
Journal of Engineering and Technology for Industrial Applications

Manaus, v.9 n.40, p. 4-9. Mar/Apr, 2023.
DOI: https://doi.org/10.5935/jetia.v9i40.849

RESEARCH ARTICLE OPEN ACCESS

ISSN ONLINE: 2447-0228

Journal homepage: www.itegam-jetia.org

EXPLANATION OF AN INNOVATIVE PROGRAMMING APPROACH TO

CREATE A PROGRESSIVE TWO-DIMENSIONAL DATA FILE OF THREE

INTER-DEPENDANT VARIABLES IN A FULLY AUTOMATED DATA

ACQUISITION SYSTEM

Avijit Das*1

1 Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Kolkata - 700064, West Bengal, India.

1 http://orcid.org/0000-0001-5754-5245

Email *avijit.das@saha.ac.in

ARTICLE INFO ABSTRACT

Article History

Received: March 23th, 2023

Accepted: April 26th, 2023

Published: April 29th, 2023

This technical document explains a programming model for recording data of a special case

in a comma-separated (.csv) file. Generally, in any data acquisition system storing of data

increments in one direction; that is in rows. In this article a different programming concept

has been illustrated for an automated application to store data in two dimensions; that not

only expands in rows but also in columns during the progress of next all successive data

acquisition loops for the same set of parameters with a new updated value of the third

variable. The effectiveness of the program me has been verified based on a practical proto

type test made by monitoring and recording several sets of resultant values of DC current at

different values of applied DC voltage and had performed these tests consecutively at

different values of temperature. All these acquired data sets were saved in a single comma

separated (.csv) data file. The full process can be completed in a single test run and most

importantly, without any intervention from a human being. By following the logic and

method demonstrated, a similar application could be developed also by other text-based

programming languages like Java or Python.

Keywords:

LabVIEW,

2D array,

Data acquisition,

Automation,

CSV file.

Copyright ©2023 by authors and Galileo Institute of Technology and Education of the Amazon (ITEGAM). This work is licensed

under the Creative Commons Attribution International License (CC BY 4.0).

I. INTRODUCTION

This article describes a fully automated data acquisition

programming process in LabVIEW to implement a non-

conventional idea of creating a comma-separated data file. Here

an uncommon programming method demonstrates how several

sequential measurement cycles of a set of variables against

variation of a third variable can be saved in a data file without any

human intervention. In general, in the case of any data acquisition

system in a scientific or engineering laboratory, we normally

measure and collect data from one or more variables, that vary

against another common and periodically changing variables, like

time, voltage or current, temperature etc. Such data collection

cycles continue to add on rows of data one after another, which

may be of two or more columns depending on the number of

parameters under assessment. But sometimes a specific situation

demands creating and saving sets of data by monitoring of the

first variable against periodic variation of the second variable at

different values of a third variable. One such a very common

example is the output characteristic of an NPN transistor at

common-emitter configuration, where individual sets of data are

collected by monitoring of collector current (IC) against linear

variation of collector-emitter voltage (VCE) at different values of

base current (IB).

Conventionally, this can easily be done by performing

several tests runs at different values of the third variable (like, IB)

and manually combining all the results in an excel sheet. But in a

completely automated data acquisition process suggested in this

article without any attention from a human being, the automatic

creation of a new column on the right side of the latest one is

done. This process requires an additional programming trick, and

that is the goal of writing this article. A sample example has been

shown in Table 1 to illustrate my programming idea in an

http://orcid.org/0000-0001-5754-5245
mailto:avijit.das@saha.ac.in

Das, ITEGAM-JETIA, Manaus, v.9 n.40, p. 4-9, Mar/Apr, 2022.

apprehensible way. Where the initial set of measurements of

current (first variable) in a load with linear variation of voltage

(second variable) records at some temperature T1. The same

acquisition cycles repeat with different values of temperature,

such as T2, T3, T4, etc and all the sets of data is being saved in a

single .csv file. In this document, LabVIEW graphical

programming language (version 8.0 on Windows XP OS) has

been used to explain the procedure [1]. But the same

methodology can be followed for other popular high-level

programming languages like C++, Java or Python.

Table 1: an example to show how a .csv data file creates different sets of data of variable-2 (I) against variable-1 (V) at different values

of the third variable (T).

Loops of several cycles

Loop 1 Loop 2 Loop 3 Loop 4 Loops 5 to 8 Loop 9 Loop 10

T1 T2 T3 T4 T5 to T8 T9 T10

A
cq

u
is

it
io

n

C
y

cl
es

V1 I1 I11 I21 I31 I81 I91

V2 I 2 I12 I22 I32 I82 I92

V3 I 3 I13 I23 I33 I83 I93

V4 to V9

V10 I10 I20 I30 I40 I90 I100

Handles by

Sub_Prog_1.vi

Handles by

Sub_Prog_2.vi

Source: Author, (2023).

II. PROGRAMME DESIGN METHOD

The programming model has been designed to handle three

variables that are interlinked with each other. A single data

acquisition cycle consists of monitoring the values of variable-2

(Current, abbreviated as I) against stepwise increment of variable-

1 (Voltage, abbreviated as V). Several such sets of acquisition

cycles had been performed at different values of the third variable

(Temperature, abbreviated as T) and designated as acquisition

loops.

Several graphical programme files had been developed

(listed in Table-2) to demonstrate the process. Among these, the

main file is Main_Prog_GUI.vi which acts as the user interface

where data file name and other parameters can be entered in

designated text boxes as well as acquired data is being displayed

(Figure 1). Graphical interface for Sub_Prog_1.vi and

Sub_Prog_2.vi was not compulsory to build, but I had made it to

check the variables visually to understand the progress. An in-

built 'File Dialog' VI (virtual instrument used in LabVIEW

programming) that displays a dialog box, where the user can

specify a file name with a directory to save the data file with an

Open/Create/Replace File option. The total programme

architecture has been shown graphically in Figure 2. Different

parts of the main or parent programme file have been marked with

distinguished part numbers to help the readers to identify the

segment of the programme under discussion.

In this programme, a 'Flat Sequence Structure' (marked as

FSS-1 in Figure 2) executes statements sequentially (P2, P3, and

P4) one after another within a main programme 'While Loop'. In

the first sub-diagram or frame (P2) of this FSS-1, another internal

'Flat Sequence Structure' (FSS-2) executes eleven times within a

'For Loop' (For Loop 1) and creates eleven numbers of rows in

the first data file. In its first frame (P2.1A), voltage increases to

its next value and calls Sub_Prog_3.vi. Sub_Prog_3 sends a set of

SCPI commands to the Keithley meter via GPIB interface method

to source this voltage and measure the corresponding current.

Figure 1: Screenshot of three graphical interface files among them, Main_Prog_GUI.vi control the parameters, and the other two

display the data while acquisition is in progress.

Source: Author, (2023).

Page 5

Das, ITEGAM-JETIA, Manaus, v.9 n.40, p. 4-9, Mar/Apr, 2022.

These parameters are then sent to Sub_Prog_1 to store

eleven rows of data with five columns. It saves the first

spreadsheet data file (DataFile_1.csv) using an in-built VI file

called 'Write To Spreadsheet File.vi' with serial numbers, date,

elapsed time in second, the voltage applied (second variable) and

noted current (first variable) - all are separated by comma (Figure

3). All these parameters were in string format and created rows of

data with 'Build Array' in-built function [2]. Every sequential call

of this VI file (Sub_Prog_1.vi) from the programme-part P2.1A

during each cycle within the For Loop-1 adds new rows of data

with five columns. A cycle delay was added in frame-2 (P2.1B)

of FSS-2 as desired by the user. Once the first round of data

collection is made at an initial value of the third variable, this VI

file (Sub_Prog_1.vi) is never invoked any further.

Table 2: List of project files and the functions performed by them.

Project file names

mentioned in this article
Function / Purpose of the programme code

Main_Prog_GUI.vi

* Creates the main graphical user interface (GUI). It is likely to

 be modified according to the need.

* It shows all necessary parameters in text boxes and clickable

 buttons.

Sub_Prog_1.vi * Creates first spreadsheet file named as DataFile_1.csv

Sub_Prog_2.vi

* Creates a new data file and manipulates the old file name to

 generate a new data file name.

* Reads latest spreadsheet file row by row and adds new data at

 the end of each row with a comma added afterward,

* And saves all data sets in the newly created spreadsheet file.

Sub_Prog_3.vi
* Communicates with Keithley 2450 via GPIB Port.

* Sources some voltage and reads output current from the DUT.

Sub_Prog_4.vi * Read the current temperature from the Autonics PID controller

Sub_Prog_5.vi * Send new Set Point (SP) to the Autonics PID controller.

Sub_Prog_6.vi * Set Auto-Tune On or Off for the Autonics PID controller.9

Source: Author, (2023).

Figure 2: Block diagram of the programme Main_Prog_GUI.vi that revokes other two sub-programme files from 'For Loop 1' and 'For

Loop 2'.

Source: Author, (2023).

Figure 3: Screenshot of the data file (DataFile_1.csv) displayed within the Excel sheet after completing the first round of data

acquisition in Loop-1 by the programme Sub_Prog_1.vi.

Source: Author, (2023).

Page 6

Das, ITEGAM-JETIA, Manaus, v.9 n.40, p. 4-9, Mar/Apr, 2022.

Time is incremented at every 3 seconds and voltage is

incremented by 0.1v at each step starting from zero to one volt.

Column E is showing the resultant current.

In the next frame P3, the main programme calls another

two sub-programmes Sub_Prog_4.vi and Sub_Prog_5.vi which

communicate with the PID temperature controller from a USB

port using the RS-485 method. A USB-to-RS485 converter was

used for this purpose. Sub_Prog_4.vi reads the current

temperature (PV) and Sub_Prog_5.vi writes a new set point (SP)

of temperature to the controller. Instruction codes within these

two sequences part P2 and P3 is executed only once and never

called any further till the end of the programme.

In the third frame (P4) of FSS-1, programme performs the

most important and little complex processes. In this part of the

programme P4, another 'Flat Sequence Structure' (FSS-3 in

Figure 2) executes nine times within a conditional 'While Loop'

(While Loop 2). This number is restricted exclusively for my

programme only and has been discussed later. All programme

sequences inside this recursive 'While Loop' repeats depending

upon the number of data acquisition loops wanted by the

programmer. Each such acquisition loop creates a new data file

with an added data column.

Within the first frame (P4.1) of the Flat Sequence

Structure (FSS-3) Sub_Prog_3.vi is called to reset the source

meter voltage to zero and prepare it to start a new measurement

cycle from the initial stage. Sub_Prog_4.vi is also called from this

part to read the current process temperature.

In the second part (P4.2) of FSS-3 programme reads the

first data file name and manipulates it to generate a new file name

depending upon the serial number of the data column it is going

to create. It reads the initial data file name string (i.e.

DataFile_1.csv) and to determine a new file name, it subtracts the

last five characters from the file name string using 'String Subset'

function.

With this character subtraction, the file name string

becomes, "DataFile_"

It takes the current column number and adds the remaining

string with this column number and .csv extension ("N.csv",

where N is the current column or plot number).

While recording data in the second column, the file name

becomes, "DataFile_" + "2.csv" = "DataFile_2.csv".

A 'For Loop' (named as For Loop 2 in Figure 2) executes

eleven times. Inside this For Loop, another set of programme

instructions executes sequentially inside FSS-4. Inside the first

frame (P4.2A) of FSS-4, Sub_Prog_3.vi is called to send

commands to the Keithley sourcemeter to measure the load

current against the application of some amount of source voltage

incremented from its previous value. In the next frame, (P4.2B)

Sub_prog_2.vi is called, which performs the addition of recent

data (that is load current in our case) to a new and fresh data

column on the right side of the previous column. Figure 4 can

explain the process clearly. The programme reads each row as a

1D Array from the previous and latest spreadsheet file and adds

the recent value of variable-1 (i.e. Current, I31) as an array

element using the in-built function 'Insert into Array'. The sub-

programme file ‘Sub_Prog_2.vi’ is called eleven times from the

'For Loop-2' to read all the rows sequentially as a 1-D array and

add the newly acquired data at its end as a new array element.

Within part P4 the 'While Loop-2' iterates maximum of nine times

to create total ten (1+9 = 10) data collection loops. The reason for

this number restriction has been discussed in the section

'Conclusion'. The output 1D array from the 'Insert into Array'

function writes into the new spreadsheet file that has been

generated with a new file name (i.e. DataFile_4.csv in Figure 4)

using the in-built VI file 'Write To Spreadsheet File.vi'.

Figure 4: Reading of 1D array from a single row of the previous data file (DataFile_3.csv) and appending of recently collected latest

data to it that saves in a newly created file DataFile_4.csv.

Source: Author, (2023).

Page 7

Das, ITEGAM-JETIA, Manaus, v.9 n.40, p. 4-9, Mar/Apr, 2022.

As a next step of the 'Sequential Structure' within the

'While Loop', in part P4.3 code instructs the PID controller to

change the third variable. Thus it increments the temperature from

T2 to T3, waits for 2 min. to allow the temperature to be stable at

its new value, resets the voltage to zero (V1) again to initiate a

new data collection cycle in the next loop, and repeats the same

process already defined. One such complete programme loop

creates and saves another data files on the hard drive. The number

of columns of variable-2 is created in a data file depending upon

the number of programme loops iterates. Figure 5 shows the excel

sheet of DataFile_10.csv after ten iteration loops.

Figure 5: Screenshot of the data file (DataFile_10.csv) displayed within Excel sheet after completing tenth round of data acquisition in

Loop-10 by the programme Sub_Prog_2.vi.

Source: Author, (2023).

IV. VERIFICATION OF THE CODE WITH A COUPLE OF

PRACTICAL DATA ACQUISITION PROCESSES

The effectiveness of the programming process has been

verified by two prototype data acquisition projects those are very

common in a scientific or engineering laboratory. The first one

was Current versus Voltage (I-V) characteristic of a Silicon diode

(1N4007) against variation of temperature and in second case, the

device under test (DUT) was a 470 ohm quarter watt resistance.

A Keithley Source meter (Model 2450) was used to

generate voltage ranges from zero to 1v DC in the case of the

diode and zero to 10v DC while the DUT was the resistance [3,4].

The source meter was interfaced with the desktop PC via GPIB

interface. A PCI GPIB card (Make: National Instruments, USA)

was used for this purpose. The front-panel connections are safety

banana-type jacks.

To heat the copper sample holder, two 40 watt, and 12v

cartridge heaters were used with a small size 3x2 mm2 PT-100

RTD Sensor (Make: Hayashi Denko, Japan, Model: CRZ-2005-

100-A-1) to sense the temperature of the copper block (Figure 6).

A PID temperature controller (Make: Autonics, Model: TK4S-

T4CR) with RS-485 interface facility was used to read, display

and control the temperature with the help of an external relay

[5,6]. A USB-to-RS485 converter (Model: SCM-US481) allows

the device to interface with the PC through one of its USB port

and it behaves just like a COM Port (Figure 7) [7].

Figure 6: (a) Keithley Model-2450 Source Meter and heater power supply integrated with an Autonics TK series temperature controller

connected via a USB-to-RS-485 converter. (b) View of the copper-made heating plate mounted with two cartridge heaters, one PT-100

sensor, and a common silicon diode IN-4007 as the device under test (DUT).

Source: Author, (2023).

Page 8

Das, ITEGAM-JETIA, Manaus, v.9 n.40, p. 4-9, Mar/Apr, 2022.

Figure 7. V-I curve of the Si diode plotted from DataFile_10.csv at different plate temperatures.

Source: Author, (2023).

A main graphical user interface file (Main_Prog_GUI.vi)

was created to select the data file name and folder, range and

increment value of applied DC voltage, display of monitored

current, increment value of temperature at every cycle, etc.

Several other LabVIEW vi files were prepared those were called

from the main graphical user interface (GUI) file, and performed

like subprograms of C++ or Java. One such VI file

(Sub_Prog_3.vi) was used to source voltage and measure current

by the Keithley source meter. Other VI files perform several other

tasks like sending temperature set point to the Autonics controller,

reading current process value (PV), setting the auto-tune facility

on or off, etc.

V. DISCUSSION - RELEVANCE AND IMPORTANCE

A prototype test was performed to monitor the temperature

dependency of a Silicon diode PN junction. The purpose of this

sample study was to construct and develop an effective, efficient,

and fully automated data acquisition system several independent

measurement cycles can be performed automatically in a single

test run without any human intervention.

VI. CONCLUSIONS

This software model has a few limitations that can be

attended in the future for further improvement. I have kept the

total number of acquisition loops within ten to avoid a problem

during assigning new data file names when the number exceeds

nine. If the file number becomes two digits i.e. more than nine

then while manipulating the new file name by subtracting the last

five characters (N.csv) from the end, it generates an erroneous file

name. Interested programmers may focus on this point to avoid

this limitation with improved logic.

The values of the third parameter (i.e. Temperature in my

program me) are never recorded in the data file. It may be

recorded at the end of the last row or prior to the first row to

avoid ambiguity. Column titles are also not printed on the

topmost row to identify the type of data for each column. That

results in a kind of incompleteness in the data file. Both these

drawbacks can be addressed in a future version either in

LabVIEW or other programming languages.

VII. AUTHOR’S CONTRIBUTION

Conceptualization: Avijit Das.

Methodology: Avijit Das.

Investigation: Avijit Das.

Discussion of results: Avijit Das.

Writing – Original Draft: Avijit Das.

Writing – Review and Editing: Avijit Das.

Resources: Avijit Das.

Supervision: Avijit Das.

Approval of the final text: Avijit Das.

VII. ACKNOWLEDGMENTS

I am grateful to Mr. Subhadip Chowdhury, Senior

Research Fellow of our institute, who generated the graphs from

my data files and helped me to present it in my manuscript.

VIII. REFERENCES

[1] LabVIEW User Manual, National Instruments Corp.

[2] LabVIEW Arrays and Clusters Explained. Available in:
https://www.ni.com/en-in/support/documentation/supplemental/08/labview-arrays-

and-clusters-explained.html

[3] Keithley Model 2450 User Manual, Tektronix Inc. Available in:

https://download.tek.com/manual/2450-900-01E_Aug_2019_User.pdf

[4] Keithley Model 2450 Reference Manual, Tektronix Inc. Available in:

https://www.tek.com/en/keithley-source-measure-units/keithley-smu-2400-series-

sourcemeter-manual/model-2450-interactive-sou

[5] Autonics TK series PID Controller communication. Manual, Available in:

https://www.autonics.com/

[6] Autonics TK series PID Controller user manual. Available in:

https://autonics.se/wp-content/uploads/2018/03/tk_en_manual_170829_hw.pdf

[7] Wikipedia – Modbus. Available in: https://en.wikipedia.org/wiki/Modbus

[8] What is the Modbus Protocol & How Does It Work?, National Instruments

Corp. Available in: https://www.ni.com/en-in/innovations/white-papers/14/the-

modbus-protocol-in-depth.html

Page 9

