
Journal of Engineering and Technology for Industrial Applications

Manaus, v.9 n.42, p. 11-15. Jul/Aug, 2023

DOI: https://doi.org/10.5935/jetia.v9i42.867

RESEARCH ARTICLE OPEN ACCESS

ISSN ONLINE: 2447-0228

Journal homepage: www.itegam-jetia.org

AN EVALUATIVE ANALYSIS OF PARTICLE SWARM OPTIMIZATION FOR

REINFORCEMENT LEARNING IN PENDULUM TASK

Hidehiko Okada*1

1 Department of Intelligent Systems, Kyoto Sangyo University, Kyoto, Japan.

1 http://orcid.org/0000-0001-7092-4979

Email: *hidehiko@cc.kyoto-su.ac.jp

ARTICLE INFO ABSTRACT

Article History

Received: July 01th, 2023

Revised: August 20th, 2023

Accepted: August 28th, 2023

Published: August 31th, 2023

Applying swarm intelligence algorithms to reinforcement learning of neural networks is

practical because they do not rely on gradients. Particle swarm optimization (PSO) is a

representatives of swarm algorithms. In this paper, the author experimentally evaluates the

effectiveness of PSO in the reinforcement learning of multilayer perceptrons (MLPs), using

a pendulum control task. Experimental results demonstrated the successful training of an

MLP with 8 hidden units, enabling rapid uprighting of the pendulum. Notably, it was found

that increasing the population size rather than the number of iterations allowed PSO to

discover better solutions. In PSO, increasing the population size promotes global exploration

in the early stages, while increasing the number of iterations enhances local exploitation in

the later stages. Based on the results of this experiment, it is evident that in this learning

task, early-stage global exploration is more important.

Keywords:

Particle swarm optimization,

Swarm intelligence,

Metaheuristics,

Neural network,

Reinforcement learning.

Copyright ©2023 by authors and Galileo Institute of Technology and Education of the Amazon (ITEGAM). This work is licensed

under the Creative Commons Attribution International License (CC BY 4.0).

I. INTRODUCTION

In supervised learning, neural networks can be optimized

using gradient-based methods with labeled training data. This

involves computing the difference between neural network’s

outputs and their respective target values, and then adjusting

connection weights and unit biases through backpropagation of

errors. However, reinforcement learning tasks require the use of

gradient-free training algorithms since labeled training data are not

available. Applying swarm intelligence algorithms [1,2] to

reinforcement learning of neural networks is practical because they

do not rely on gradients. On the other hand, Q-learning [3,4] is a

popular reinforcement learning method that selects subsequent

actions based on the reward r(t) for action a(t) in state s(t) at each

time step t. Unlike Q-learning, swarm algorithms do not require the

calculation of r(t) at every step, but instead, evaluate the reward

after the completion of an episode. This feature of swarm

algorithms relieves the practitioner from the burden of designing

appropriate rewards for every combination of states and actions.

Particle swarm optimization (PSO) [5,6], ant colony

optimization (ACO) [7,8], and artificial bee colony (ABC) [9,10]

are representative swarm algorithms. However, to effectively use

these algorithms for training neural networks, it is essential to

select appropriate variations and design their hyperparameters

carefully, as they have a significant impact on performance. In this

paper, the author experimentally evaluates the effectiveness of PSO

in the reinforcement learning of multilayer perceptrons, using a

pendulum control task.

II. PENDULUM TASK

As a reinforcement learning task, this study utilizes the

pendulum task available in the OpenAI Gym1,2. The goal of the task

is to maintain the pendulum in an upright position by applying

torque. The system is depicted in Fig. 1, which shows a screenshot

of the task, with the round arrow indicating the direction and

magnitude of the torque applied by the controller. The study aims

to provide insights into the performance of PSO on this task.

1.

2.

https://www.gymlibrary.dev/environments/classic_control/pendulum/

https://github.com/openai/gym/blob/master/gym/envs/classic_control/pendulu
m.py

http://orcid.org/0000-0001-7092-4979

Okada, ITEGAM-JETIA, Manaus, v.9 n.42, p. 11-15, Jul./Aug., 2023.

The author modified the system such that the task starts with

the pendulum in a position opposite to the desired outcome, as

shown in Fig. 2(a). The objective is to manipulate the pendulum to

reach and maintain the state depicted in Fig. 2(b). Additionally, the

author adjusts the system to begin the control task with zero angular

velocity for the pendulum.

Figure 1: Pendulum system.

Source: OpenAI Gym, (2023).
https://www.gymlibrary.dev/_images/pendulum.gif

Figure 2: Initial and goal states.

Source: Author, (2023).

An episode in the simulation consists of 200 time steps,

during which the controller observes the current state and

determines the corresponding action. The state is characterized by

three values: the cosine and sine of the angle (θ), and the angular

velocity, which are within the ranges of -1.0 to 1.0 and -8.0 to 8.0,

respectively. The action taken by the controller is the torque

applied to the pendulum, within the range of -2.0 to 2.0. The

constant torque of 2.0 (or -2.0) is not sufficient to bring the

pendulum from its initial position to the goal position: the

controller must actively swing the pendulum, leveraging gravity to

increase the angular velocity and allow it to overcome the obstacle.

In this study, the author defines the fitness of a controller as

follows:

Fitness =
1

200
∑ (1 − Error(t))

200

t=1
, (1)

Error(t) =
|θ(t)|

𝜋
. (2)

θ(t) denotes the angular at time step t. Initially, the error is

calculated as Error(t)=|±π|/π=1, indicating that the pendulum is in

a position opposite to the desired goal state. As the pendulum

moves towards the goal state, the error decreases. At the goal state,

the error is 0/π=0, indicating that the pendulum is upright.

The fitness score rewards the controller more for achieving

the desired goal state more quickly and maintaining it longer, i.e.,

a higher fitness score is obtained when the error is lower for more

time steps.

III. MULTILAYER PERCEPTRON

This study adopts a multilayer perceptron (MLP) [11] as the

pendulum controller. The MLP is a three-layered feedforward

neural network. The topology is illustrated in Fig. 3, while the

feedforward computations are shown in (3)-(7).

Input layer:

𝑜𝑢𝑡𝑖
(1)

= 𝑥𝑖 , 𝑖 = 1,2, … , 𝑁 (3)

Figure 3: Topology of the MLP.

Source: Author, (2023).

Hidden layer:

𝑖𝑛𝑗
(2)

= 𝜃𝑗
(2)

+ ∑ 𝑤𝑖,𝑗
(2)

𝑖
𝑜𝑢𝑡𝑖

(1)
, 𝑗 = 1,2, … , 𝑀 (4)

𝑜𝑢𝑡𝑗
(2)

= ℎ(𝑖𝑛𝑗
(2)

) , 𝑗 = 1,2, … , 𝑀 (5)

Output layer:

𝑖𝑛𝑘
(3)

= 𝜃𝑘
(3)

+ ∑ 𝑤𝑗,𝑘
(3)

𝑗
𝑜𝑢𝑡𝑗

(2)
, 𝑘 = 1,2, … , 𝐿 (6)

𝑜𝑢𝑡𝑘
(3)

= ℎ(𝑖𝑛𝑘
(3)

), 𝑘 = 1,2, … , 𝐿 (7)

The activation function denoted as h() is the hyperbolic

tangent function whose shape is illustrated in Fig. 4. This activation

function is a widely used in neural networks due to its ability to

produce a smooth non-linear output that ranges from -1.0 to 1.0.

Figure 4: Hyperbolic tangent function.

Source: Author, (2023).

1 i

1

N

1

j

k L

M

Page 12

Okada, ITEGAM-JETIA, Manaus, v.9 n.42, p. 11-15, Jul./Aug., 2023.

The MLP plays the role of a policy function where the

action at time t is a function of the observation at time t, i.e.,

action(t) = F(observation(t)). The input layer of the MLP comprises

three units that receive the values of cos(θ), sin(θ), and the angular

velocity. To ensure that the input values are within the range of [-

1.0, 1.0], the angular velocity is normalized by dividing it by 8.0.

The output layer of the MLP consists of one unit, which outputs the

torque applied to the pendulum. To ensure that the torque falls

within the range of [-2.0, 2.0], the output value is scaled by

multiplying it by 2.0.

IV. TRAINING OF MLPS USING PSO

The MLP illustrated in Fig. 3 comprises M + L units and

NM + ML connections, giving a total of D = M + L + NM + ML

parameters. To train the MLP, the author formulates the problem

as the optimization of a D-dimensional real-valued vector, 𝒙 =
(𝑥1, 𝑥2, . . . , 𝑥D) , where each 𝑥𝑖 corresponds to one of the D

parameters in the MLP. The feedforward computation, as described

in (3)-(7), involves applying the values of 𝒙 to their corresponding

connection weights or unit biases.

In this study, PSO is applied to optimize the D-dimensional

vector 𝒙. PSO represents one of the swarm intelligence algorithms,

which are characterized by being population-based stochastic

search algorithms. PSO utilize 𝒙 as a particle position in the D-

dimensional search space. Fig. 5 shows the process of training

neural networks by PSO.

Step1:

Step2:

Step3:

Step4:

Step5:

Step6:

Step7:

Initialization

Evaluation

Conditional Termination

Updates of Pbests and Gbest

Updates of Particle Velocities

Updates of Particle Positions

Goto Step2

Figure 5: The process of particle swarm optimization.

Source: Author, (2023).

In Step 1, vectors 𝒙1, 𝒙2, … , 𝒙S are initialized randomly,

where S represents the swarm size (the number of particles in the

swarm). 𝒙𝑠 denotes the position vector of the s-th particle in the D-

dimensional search space, i.e., 𝒙𝑠 = (𝑥1
𝑠, 𝑥2

𝑠, … , 𝑥D
𝑠), 𝑠 = 1,2, … , S.

The swarm size is predetermined. In Step 2, the fitness of each

particle is evaluated using (1). In Step 3, the loop of the swarm

process is terminated when a specific termination condition is

satisfied. In this study, the loop is terminated when the loop counter

reaches a predetermined value. In Step 4, the personal best (Pbest)

of each particle and the global best (Gbest) in the swarm are

updated according to their fitness scores. The Pbest of a particle

represents the position vector that has achieved the highest fitness

score up to the current iteration for that specific particle. On the

other hand, the Gbest represents the position vector with the highest

fitness score among all the Pbests within the population. Let us

denote each Pbest as 𝒑𝑠 and the Gbest as 𝒈, respectively. In Step

5, the velocity of each particle is updated. Let 𝑣𝑠 = (𝑣1
𝑠, 𝑣1

𝑠 , … , 𝑣D
𝑠)

represents the velocity for the s-th particle. The velocity 𝑣𝑠 is

updated by (8).

𝒗𝑠 ← 𝑤𝒗𝑠 + 𝑐𝑝𝑟𝑝(𝒑𝑠 − 𝒙𝑠) + 𝑐𝑔𝑟𝑔(𝒈 − 𝒙𝑠) (8)

𝑤 denotes the inertia weight, while 𝑐𝑝 and 𝑐𝑔 are coefficients.

Additionally, 𝑟𝑝 and 𝑟𝑔 are uniformly distributed random values

within the interval [0,1]. In Step 6, each particle moves in the

search space according to its velocity. The position vector 𝒙𝑠 is

updated by (9).

𝒙𝑠 ← 𝒙𝑠 + 𝒗𝑠 (9)

V. EXPERIMENT

The MLP’s capability to model nonlinear functions is

influenced by the number of hidden units. Optimizing a smaller

MLP using swarm algorithms is facilitated by a reduced number of

variables (the shorter length of position vector 𝒙). However, this

reduction in hidden units may impede the MLP’s capability to

effectively control the pendulum. Conversely, a larger MLP is

more capable of successfully controlling the pendulum, but

optimizing it becomes more challenging due to the longer position

vector 𝒙 . Moreover, implementing a larger MLP requires

additional computational resources. Therefore, striking a balance

between these trade-offs is essential for determining the optimal

number of hidden units for the given task. This study explores three

different configurations of hidden units: 8, 16, and 32. PSO

hyperparameter values were determined through empirical

analyses, as illustrated in Table 1. The number of iterations was set

to 500 or 100, corresponding to swarm sizes of 10 and 50,

respectively. Consequently, the total number of fitness evaluations

remained constant at 50,000 (equal to the product of iteration and

swarm size). It is important to choose an appropriate search space

because the values in 𝒙𝑠 are utilized as connection weights or unit

biases in the neural network. The range should neither be

excessively large nor small. In this experiment, the search space is

[-10.0, 10.0]D. The position vectors 𝒙1, 𝒙2, … , 𝒙S are randomly

initialized within the space, and the velocities 𝒗1, 𝒗2, … , 𝒗S are

initially zero vectors.

Table 1: PSO hyperparameters.

Hyperparameter (a) (b)

Swarm size 10 50

Iteration 500 100

Fitness Evaluations 50,000 50,000

Inertia weight 𝑤 0.9 0.9

Pbest coefficient 𝑐𝑝 1.0 1.0

Gbest coefficient 𝑐𝑔 1.0 1.0

Source: Author, (2023).

An MLP with 8, 16, or 32 hidden units was trained 11 times

independently. Table 2 displays the best, worst, average, and

median fitness scores achieved by the trained MLPs among the 11

trials. Each of the two hyperparameter configurations (a) and (b)

was applied.

Table 2: Fitness Scores among 11 Runs.

 M=8 M=16 M=32

(a)

Best 0.810 0.831 0.832

Worst 0.571 0.565 0.577

Average 0.675 0.727 0.702

Median 0.641 0.811 0.687

(b)

Best 0.832 0.833 0.833

Worst 0.807 0.623 0.583

Average 0.823 0.789 0.783

Median 0.825 0.827 0.830

Source: Author, (2023).

Page 13

Okada, ITEGAM-JETIA, Manaus, v.9 n.42, p. 11-15, Jul./Aug., 2023.

Comparing the scores in Table 2 between configurations (a)

and (b), it is observed that the values obtained using configuration

(b) are higher than those obtained using configuration (a). This

result indicates that configuration (b) is better than configuration

(a). Wilcoxon signed rank test revealed that this difference is

statistically significant (p=1.52e-5). Therefore, in this study, it is

evident that increasing the swarm size rather than the number of

iterations allowed PSO to discover better solutions. In PSO,

increasing the swarm size promotes global exploration in the early

stages, while increasing the number of iterations enhances local

exploitation in the later stages. Based on the results of this

experiment, it is evident that in this learning task, early-stage global

exploration is more important.

Next, comparing the fitness scores obtained using

configuration (a) among the three variations of M (the number of

hidden units), it is observed that even for the smallest size, M=8,

the scores are not inferior to those of M=16 or M=32. In fact, the

average and worst values across the 11 trials indicate that M=8 is

the most desirable. Increasing hidden units would typically

enhance the MLP’s nonlinear modeling capability and improve the

performance of pendulum control. However, it can be seen that

increasing hidden units to 16 and 32 does not improve the control

performance and instead leads to a decrease in the learning

performance through PSO. Wilcoxon rank sum test revealed that

the difference between M=8 and M=16 (or 32) is not statistically

significant (p=0.55 and p=0.42 respectively). As the number of

hidden units increases, the dimensionality of the search space also

increases, resulting in the increased difficulty in global exploration.

Therefore, in the learning task of this study, the swarm size of 50

particles is sufficient for M=8 but insufficient for M=16 and M=32,

indicating that the global exploration was not adequate in those

cases.

Fig. 6 presents the learning curves of the best, median, and

worst runs among the 11 trials, where M=8 and the configuration

is (b). These learning curves indicate a slower progression of

fitness scores within the ranges of [0.4, 0.5] and [0.6, 0.7].

Consequently, attaining a fitness score of 0.4 is relatively

straightforward for PSO in training MLPs, while challenges arise

in achieving higher scores for improved pendulum control.

Remarkably, even in the most unfavorable trial out of the 11

conducted, PSO successfully trained the MLPs to reach a score of

0.807 (as shown in Table 2), demonstrating the robustness of PSO

in effectively discovering desirable solutions.

Figure 6: Learning curves.

Source: Author, (2023).

(i) Prior to training.

(ii) After training.

Figure 7: Actions and errors by the MLP.

Source: Author, (2023).

Fig. 7(i) illustrates the actions and errors of the MLP in the

200 steps prior to training, while Fig. 7(ii) displays the

corresponding actions and errors after training. In this scenario, the

MLP employed 8 hidden units, and the configuration (b) was

utilized. Fig. 7(i) reveals that the MLP prior to training outputs

significant variations in torque values ranging from 2.0 to -2.0

during the initial and mid-stages of the 200 steps, indicating an

attempt to lift the pendulum. However, from the mid-stage to the

end, the torque value remains approximately constant at 2.0,

leading to pendulum rotation and substantial fluctuations in error.

In contrast, Fig. 7(ii) reveals that the MLP after training

successfully switches the polarity of torque appropriately within

the first 50 steps, lifting the pendulum upward and rapidly reducing

the error to nearly zero. Furthermore, it maintains the pendulum in

the upward position with zero error by setting the torque value to 0

for the remaining steps, exerting no unnecessary force on the

pendulum. Supplementary videos are provided which demonstrate

the pendulum controlled by the MLPs3,4.

VI. CONCLUSIONS

In this study, the neural network controller for the pendulum

task was trained using Particle Swarm Optimization. The results

demonstrated the successful training of an MLP with 8 hidden

units, enabling rapid uprighting of the pendulum. Notably, it was

found that a larger swarm size yielded greater effectiveness

compared to increasing the number of iterations. In future work,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000

F
i
t
n
e
s
s

#Evaluations

Worst Best Median

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 50 100 150 200

Er
ro
r

A
c
t
i
o
n

Step

Action Error

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 50 100 150 200

Er
ro
r

A
c
t
i
o
n

Step

Action Error

3.
4.

https://youtu.be/g7sqUhZnru4
https://youtu.be/o49by3OwT58

Page 14

Okada, ITEGAM-JETIA, Manaus, v.9 n.42, p. 11-15, Jul./Aug., 2023.

the author plans to evaluate additional evolutionary/swarm

algorithms by implementing them on the same task as conducted in

this study.

VII. AUTHOR’S CONTRIBUTION

Conceptualization: Hidehiko Okada.

Methodology: Hidehiko Okada.

Investigation: Hidehiko Okada.

Discussion of results: Hidehiko Okada.

Writing – Original Draft: Hidehiko Okada.

Writing – Review and Editing: Hidehiko Okada.

Resources: Hidehiko Okada.

Supervision: Hidehiko Okada.

Approval of the final text: Hidehiko Okada.

VIII. ACKNOWLEDGMENTS

The author conducted this study as an official researcher of

Kyoto Sangyo University.

IX. REFERENCES

[1] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence, Morgan Kaufmann,

2001.

[2] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural

to Artificial Systems, Oxford Academic, 2020.

[3] C.J.C.H. Watkins, and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3,

pp. 279-292, 1992.

[4] R.S. Sutton, and A.G. Barto, Reinforcement Learning: An Introduction (2nd

ed.), MIT Press, 2018.

[5] J. Kennedy, and R. Eberhart, “Particle swarm optimization,” IEEE Int. Conf. on

Neural Networks, vol. iv, pp. 1942-1948, 1995.

[6] P. Riccardo, J. Kennedy, and T. Blackwell, “Particle swarm optimization: an

overview,” Swarm Intelligence, vol. 1, pp. 33-57, 2007.

[7] M. Dorigo, and T. Stützle, Ant Colony Optimization, MIT Press, 2004.

[8] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimization,” IEEE
Computational Intelligence Magazine, vol. 1, no. 4, pp. 28-39, 2006.

[9] D. Karaboga, and B. Basturk, “Artificial bee colony (ABC) optimization
algorithm for solving constrained optimization problems,” Advances in Soft

Computing: Foundations of Fuzzy Logic and Soft Computing, LNCS, vol. 4529,

pp. 789-798, Springer, 2007.

[10] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A comprehensive

survey: artificial bee colony (ABC) algorithm and applications,” Artificial
Intelligence Review, vol. 42, pp. 21–57, 2014.

[11] P. K. Sankar, and S. Mitra, “Multilayer perceptron, fuzzy sets, and
classification,” IEEE Trans. on Neural Networks, vol. 3, no. 5, pp. 683-697, 1992.

Page 15

