
Journal of Engineering and Technology for Industrial Applications 
 

 

Manaus, v.9 n.42, p. 11-15. Jul/Aug, 2023 

DOI: https://doi.org/10.5935/jetia.v9i42.867 
 

 

RESEARCH ARTICLE                                                                                                                                             OPEN ACCESS 

 

 

ISSN ONLINE: 2447-0228  

Journal homepage: www.itegam-jetia.org 

 

AN EVALUATIVE ANALYSIS OF PARTICLE SWARM OPTIMIZATION FOR 

REINFORCEMENT LEARNING IN PENDULUM TASK 

Hidehiko Okada*1 

1 Department of Intelligent Systems, Kyoto Sangyo University, Kyoto, Japan. 

1 http://orcid.org/0000-0001-7092-4979  

Email: *hidehiko@cc.kyoto-su.ac.jp  

ARTICLE INFO  ABSTRACT 

Article History 

Received: July 01th, 2023 

Revised: August 20th, 2023 

Accepted: August 28th, 2023 

Published: August 31th, 2023 
 

 
 

Applying swarm intelligence algorithms to reinforcement learning of neural networks is 

practical because they do not rely on gradients. Particle swarm optimization (PSO) is a 

representatives of swarm algorithms. In this paper, the author experimentally evaluates the 

effectiveness of PSO in the reinforcement learning of multilayer perceptrons (MLPs), using 

a pendulum control task. Experimental results demonstrated the successful training of an 

MLP with 8 hidden units, enabling rapid uprighting of the pendulum. Notably, it was found 

that increasing the population size rather than the number of iterations allowed PSO to 

discover better solutions. In PSO, increasing the population size promotes global exploration 

in the early stages, while increasing the number of iterations enhances local exploitation in 

the later stages. Based on the results of this experiment, it is evident that in this learning 

task, early-stage global exploration is more important. 
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I. INTRODUCTION 

In supervised learning, neural networks can be optimized 

using gradient-based methods with labeled training data. This 

involves computing the difference between neural network’s 

outputs and their respective target values, and then adjusting 

connection weights and unit biases through backpropagation of 

errors. However, reinforcement learning tasks require the use of 

gradient-free training algorithms since labeled training data are not 

available. Applying swarm intelligence algorithms [1,2] to 

reinforcement learning of neural networks is practical because they 

do not rely on gradients. On the other hand, Q-learning [3,4] is a 

popular reinforcement learning method that selects subsequent 

actions based on the reward r(t) for action a(t) in state s(t) at each 

time step t. Unlike Q-learning, swarm algorithms do not require the 

calculation of r(t) at every step, but instead, evaluate the reward 

after the completion of an episode. This feature of swarm 

algorithms relieves the practitioner from the burden of designing 

appropriate rewards for every combination of states and actions. 

Particle swarm optimization (PSO) [5,6], ant colony 

optimization (ACO) [7,8], and artificial bee colony (ABC) [9,10] 

are representative swarm algorithms. However, to effectively use 

these algorithms for training neural networks, it is essential to 

select appropriate variations and design their hyperparameters 

carefully, as they have a significant impact on performance. In this 

paper, the author experimentally evaluates the effectiveness of PSO 

in the reinforcement learning of multilayer perceptrons, using a 

pendulum control task. 

 

II. PENDULUM TASK 

As a reinforcement learning task, this study utilizes the 

pendulum task available in the OpenAI Gym1,2. The goal of the task 

is to maintain the pendulum in an upright position by applying 

torque. The system is depicted in Fig. 1, which shows a screenshot 

of the task, with the round arrow indicating the direction and 

magnitude of the torque applied by the controller. The study aims 

to provide insights into the performance of PSO on this task. 

1. 

2. 

https://www.gymlibrary.dev/environments/classic_control/pendulum/ 

https://github.com/openai/gym/blob/master/gym/envs/classic_control/pendulu
m.py 

http://orcid.org/0000-0001-7092-4979
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The author modified the system such that the task starts with 

the pendulum in a position opposite to the desired outcome, as 

shown in Fig. 2(a). The objective is to manipulate the pendulum to 

reach and maintain the state depicted in Fig. 2(b). Additionally, the 

author adjusts the system to begin the control task with zero angular 

velocity for the pendulum.  

 

 
Figure 1: Pendulum system. 

Source: OpenAI Gym, (2023).  
https://www.gymlibrary.dev/_images/pendulum.gif 

 

 
Figure 2: Initial and goal states. 

Source: Author, (2023). 

 

An episode in the simulation consists of 200 time steps, 

during which the controller observes the current state and 

determines the corresponding action. The state is characterized by 

three values: the cosine and sine of the angle (θ), and the angular 

velocity, which are within the ranges of -1.0 to 1.0 and -8.0 to 8.0, 

respectively. The action taken by the controller is the torque 

applied to the pendulum, within the range of -2.0 to 2.0. The 

constant torque of 2.0 (or -2.0) is not sufficient to bring the 

pendulum from its initial position to the goal position: the 

controller must actively swing the pendulum, leveraging gravity to 

increase the angular velocity and allow it to overcome the obstacle. 

In this study, the author defines the fitness of a controller as 

follows:  

 

Fitness =
1

200
∑ (1 − Error(t))

200

t=1
, (1) 

  

Error(t) =
|θ(t)|

𝜋
. (2) 

 

θ(t) denotes the angular at time step t. Initially, the error is 

calculated as Error(t)=|±π|/π=1, indicating that the pendulum is in 

a position opposite to the desired goal state. As the pendulum 

moves towards the goal state, the error decreases. At the goal state, 

the error is 0/π=0, indicating that the pendulum is upright. 

The fitness score rewards the controller more for achieving 

the desired goal state more quickly and maintaining it longer, i.e., 

a higher fitness score is obtained when the error is lower for more 

time steps. 

 

III. MULTILAYER PERCEPTRON 

This study adopts a multilayer perceptron (MLP) [11] as the 

pendulum controller. The MLP is a three-layered feedforward 

neural network. The topology is illustrated in Fig. 3, while the 

feedforward computations are shown in (3)-(7).  

 

Input layer:  

𝑜𝑢𝑡𝑖
(1)

= 𝑥𝑖 , 𝑖 = 1,2, … , 𝑁 (3) 

 

 
Figure 3: Topology of the MLP. 

Source: Author, (2023). 

 

Hidden layer:  

𝑖𝑛𝑗
(2)

= 𝜃𝑗
(2)

+ ∑ 𝑤𝑖,𝑗
(2)

𝑖
𝑜𝑢𝑡𝑖

(1)
, 𝑗 = 1,2, … , 𝑀 (4) 

  

𝑜𝑢𝑡𝑗
(2)

= ℎ(𝑖𝑛𝑗
(2)

) , 𝑗 = 1,2, … , 𝑀 (5) 

 

Output layer:  

𝑖𝑛𝑘
(3)

= 𝜃𝑘
(3)

+ ∑ 𝑤𝑗,𝑘
(3)

𝑗
𝑜𝑢𝑡𝑗

(2)
, 𝑘 = 1,2, … , 𝐿 (6) 

  

𝑜𝑢𝑡𝑘
(3)

= ℎ(𝑖𝑛𝑘
(3)

), 𝑘 = 1,2, … , 𝐿 (7) 

 

The activation function denoted as h() is the hyperbolic 

tangent function whose shape is illustrated in Fig. 4. This activation 

function is a widely used in neural networks due to its ability to 

produce a smooth non-linear output that ranges from -1.0 to 1.0. 

 

 
Figure 4: Hyperbolic tangent function. 

Source: Author, (2023). 
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The MLP plays the role of a policy function where the 

action at time t is a function of the observation at time t, i.e., 

action(t) = F(observation(t)). The input layer of the MLP comprises 

three units that receive the values of cos(θ), sin(θ), and the angular 

velocity. To ensure that the input values are within the range of [-

1.0, 1.0], the angular velocity is normalized by dividing it by 8.0. 

The output layer of the MLP consists of one unit, which outputs the 

torque applied to the pendulum. To ensure that the torque falls 

within the range of [-2.0, 2.0], the output value is scaled by 

multiplying it by 2.0.  

 

IV. TRAINING OF MLPS USING PSO 

The MLP illustrated in Fig. 3 comprises M + L units and 

NM + ML connections, giving a total of D = M + L + NM + ML 

parameters. To train the MLP, the author formulates the problem 

as the optimization of a D-dimensional real-valued vector, 𝒙 =
(𝑥1, 𝑥2, . . . , 𝑥D) , where each 𝑥𝑖  corresponds to one of the D 

parameters in the MLP. The feedforward computation, as described 

in (3)-(7), involves applying the values of 𝒙 to their corresponding 

connection weights or unit biases. 

In this study, PSO is applied to optimize the D-dimensional 

vector 𝒙. PSO represents one of the swarm intelligence algorithms, 

which are characterized by being population-based stochastic 

search algorithms. PSO utilize 𝒙 as a particle position in the D-

dimensional search space. Fig. 5 shows the process of training 

neural networks by PSO.  

 

Step1: 

Step2: 

Step3: 

Step4: 

Step5: 

Step6: 

Step7: 

Initialization 

Evaluation 

Conditional Termination 

Updates of Pbests and Gbest 

Updates of Particle Velocities 

Updates of Particle Positions 

Goto Step2 

Figure 5: The process of particle swarm optimization. 

Source: Author, (2023). 

 

In Step 1, vectors 𝒙1, 𝒙2, … , 𝒙S  are initialized randomly, 

where S represents the swarm size (the number of particles in the 

swarm). 𝒙𝑠 denotes the position vector of the s-th particle in the D-

dimensional search space, i.e., 𝒙𝑠 = (𝑥1
𝑠, 𝑥2

𝑠, … , 𝑥D
𝑠 ), 𝑠 = 1,2, … , S. 

The swarm size is predetermined. In Step 2, the fitness of each 

particle is evaluated using (1). In Step 3, the loop of the swarm 

process is terminated when a specific termination condition is 

satisfied. In this study, the loop is terminated when the loop counter 

reaches a predetermined value. In Step 4, the personal best (Pbest) 

of each particle and the global best (Gbest) in the swarm are 

updated according to their fitness scores. The Pbest of a particle 

represents the position vector that has achieved the highest fitness 

score up to the current iteration for that specific particle. On the 

other hand, the Gbest represents the position vector with the highest 

fitness score among all the Pbests within the population. Let us 

denote each Pbest as 𝒑𝑠 and the Gbest as 𝒈, respectively. In Step 

5, the velocity of each particle is updated. Let 𝑣𝑠 = (𝑣1
𝑠, 𝑣1

𝑠 , … , 𝑣D
𝑠 ) 

represents the velocity for the s-th particle. The velocity 𝑣𝑠  is 

updated by (8).  

 

𝒗𝑠 ← 𝑤𝒗𝑠 + 𝑐𝑝𝑟𝑝(𝒑𝑠 − 𝒙𝑠) + 𝑐𝑔𝑟𝑔(𝒈 − 𝒙𝑠) (8) 

 

𝑤  denotes the inertia weight, while 𝑐𝑝  and 𝑐𝑔  are coefficients. 

Additionally, 𝑟𝑝  and 𝑟𝑔  are uniformly distributed random values 

within the interval [0,1]. In Step 6, each particle moves in the 

search space according to its velocity. The position vector 𝒙𝑠  is 

updated by (9). 

 

𝒙𝑠 ← 𝒙𝑠 + 𝒗𝑠 (9) 

 

V. EXPERIMENT 

The MLP’s capability to model nonlinear functions is 

influenced by the number of hidden units. Optimizing a smaller 

MLP using swarm algorithms is facilitated by a reduced number of 

variables (the shorter length of position vector 𝒙). However, this 

reduction in hidden units may impede the MLP’s capability to 

effectively control the pendulum. Conversely, a larger MLP is 

more capable of successfully controlling the pendulum, but 

optimizing it becomes more challenging due to the longer position 

vector 𝒙 . Moreover, implementing a larger MLP requires 

additional computational resources. Therefore, striking a balance 

between these trade-offs is essential for determining the optimal 

number of hidden units for the given task. This study explores three 

different configurations of hidden units: 8, 16, and 32. PSO 

hyperparameter values were determined through empirical 

analyses, as illustrated in Table 1. The number of iterations was set 

to 500 or 100, corresponding to swarm sizes of 10 and 50, 

respectively. Consequently, the total number of fitness evaluations 

remained constant at 50,000 (equal to the product of iteration and 

swarm size). It is important to choose an appropriate search space 

because the values in 𝒙𝑠 are utilized as connection weights or unit 

biases in the neural network. The range should neither be 

excessively large nor small. In this experiment, the search space is 

[-10.0, 10.0]D. The position vectors 𝒙1, 𝒙2, … , 𝒙S  are randomly 

initialized within the space, and the velocities 𝒗1, 𝒗2, … , 𝒗S  are 

initially zero vectors.  

 

Table 1: PSO hyperparameters.  

Hyperparameter (a) (b) 

Swarm size 10 50 

Iteration 500 100 

Fitness Evaluations 50,000 50,000 

Inertia weight 𝑤 0.9 0.9 

Pbest coefficient 𝑐𝑝 1.0 1.0 

Gbest coefficient 𝑐𝑔 1.0 1.0 

Source: Author, (2023). 

 

An MLP with 8, 16, or 32 hidden units was trained 11 times 

independently. Table 2 displays the best, worst, average, and 

median fitness scores achieved by the trained MLPs among the 11 

trials. Each of the two hyperparameter configurations (a) and (b) 

was applied. 

 

Table 2: Fitness Scores among 11 Runs. 

  M=8 M=16 M=32 

(a) 

Best 0.810 0.831 0.832 

Worst 0.571 0.565 0.577 

Average 0.675 0.727 0.702 

Median 0.641 0.811 0.687 

(b) 

Best 0.832 0.833 0.833 

Worst 0.807 0.623 0.583 

Average 0.823 0.789 0.783 

Median 0.825 0.827 0.830 

Source: Author, (2023). 
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Comparing the scores in Table 2 between configurations (a) 

and (b), it is observed that the values obtained using configuration 

(b) are higher than those obtained using configuration (a). This 

result indicates that configuration (b) is better than configuration 

(a). Wilcoxon signed rank test revealed that this difference is 

statistically significant (p=1.52e-5). Therefore, in this study, it is 

evident that increasing the swarm size rather than the number of 

iterations allowed PSO to discover better solutions. In PSO, 

increasing the swarm size promotes global exploration in the early 

stages, while increasing the number of iterations enhances local 

exploitation in the later stages. Based on the results of this 

experiment, it is evident that in this learning task, early-stage global 

exploration is more important.  

Next, comparing the fitness scores obtained using 

configuration (a) among the three variations of M (the number of 

hidden units), it is observed that even for the smallest size, M=8, 

the scores are not inferior to those of M=16 or M=32. In fact, the 

average and worst values across the 11 trials indicate that M=8 is 

the most desirable. Increasing hidden units would typically 

enhance the MLP’s nonlinear modeling capability and improve the 

performance of pendulum control. However, it can be seen that 

increasing hidden units to 16 and 32 does not improve the control 

performance and instead leads to a decrease in the learning 

performance through PSO. Wilcoxon rank sum test revealed that 

the difference between M=8 and M=16 (or 32) is not statistically 

significant (p=0.55 and p=0.42 respectively). As the number of 

hidden units increases, the dimensionality of the search space also 

increases, resulting in the increased difficulty in global exploration. 

Therefore, in the learning task of this study, the swarm size of 50 

particles is sufficient for M=8 but insufficient for M=16 and M=32, 

indicating that the global exploration was not adequate in those 

cases. 

Fig. 6 presents the learning curves of the best, median, and 

worst runs among the 11 trials, where M=8 and the configuration 

is (b). These learning curves indicate a slower progression of 

fitness scores within the ranges of [0.4, 0.5] and [0.6, 0.7]. 

Consequently, attaining a fitness score of 0.4 is relatively 

straightforward for PSO in training MLPs, while challenges arise 

in achieving higher scores for improved pendulum control. 

Remarkably, even in the most unfavorable trial out of the 11 

conducted, PSO successfully trained the MLPs to reach a score of 

0.807 (as shown in Table 2), demonstrating the robustness of PSO 

in effectively discovering desirable solutions. 

 

 
Figure 6: Learning curves. 

Source: Author, (2023). 

 

 
(i) Prior to training. 

 

 
(ii) After training. 

Figure 7: Actions and errors by the MLP. 

Source: Author, (2023). 

 

Fig. 7(i) illustrates the actions and errors of the MLP in the 

200 steps prior to training, while Fig. 7(ii) displays the 

corresponding actions and errors after training. In this scenario, the 

MLP employed 8 hidden units, and the configuration (b) was 

utilized. Fig. 7(i) reveals that the MLP prior to training outputs 

significant variations in torque values ranging from 2.0 to -2.0 

during the initial and mid-stages of the 200 steps, indicating an 

attempt to lift the pendulum. However, from the mid-stage to the 

end, the torque value remains approximately constant at 2.0, 

leading to pendulum rotation and substantial fluctuations in error. 

In contrast, Fig. 7(ii) reveals that the MLP after training 

successfully switches the polarity of torque appropriately within 

the first 50 steps, lifting the pendulum upward and rapidly reducing 

the error to nearly zero. Furthermore, it maintains the pendulum in 

the upward position with zero error by setting the torque value to 0 

for the remaining steps, exerting no unnecessary force on the 

pendulum. Supplementary videos are provided which demonstrate 

the pendulum controlled by the MLPs3,4. 

 

VI. CONCLUSIONS 

In this study, the neural network controller for the pendulum 

task was trained using Particle Swarm Optimization. The results 

demonstrated the successful training of an MLP with 8 hidden 

units, enabling rapid uprighting of the pendulum. Notably, it was 

found that a larger swarm size yielded greater effectiveness 

compared to increasing the number of iterations. In future work, 
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the author plans to evaluate additional evolutionary/swarm 

algorithms by implementing them on the same task as conducted in 

this study. 
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