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Water quality studies, vital for the development of human civilization, critically depend on 

the reliability and accuracy of the environmental and geomorphological data fed by the 

models.   Nowadays, tracers are widely used to obtain this kind of data, however, many 

methodological and technical problems persist about they, which make it difficult for the 

specialist to properly manage time and costs. This article presents an alternative 

methodology, based on a state function, which accurately describes the phases of evolution 

of the solutes in the flow.  From their analysis it is clear that the "abnormal bias" observed 

in the tracer curves correspond not to effects of flow (as stated in the dead zone theory) but 

to effects of the chemistry of the solute dissolving in water. This different approach allows 

to improve the corresponding interpretations and calculations of tracers used in field. 

Experiments are presented at the end that are interpreted with the proposed state function. 
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I. INTRODUCTION 

Water Quality studies have become essential tools for the 

control and improvement of the conditions of use of water 

resources, so threatened by a growing anthropic activity. However, 

currently, and despite spectacular advances in digital computing, 

theoretical tools suffer from great backwardness, since they 

correspond to complex models, developed in the last quarter of last 

century. 

This article presents new developments in the 

understanding of the Advection-Diffusion phenomenon, especially 

with the development of a state function, ɸ(U,E,t), which describes 

the evolution of the tracer cloud at different stages. This function 

connects with certain contemporary notions, corresponding to 

Feigenbaum’s infinite bifurcation model, and also puts into play 

experimental results of great importance, such as the Svedberg 

constant, obtained in his investigations of Brownian particles in 

aqueous media, carried out with ultra-centrifugation, at the 

beginning of the 20th century.  

These new concepts put in mutual connection, allow us to 

have new and powerful tools to properly interpret the complex 

phenomena of water pollution in the modern world. In this article, 

the word "solute" and "tracer" are used interchangeably. on the 

understanding that current engineering techniques used almost 

exclusively saline tracers, or fluorescent tracers, which dissociate 

into charged units (ions) as a result of their interaction with water. 

 

II. DISPERSION AS A MOLECULAR PHENOMENON  

II.1 ELEMENTARY DIFFRACTION OF PARTICLES IN 

THE FLOW, AND ITS MEANING 

The molecular vision of dispersion has been defined by the 

author [1] as the random separation of any pair of particles, N and 

W, by the effect of a "diffraction" element, D, (which can be a 

physical obstacle or a velocity differential in the shear dynamic 

field of the flow), which generates a characteristic separation, Δ, at 

a characteristic time, τ, valid for multiple scales. Figure 1.  
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Figure 1: Random separation of a couple of particles. 

Source: Authors, (2023). 

 

It is now necessary to give a more precise meaning, both to 

Δ, and to τ, from concepts of the kinetic theory of liquids [2] 

developed by Y. Frenkel, as follows [3]: 

Let be a group of tracer particles you inject suddenly into a 

flow, generating a concentration gradient between its center of 

mass and the liquid environment. The one-dimensional motion of 

each particle is random, insofar as it is immersed in a thermal 

environment, with equal probability of going left or right. Despite 

the individual randomness of motion of each particle, at each point 

of the distribution there will be a "previous point" at which the 

concentration is greater than at a "posterior point", Farther from the 

center of mass, therefore there will be more mobile particles at that 

first point than at the second, which generates an imbalance in the 

number of particles that move away from the center, from those 

that move away. The average displacement of the set, called 

"Diffusion", must be calculated by means of the squares of the 

individual displacements, xj2 for its definition to make 

experimental sense: 

 

< 𝑥2 >≈
𝑥12+𝑥22+⋯+𝑥𝑛2

𝑁
                           (1) 

 

Since the number of observed displacements is proportional 

to time, the following one-dimensional proportionality can be 

written as: 

 

< 𝑥2 >≈ 2 ∗ 𝐷 ∗ 𝑡                               (2) 

 

If the motion of the particles of the solute within the fluid is 

interpreted as in sequence of jumps, whose number is precisely 

"N", then for a single hop (N = 1) one can write, with "τ" the 

characteristic time for a jump: 

 

∆2≈ 2 ∗ 𝐷 ∗ 𝜏                                  (3) 

 

Therefore: 

 

∆≈ √2 ∗ 𝐷 ∗ 𝜏                                  (4) 

 

And one can then define a "dispersion" velocity, related to 

Figure 1, as follows: [4]. 

 

𝑉𝑑𝑖𝑠𝑝 ≈
∆

𝜏
≈

√2∗𝐷∗𝜏

𝜏
≈ √

2∗𝐷

𝜏
                              (5) 

 

It is useful then to define a dimensionless function of the 

form: 

 

ɸ ≈
𝑉𝑑𝑖𝑠𝑝

𝑈
                                               (6) 

 

This function can be shown to be a "thermodynamic 

potential" since it satisfies Schwartz conditions [5]: 
 

∮ 𝑑ɸ=0                                                 (7) 

 

In addition, its expanded form is: 

 

𝑈 ≈
1

ɸ
√

2∗𝐷

𝜏
                                       (8) 

 

Equation for the mean velocity of flow, which has an 

analytic form similar to the Chezy-Manning equation for uniform 

flow. 

 

II.2 BALANCE OF ENERGIES IN THE TRACER SYSTEM 

AND ITS RELATIONSHIP WITH THE CURVE OF THE 

STATE FUNCTION AND THE PROCESSES OF 

EVOLUTION OF THE TRACERER PLUME 

 

When the tracer suddenly enters the turbulent flow, it is 

accompanied by an energy of its structure, called "enthalpy of 

formation", ΔHo [6]. 

This energy is used to configure the different interactions of 

the particles of the solute, and are of two types: 

A.- Initial energy associated with the static crystal itself, 

Δxtal at the beginning of the process;  

B.- Energy associated with the distribution of the chemical 

potential, in the later stage, ΔChe. 

 

∆𝐻𝑜 ≈ ∆𝑋𝑡𝑎𝑙 + ∆𝐶ℎ𝑒                            (9) 

 

In the initial process, called "solvation", the dipole particles 

of water act electrically on the ions of the solute, surrounding them 

and forming complex units, destroying their initial structure. In a 

second process, with the solvated particles already "loose", a 
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distribution is established in the flow that is associated with a 

gradient of chemical potential. 

In this process of destruction, water uses a certain thermal 

energy, Δq ext, which equals Δxtal. [7] 

 

∆𝑞 𝑒𝑥𝑡 ≈ ∆𝑥𝑡𝑎𝑙                               (10) 

 

In addition to this balance, energies enter the system from 

outside, consisting of a kinetic part, ΔK, (flow velocity), and a 

potential part, ΔE, which constitute the gravitational part (of the 

slope of the flow), and also heat is expelled to the outside, ΔQ, 

product of all the processes of irreversible degradation. Figure 2. 

[8]. 

 

 
Figure 2: System´s energies and in its surroundings. 

Source: Authors, (2023). 

 

The general balance is: 

∆𝐸 + ∆𝐾 ≈ ∆𝑄                                 (11) 

 

To represent the evolution of the plotter cloud, one has that 

the variation of the State function, ɸ(t) is. Figure 3: 

 

 
Figure 3: Variation of state Function. 

Source: Authors, (2023). 

 

The first process (Phase 1) is relatively fast and ɸ(t) goes 

from 0 to ɸmax ≈2.16, and the second (Phase 2) is much slower 

and goes from the peak of the state function to its extinction at 

equilibrium. Phase 1 (ascending) corresponds to the "dipole-ion" 

interaction that is associated with solvation, while phase 2 

(descending) corresponds to the "ion-ion" interaction, which 

represents the formation of an "ionic cloud" that surrounds each 

ion, and that is diluted as time passes [9-10]. 

In phase 2, the "ionic clouds" generate an extra volume to 

each particle, which offers an additional effect of resistance by 

viscous friction, called "Einstein-Stokes", which is diluted over 

time by gradual destruction of these clouds. This effect leads to a 

"delay" of the plotter that moves with a velocity, u, less than that 

of the flow, U. 

As the tracer plume advances in the flow, the gradual 

destruction of the aforementioned "ionic clouds" decreases the 

effective radii of the tracer particles, that is, decreasing the viscous 

resistance, and therefore increasing the effective speed of these 

particles. When a point is reached where the "clouds" disappear, 

the plotter particles are coupled in speed to the flow itself. Figure 

4. 

 

 
Figure 4: Retardant effect of the ionic atmosphere by the Einstein-

Stokes effect. 

Source: Authors, (2023). 

 

II.3 THE "EINSTEIN-STOKES" EFFECT AS A REAL 

CAUSE OF "NON-FICKIAN" BIAS IN REAL TRACER 

CONCENTRATION CURVES 

From the Fick Adveccion-Dispersion transport equation, 

(12) the following analysis can be made with respect to the 

pronounced "bias" that is detected in the experimental curves, but 

which does not correspond to this theoretical model, therefore 

called "non-Fickian bias": 

C(𝑥, 𝑡) ≈
𝑀

𝐴𝑦𝑧∗√4𝜋∗𝐸∗𝑡
∗ 𝑒−

(𝑋𝑜−𝑈∗𝑡)2

4∗𝐸∗𝑡                    (12) 

 
While a certain "normal" bias effect of the Galileo 

transformation must appear in this equation, (Black Curve) Figure 

5. 

 

 
Figure 5: Decreasing bias over time of sequential Fickian tracer 

curves in the flow. 

Source: Authors, (2023). 

 

Represented with the difference (Xo-U*t) in the exponential 

quadratic argument, seen by a fixed observer on the banks of the 

channel (Beiser, 1977), the degree of "asymmetry" of this bias in 

the experiments (red curve) [11-12], has been much greater than 

expected, especially in the initial phase of the evolution of the 

tracer in the flow, forming a long "unexplained" tail (Curve A) that 

becomes more symmetrical over time. (Curve B). 

At the same time, several alternatives have been proposed 

to solve this enigma, generally derived from the reactor models of 

chemical engineering. among them the theories ("Aggregated Dead 

zone", ADZ, and Transient storage" TS), which base the existence 
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of non-Fickian "bias" in the operation of the so-called "Dead 

Zones", Those located on the periphery of the channels, perform a 

"trapping" of the particles of the solute, and then release this mass, 

and thus configure a supposed mechanism that delays the tracer. 

[13-14].  

This mechanism operates on the basis of a mass exchange 

between the central zone (Bulk zone) with Concentration "Cb", 

completely mixed, and the peripheral zones, with concentrations 

"Cd", and therefore bases the nature of the anomaly of the "long 

tails" in an exclusive defect of the flow, Figure 6. 

 

 
Figure 6: Geometric model of "Dead Zones". 

Source: Authors, (2023). 

 

The truth is that although they yield correct results, their 

mechanisms suffer from great mathematical complexity, and 

present the problem that the "trapping" of tracer particles in the 

peripheral zone necessarily requires the realization of a certain 

work against the forces of interaction, which the system cannot 

perform because being a "totally irreversible" process, all the 

energy that is delivered from the outside is transformed into heat, 

as the 2nd Principle preaches. The only alternative would be to 

provide this work from the outside, but this is not feasible either 

because it is assumed that the tracer is totally conservative, and 

nothing can hold it back. 

Additionally, the results of the equations of the ADZ and TS 

methods are supported by computer programs (of the Monte Carlo 

type) that greatly obscure their analytical effectiveness. [15-16]. 

These methods give the flow (and not the tracer) the very 

mechanics of scattering with pronounced biases. 

As seen earlier in this article, if the "Einstein-Stokes" effect 

is considered, due to the dependence of the speed of the tracer cloud 

(of its centroid), u, with this effect, it gradually couples its velocity 

with the velocity of the flow, U, until finally all the mass of the 

tracer is transported with this average velocity. It is evident that the 

"non-Fickian bias" is due not to a defect of the flow, but to the 

physico-chemical of the solute in the water, dependent that if on 

the turbulence of the medium. 

 

II.4 THE MECHANISM OF IRREVERSIBILITY: 

BROWNIAN MOTION, AND ARROW OF TIME 

The nature of the motion of solute particles in a flow 

undergoing a concentration gradient (actually of chemical 

potential) has a double facet: At the basic (individual) level each 

particle, "P", has the possibility of going "back" or "forward" 

(contrary arrows), but at the collective level there is a net 

movement of the tracer pen, expanding radially, relative to its 

center of mass Figure 7. 

 

 
Figure 7: Complex movement of the tracer plume. 

Source: Authors, (2023). 

 

It can be seen then that at the same time that there is the 

basic randomness in each step of the Brownian motion (zigzag, 

forward backward), of each particle, there is an "arrow of time" 

(unidirectional) related to the increase in volume of the tracer with 

time. 

This behavior can be put graphically as a tree of bifurcations 

in time and space, indicating that the individual random "decisions" 

of each particle are made in very short, medium and large times 

(distances), and the advance of the whole was getting bigger and 

bigger, Figure 8. 

 

 
Figure 8: Brownian branching tree of the tracer. 

Source: Authors, (2023). 

 

As can be seen, these bifurcations occur on all scales, that 

is, it is a fractal phenomenon, mathematically defined by a "Law of 

powers", also called "Law of self-similarity". For this reason, it can 

be accepted that both the characteristic distance and time, Δ and τ 

of the Brownian jumps in Figure 1, they occur at all scales. 

II.5 RELATION BETWEEN "τ" and "t", 

FEINGENBAUM'S CONSTANT, AND SVEDBERG'S 

CONSTANT 

Since the mid-1960s the foundations of the nonlinear theory 

of phase transitions were established through the technique of 

"renormalization", and from which R. Feingenbaum developed the 

concept of "period doubling" in nonlinear physical systems 
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(monomodal), such as the logistic function of growth [17], arriving 

at the definition of the ratio of "scaling", with a definition of 

geometric progression of the type: 

 

𝛿 = 𝑙𝑖𝑚
λ(n)−λ(n−1)

λ
≈ 4.6692                        (13) 

 

The adjacent values of "λ" are getting closer and with 

shorter branches, progressing geometrically, accumulating 

duplications towards chaos, being strictly an "eigenvalue" of an 

operator.   For this case, values of "λ" correspond to the 

independent variable, which defines the points at which the 

bifurcations occur, and when "λ" is the time, we speak of "period 

doubling". Since Feingenbaum presented his formula, it has been 

proven that this ratio is a universal value of self-equal phenomena 

(fractals) including turbulence and diffusion. 

It can then be proposed that the times involved in the tree of 

Brownian bifurcations will be subject to a pattern of geometric 

progression of the Feingenbaum type. For this it must be 

remembered in principle, that Brownian motions are normally 

distributed, and therefore fulfill the probabilistic function of Gauss.  

In this sense, an arbitrary particle that runs through a Brownian 

system will spend different "residence times", Өσ and Ө∞, 

depending on whether it travels the curve between -σ and +σ, or 

that it travels from -∞ to +∞, as shown in Figure 9. 

 

 
Figure 9: Two residence times of the particle. 

Source: Authors, (2023). 

 

Their ratio is, in terms of notable areas and values of 

concentration [18]: 

 

𝑟 =
𝜃𝜎

𝜃∞
≈

∫ 𝑐(𝑡)𝑑𝑡
+𝜎
−𝜎

<𝐶>

∫ 𝑐(𝑡)𝑑𝑡
+∞
−∞

𝐶𝑝

≈

∫ 𝑐(𝑡)𝑑𝑡
+𝜎
−𝜎

∫ 𝑐(𝑡)𝑑𝑡
+∞
−∞

<𝐶>

𝐶𝑝

≈
0.683

0.997

0.442
≈ 1.54               (14) 

 

This is an average value found by T. Svedberg in his studies 

of the distribution of Brownian particles in the ultracentrifuge, 

being a characteristic value of these distributions. [19] Now, if one 

considers that the Poisson probabilistic distribution is widely used 

in physics for counting "rare" events in infinite succession. [20] 

The count of the arrival time of Brownian particles, as "rare" 

particles (scarce in the flow) can then be performed with this 

distribution, around the mean value "r"≈1.54, and from the 

characteristic time, τ, and n≈∞: 

 

𝑡 ≈ 𝜏 (1 + 1.54 +
1.542

!
+ ⋯ +

1.54𝑛

𝑛!
) ≈ 𝜏 ∗ 4.669          (15) 

 

This result is remarkable, because it shows the intimate 

relationship between Brownian motion (fractal) and the geometric 

progression of Feingenbaum bifurcations, establishing that time in 

the Brownian sequence is an infinite process towards chaos, [21]. 

III. ADVECTION-DISPERSION AS A MACROSCOPIC 

PHENOMENON 

Based on previous theoretical developments, it is proposed 

to analyze different aspects of Adveccion-Dispersion as a 

phenomenon on a human scale, especially the explanation of the 

effect of "bias" in the experimental curves of tracer, and the 

relationship between the different magnitudes in the evolution of 

the conservative solute cloud. 

 

III.1 SCOPE OF THE CALCULATION OF DISTANCE, Δ 

AND VARIANCE, σ, FOR DISPERSION 

As we have seen, the characteristic distance, Δ, has a "local" 

meaning, closer to molecular concepts of Brownian motion, and 

likewise the characteristic time, τ, which of course has an essential 

nature, of passage from one equilibrium point to another 

equilibrium point in the quasi-crystalline lattice of the liquid, [22]. 

These equilibrium points are places of "vacancy" that fill the tracer 

ions, before and after the jump, Figure 10. 

 

 
Figure 10: Jump of the particle, from one hole to another. 

Source: Authors, (2023). 

 

This passage of a particle from one point to another of the 

liquid of the flow is actually made from "energy jumps," from one 

"hole" to another, for which the particle must have sufficient 

energy to cross the "potential barrier", ΔU, which separates one 

"hole" from the other, [23]. That energy needed for that jump is 

called "W," and it's called "activation energy". 

When talking about diffusion in macroscopic domains, the 

"local", Brownian approach is transcended, and the concept of 

Statistical Distribution must be used, in which "local" events add 

to infinity. There operates the probabilistic distribution "Normal" 

(Gaussian), Figure 11. 

 

 
Figure 11: Macro and micro vision in dispersion. 

Source: Authors, (2023). 
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For the macroscopic field the following expression is valid, 

in which due to its general character the Longitudinal transport 

coefficient, E, and the macroscopic time, t: [24]. 

  

𝜎𝑥 ≈ √2 ∗ 𝐸 ∗ 𝑡                                  (16) 

 

It must be compared with the expression "local", equation 

(4), and the relationship between σx, and Δ is: 

 

∆≈
𝜎𝑋

√𝛿
                                         (17) 

 

Now, to estimate the temporal variance, σt, the average 

velocity of the flow must be used. 

 

𝜎𝑡 ≈
𝜎𝑋

𝑈
                                        (18) 

 

Combining equation (4) with the previous ones, from (16) 

to (18), we have: 

 

𝜏 ≈
𝜎𝑡

ɸ∗√𝛿
                                       (19) 

 

In this way we have the definitions that allow to elucidate 

the mechanics of the Dispersion in turbulent natural flows, 

including "local" and general parameters. 

 

III.2 APPLICATION OF THE "COMPLETE MIXTURE" 

CRITERION BASED ON THE "EINSTEIN-STOKES" 

EFFECT 

It is interesting to apply the above criterion in the 

experimental tracer curves. As an exercise it would be calculated 

as follows. 

A.- The value of ɸ for the most initial condition, moments 

after injection, when the solute has been solvated in a first phase of 

the evolution of the tracer pen. This occurs when the macroscopic 

time, "t", is worth tp≈σt, which is the smallest possible value, 

Figure 12. 

 

 
Figure 12: Minimum time in the evolution of the plume. 

Source: Authors, (2023). 

 

In this case. At the very beginning of the evolution of the 

pen, we will have: 

𝜏 ≈
𝑡𝑝

𝛿
≈

𝑡𝑝

ɸ∗√𝛿
                                     (20) 

 

Therefore, at the very beginning of Phase 2: ɸ≈√δ≈2.16 

 

B.- The value of ɸ when there is "Complete mixture", that 

is, when the tracer cloud has achieved a time tp≈4√2*σt, since for 

that circumstance approximately 99.7% of the mass of the solute is 

"free" to participate in transport with a speed equal to that of the 

flow itself, that is, the effect of additional viscous friction has 

practically disappeared. This situation is shown in Figure 13. 

 

 
Figure 13: "Complete mix" condition on tracer. 

Source: Authors, (2023). 

 

If we replace the value of the longitudinal dispersion 

coefficient of equation (8) into Fick's classical equation (12) an 

extension of that equation remains, containing the Flow, the 

Feingenbaum fractal constant, and the State function [25]: 

 

𝐶(𝑥, 𝑡) ≈
𝑀

𝑄∗ɸ∗𝑡∗1.16
∗ 𝑒

−
(𝑡𝑜−𝑡)2

2∗(
1
𝛿

)∗(ɸ∗𝑡)2                   (21) 

 

Note how this new longitudinal tracer transport equation 

includes both the state function, the Feigenbaum’s number and the 

flow, likewise, it is verified that this new equation adequately 

represents the experimental tracer curves with the appropriate bias, 

even under medical conditions close to the time of injection. 

 

IV. VERIFICATION OF THE CALIBRATION OF 

TRACER MEASUREMENT EQUIPMENT  

One of the recurring themes in the experimental work is the 

verification of the calibration of the equipment, that is, to have 

technical criteria that indicate when a team is out of specification 

in terms of its precision and accuracy [26]. 

 

IV.1 ECUACIONES PARA VERIFICAR LA 

CALIBRACION DE EQUIPOS DE FLUORIMETRIA 

The authors have previously proposed formulas to estimate 

ɸ(t), and Cp(t), linked as basic data to perform such verifications. 

As follows: [27]. 

 

𝐶𝑝(𝑡) ≈ 𝛼 ∗ 𝑡𝑝−𝑏                                  (22) 

 

Where "b" is an exponent that is chosen in such a way that 

the equations agree but is usually set around b≈2/3 [28]. 

 

ɸ(𝑡) ≈
𝑀

𝑄∗𝛼∗1.16
∗

1

𝑡(1−𝑏)                             (23) 
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Note that equation (22) actually defines the envelope of 

concentrations at subsequent points in time. Note also, that the 

numerical value of "α" is a common element to magnitudes that 

depend only on time "(horizontal"), as well as magnitudes that 

depend only on the Concentration ("vertical"), so in principle, 

when calculated "independently", and if they converge to the 

expected common result, the Measurement (and therefore the 

Calibration) can be considered adequate. Figure 14. 

 

Figure 14: Independent "horizontal" and "vertical" measurements. 

Source: Authors, (2023). 

 

For a case being studied, ɸ(t) is a "horizontal" magnitude 

(which depends EXCLUSIVELY on time, and is measured 

between the two inflection points A and B, (blue), while Cp(t) is a 

"vertical" magnitude, which depends EXCLUSIVELY on the 

Calibration, and is measured between points C and D, (red), and 

therefore its analysis can yield clues as to whether the calibration 

is correct, or eventually if there is a problem with the sensor.  
Then, if calculated Cp (C-D) with the data of ɸ (A-B) and 

do not match experimentally, it must be investigated if it is a 

problem of CALIBRATION, or if for any other reason the sensor 

is not measuring properly, and it should be relocated. 

 

IV.2 DOCUMENTED EXPERIMENTS ON THE RIVER 

SEVERN, IN THE UNITED KINGDOM[29] IN 1986 WITH 

RHODAMINE WT. ANALYSIS OF THE BEHAVIOR OF 

"α" 

This experimental study of scattering using fluorescent 

tracers was conducted in the River Severn (Wales) by T.C. 

Atkinson, P.M. Davies, and T.M. L. Wingley of the United 

Kingdom (Davis et al, 2000). For the original study, tracer 

measurements are made over a long stretch of 14 kilometers 

(between Llanidloes and Caersws) using six gauging points 

(stations A to G) placed one behind the other at this distance.   

The tracer used is Rhodamine WT 20% (M≈1kg in 5 Liters, 

H20 distilled). The area of the mean cross section is Ayz≈12.72 m2, 

the average velocity of flow is <U>≈0.70 m/s, so the average 

estimated flow rate is <Q>≈7.54 m3/s. Appearance of the channel 

in Caersws is shown in Figure 15. 

 

 
Figure 15: Aspects of the River Severn (Caersws, Wales). 

Source: Authors, (2023). 

The experimental curves of Rhodamine WT of Cp(tp) for 

the different distances are shown. Figure 16. 

 

 
Figure 16: Distribution of Cp vs tp in the river Severn. 

Source: Authors, (2023). 

 
The following Table 1 condenses the basic data of these 7 

experiments with RWT, which are plotted with a potential 

experimental modeling of EXCEL in Figure 17. 

Table 1: Main data on 7 tracer experiments in River Severn. 
 A B C D E F G 

Cp 

(Ppb) 

1050 225 110 58 34.5 21 20 

tp (s) 300 1740 4140 8880 13440 18120 23533 

X (m) 210 1175 2875 5275 7775 10275 13775 

Source: Authors, (2023). 

 

 
Figure 17: Cp vs tp, Severn River, with 1kg RWT injection. 

Source: Authors, (2023). 

 

The potential relationship in Excel of the Cp(tp) values is: 

 

𝐶𝑝(𝑡𝑝) ≈ 197284 ∗ 𝑡𝑝−0.913                       (24) 
 

This means that approximately α≈197284, for the RWT, 

and the parameter "b" is b≈0.913. 

 

To determine the state function, ɸ (tp), equation (23) is 

used: 

 

Cp = 197284 * tp -0,913

R² = 0,9996
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ɸ ≈
109 (𝜇𝑔)

7540(
𝐿

𝑠
)∗197284∗1.16

∗  𝑡𝑝−0.087 ≈ 0.58 ∗ 𝑡𝑝−0.087        (25) 

 

The resulting values of ɸ (tp) are shown in the following 

Table 2: 

Table 2: Resulting values of equation (25). 
Site tp (s) ɸ 
A 300 0.35 

B 1740 0.30 

C 4140 0.28 

D 8880 0.263 

E 13440 0.254 

F 18120 0.247 

G 23533 0.242 

Source: Authors, (2023). 

 

Now, using equation (21) for the peak concentration as a 

function of ɸ, the Cp values are calculated for the curves from A to 

G: 

 

𝐶𝑝 ≈
𝑀

ɸ∗𝑄∗𝑡𝑝∗1.16
                                  (26) 

 

The following data are then left, Table 3: 

 

Table 3: Comparison of measured vs calculated values of Cp(t) in 

each site. 

 A B C D E F G 

Cp (Ppb) 

measured 

1050 225 110 58 34.5. 21 20 

Cp (Ppb) 

calculated 

1080 217 95.5 49.0 33.5 25.5 20.1 

Δ% 3% 4% 16% 18% 3% 21% 0.5% 

Source: Authors, (2023). 

 

With these results within compatible error percentages as 

acceptable for hydraulics, it is shown that the calibration of the 

instruments in the tracer measurements, are compatible in this case 

for RWT in the Welsh channel. 

 

V. CONCLUSIONS 

1. In this article it is noted that diffusion as a phenomenon 

of random diffraction of tracer particles, corresponds to "jumps" 

between "gaps" (vacancies) in the semi-crystalline structure of the 

liquid, according to the model of J. Frenkel, but that these jumps 

occur at all scales, in a fractal way, and regulated by the sequence 

of bifurcations towards the chaotic state, according to 

Feigenbaum’s model.   

2. The dispersive evolution of tracers in turbulent flows, 

from the molecular point of view, can be seen as a process in two 

phases that depend on the tracer itself and not so much on the flow 

itself, unlike what is maintained by contemporary models that 

propose a trapping of the tracer in the peripheral zone (ADZ and 

TS) with thermodynamic questions. 

A first phase corresponds to the "ion-dipole" interaction of 

the solute and water, which destroys the solid configuration of the 

tracer. And a second phase dependent on the "ion-ion" interaction, 

in which the "ionic clouds" of the electrolyte itself, slow down its 

movement, thanks to the "Einstein-Stokes" effect, which adds 

additional viscous friction, delaying the σtracer cloud of the flow 

itself. This mechanism directly explains the "non-Fickian bias" of 

experimental curves. 

3. Based on the existence of a state function, ɸ(t), these 

interactions can be explained, from the definition of a relationship 

between "residence times" of the plotter particles, for a Normal 

distribution, covering the Gaussian curve only between -σ and +σ, 

and another between -∞ and +∞, which leads to define the 

Brownian process in terms of the Svedberg constant, a≈1.54, which 

connects to Feigenbaum’s constant. 

4. Several equations are developed, based on "ɸ" and "α", a 

factor that relates "horizontal" and "vertical" magnitudes in the 

dynamics of the tracers, and therefore allows to analyze the 

reliability of the measurements, since if they are calculated 

separately, and if they coincide appropriately, they give a vision of 

the goodness of the calibration of the measurements. 

5. These equations are applied to Fluorimetric tracer (RWT) 

measurements in Wales, and the results of which are documented 

with great precision in articles reviewed in the literature. The 

results are satisfactory, and allow to open an interesting door to the 

analysis of Water Quality studies. 
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