of the LSTM 

model for a medium-term time horizon were accurate, even in the 

periods of time when there was a high intermittency in the 

generation due to the cloudiness over the photovoltaic plant, the 

model was able to adequately adjust to these atypical behavior 

patterns. Figure 9 shows the behavior of the Mean Absolute 

Percentage Error (MAPE) for a medium-term prediction horizon.  

 

 
Figure 9: Behavior of the ASM for a medium-term forecast from 

February 5 to February 10, 2021. 

Source: Authors, (2021). 

Again the largest prediction errors were obtained on cloudy 

days (day 2, day 3 and day 4), followed by a partly sunny day (day 

6) and finally sunny days (day 1 and day 5). The LSTM model that 

was implemented due to its characteristics was able to learn long-

term temporal dependencies in the time series and was able to 

adequately predict PV power generation on days with different 

behavior and for different time horizons. 

 

V. CONCLUSIONS 

The prediction of electric power generation in photovoltaic 

installations is a difficult task of great importance nowadays. In the 

present work, a deep learning artificial intelligence model (LSTM 

model) is proposed. The model is trained with historical data 

obtained from the UCLV photovoltaic plant, such data is 

statistically analyzed and prepared with the objective of achieving 

more accurate and faster predictions. The LSTM model is used for 

short-term (14 hours in the future) and medium-term (6 days) 

prediction of the power generated by the photovoltaic installation 

on days with different behavior (sunny day, cloudy day and 

partially sunny day), obtaining good results in all cases, with 

acceptable values of the prediction error.  

The main contribution of the work lies in the development 

of a simple but effective methodology to achieve the proposed 

objective, which is applicable to any photovoltaic solar farm. 

However, other deep learning models should be analyzed and their 

results compared with the proposed model in order to select the 

most appropriate one according to the type of prediction to be 

presented. 

 

VI. AUTHOR’S CONTRIBUTION 

Conceptualization: Reinier Herrera Casanova. 

Methodology: Reinier Herrera Casanova. 

Investigation: Reinier Herrera Casanova. 

Discussion of results: Reinier Herrera Casanova. 

Writing – Original Draft: Reinier Herrera Casanova. 

Writing – Review and Editing: Reinier Herrera Casanova. 

Resources: Reinier Herrera Casanova and Lesyani León Viltres. 

Supervision: Lesyani León Viltres. 

Approval of the final text: Reinier Herrera Casanova and Lesyani 

Leon Viltres. 

 

VII. REFERENCES 

[1] R. Ahmed., et al., “A review and evaluation of the state-of-the-art in PV solar 

power forecasting: Techniques and optimization”, Renew Sustain Energy Rev, vol. 
124, pp. 109792, March 2020, doi: 10.1016/j.rser.2020.109792. 

 

[2] S. Zhang, J. Wang, H. Liu, J. Tong & Z. Sun, “Prediction of energy photovoltaic 
power generation based on artificial intelligence algorithm”, Neural Computing and 

Applications, vol. 33, no 3, pp. 821-835, 2021, doi:10.1007/s00521-020-05249-z. 

 
[3] A. Nespoli, et al., “Day-ahead photovoltaic forecasting: a comparison of the 

most effective techniques”, Energies, vol. 12, no. 9, pp. 1621, 2019, 
doi:10.3390/en12091621. 

 
[4] T. Fan, T. Sun, H. Liu, X. Xie, & Z. Na, “Spatial-Temporal Genetic-Based 

Attention Networks for Short-Term Photovoltaic Power Forecasting”, in IEEE 

Access, vol. 9, pp. 138762-138774, 2021, doi: 10.1109/ACCESS.2021.3108453. 
 

[5] M. N Akhter., S. Mekhilef, H. Mokhlis, & N. M Shah., “Review on forecasting 
of photovoltaic power generation based on machine learning and Metaheuristic 

techniques”, IET Renew. Power Gener., vol. 13, no. 7, pp. 1009–1023, May 2019, 

doi:10.1049/iet-rpg.2018.5649. 
 

[6] M. S. Mahdi, M. Longo, & F. Foiadelli, “A-Day-Ahead Photovoltaic Power 

Prediction Based on Long Short Term Memory Algorithm”, 2020 International 

Page 19



 
 
 

 

Casanova and Viltres, ITEGAM-JETIA, Manaus, v.8 n.33, p. 13-20, Jan/Feb, 2022. 

 

Conference on Smart Energy Systems and Technologies (SEST). IEEE, pp. 1-6, 

2020, doi: 10.1109/SEST48500.2020.9203481.  

 

[7] B. Sivaneasan, C. Y. Yu & K. P Goh., “Solar forecasting using ANN with fuzzy 

logic pre- processing”, Energy Procedia, vol. 143, pp. 727–32, 2017, doi: 

10.1016/j.egypro.2017.12.75. 
 

[8] M. Q. Raza, N. Mithulananthan, J. Li., K. Y. Lee, & H. B. Gooi, “An ensemble 

framework for day-ahead forecast of PV output power in smart grids”, IEEE 
Transactions on Industrial Informatics, vol. 15, no. 8, pp. 4624–4634, Aug. 2019. 

 

[9] B. Wolff, J. Kühnert, E. Lorenz, O. Kramer, D. Heinemann, “Comparing support 
vector regression for PV power forecasting to a physical modeling approach using 

measurement, numerical weather prediction, and cloud motion data”, Sol Energy, 

vol. 135, pp. 197–208, 2016, doi: 10.1016/j.solener.2016.05.05. 
 

[10] Z. Chen, Y. Chen, L. Wu, S. Cheng, P. Lin, L.You, “Accurate modeling of 

photovoltaic modules using a 1-d deep residual network based on iv characteristics”, 
Energy Conversion and Management, vol. 186, pp. 168-187, 2019, doi: 

10.1016/j.enconman.2019.02.032. 

 

[11] F. Harrou, F. Kadri, & Y. Sun, “Forecasting of Photovoltaic Solar Power 

Production Using LSTM Approach”, In Advanced Statistical Modeling, 

Forecasting, and Fault Detection in Renewable Energy Systems, London, UK: 
IntechOpen, 2020. 

 

[12] J. Zhang, R. Verschae, S. Nobuhara, J-F. Lalonde, “Deep photovoltaic 
nowcasting”, Sol Energy, vol. 176, pp. 267–276, 2018, 

doi.org/10.1016/j.solener.2018.10.024. 

 
[13] L. Wen, K. Zhou, S. Yang, X. Lu, “Optimal load dispatch of community 

microgrid with deep learning based solar power and load forecasting”, Energy, vol. 

171, pp. 1053–1065, 2019, doi: 10.1016/j.energy.2019.01.075. 
 

[14] R. Zhang, M. Feng, W. Zhang, S. Lu, F. Wang, “Forecast of solar energy 

production - a deep learning approach”, In: 2018 IEEE international conference on 
big knowledge. ICBK), pp. 73–82, 2018.  

 

[15] M. S.  Hossain and H. Mahmood, “Short-Term Photovoltaic Power Forecasting 
Using an LSTM Neural Network and Synthetic Weather Forecast”, in IEEE Access, 

vol. 8, pp. 172524-172533, 2020, doi: 10.1109/ACCESS.2020.3024901. 

 
[16] Z. Pang, F. Niu, Z. O’NEILL, “Solar radiation prediction using recurrent neural 

network and artificial neural network: A case study with comparisons”, Renewable 
Energy, vol. 156, pp. 279-289, 2020, doi: 10.1016/j.renene.2020.04.04. 

 

[17] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and long 
short-term memory (LSTM) network”, Phys. D: Nonlinear Phenomena, vol. 404, 

Art. no. 132306, 2020, doi: 10.1016/j.physd.2019.132306. 

 
[18] Y. Ding, Y. Zhu, J. Feng, P. Zhang & Z. Cheng, “Interpretable spatio-temporal 

attention LSTM model for flood forecasting”, Neurocomputing, vol. 403, pp. 348–

359, 2020, doi: 10.1016/j.neucom.2020.04.110. 
 

Page 20


