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Despite intense investigation in the area of software defect prediction, there are some critical 

regions that still need attention. Heterogeneity of data is one of these areas that seek 

attention.  Local models have gained focus in resolving the problem of heterogeneity. 

Limited studies have proven local models to be better than global models, so there is 

contradiction among researcher. Various researchers also considered feature selection as a 

method to mitigate the affect of heterogeneity. Our study presents a hybrid feature selection 

strategy with global and local (GL) models of software defect prediction (SDP). The 

proposed Hybrid Feature Selection Strategy (HFSS) has additionally improved the 

predicting power of GL models. Empirical results showcase that local models have 

preferential results than global models. Our study compared proposed approach with 

baselines techniques from literature on three PROMISE projects and traditional global 

models. Our proposed approach achieved better results in terms of accuracy, precision, 

recall and f-measure.  
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I. INTRODUCTION 

With growing complexity of the software, it is generally 

hard to develop software that is free from anomalies or defects. 

Errors or bugs might creep in during development due to logical or 

typographical errors. These errors must be detected timely for the 

reduction in maintenance cost of the software and ensure timely 

delivery of the project. For years, the companies have been 

deploying various testing techniques to identify bugs in the 

software[1]. But as the project size increases, testing becomes 

complex, costly, time consuming and finding defects becomes 

tedious.  

Shippey [2] utilized the Abstract Syntax Tree  n-grams to 

identify fault inducing code features. Zhou [3] developed deep 

forest models using the cascade strategy of ensemble learning (EL) 

and deep learning for effective SDP. Jayanthi & Florence [4] 

presented solution for improving performance of software defect 

prediction (SDP) by combining feature reduction and classification 

using artificial neural network. D. Rodriguez et. al. [5] proposed 

Zero Inflated Poisson (ZIP) models for SDP using R packages. 

Ostrand et. al. [6] and Borandag et. al. [7] proposed SDP using 

negative binomial regression and majority vote feature selection 

based Naive Bayes (NB), k-nearest Neighbour (KNN), J48 models 

respectively. Therefore, recently researchers started working on 

software defect prediction. 

SDP is one kind of software quality assurance techniques, 

which aims to detect proneness to defect by learning from defect 

data [8]. SDP helps in optimal allocation of resources for 

development and maintenance. Various SDP techniques have 

arisen over the time viz. Cross Project Defect Prediction (CPDP) 

[9], Within Project Defect Prediction (WPDP) [10], and techniques 

based on local models [11], global models [11], few shot learning 

[12], transfer learning [13] etc.  

Most of defect prediction techniques use machine learning 

models to predict bugs. Machine learning models uses labelled 

source code metrics data to train and test the model. Herbold et.al. 

[14] used several combinations of complexity metrics such as lines 

of code (LOC), average method complexity (AMC), McCabe’s 

cyclomatic complexity (MCC), maximum and average cyclomatic 

complexity among methods, hallstead metrics. Nam et.al. [15] used 

LOC [16], MCC, halstead and various other metrics are used by 

rearchers are number of additions[17], number of deletions[17]. 

Analysing such source code metrics can give useful insights about 

the code, so as to predict future defects. Thus, SDP helps us 
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recognize bugs in source code by analyzing the source code metrics 

data. 

Most of the studies on SDP have used the machine 

learning models on the entire dataset of project, where data values 

are not evenly distributed, causing the problem of heterogeneity 

within the dataset. Heterogeneity is mainly caused by the different 

measurements standards and data differences between projects. But 

dataset contain some internal regions of data, which are 

homogeneous in nature. These homogeneous units of data within 

projects can help resolve heterogeneity issues. So homogeneous 

regions are created using clusters and then the modelling 

techniques are applied on those regions. The resulting models are 

termed as local models. However, in global models, the prediction 

models are applied over the complete dataset as a single unit as 

shown in Fig. 1 [18].  

 
Figure 1: GL models 

Source: Authors, (2024). 

 Research questions: In our study, we provided a hybrid 

feature selection strategy (HFSS) to find the most important feature 

set from dataset, local models to mitigate the effect of 

heterogeneity of data. Just in Time (JIT) GL models integrated with 

end to end software defect prediction framework for real-time 

defect prediction using commit level data. So we set out certain 

research question such as  

1. How does our Hybrid feature selection strategy enhance the 

performance of SDP? 

2. How local models enhance the performance over global 

models? 

The remainder of the paper is coordinated as follows. In 

section 2, we examined the connected work about the utilization of 

GL models for defect prediction. Section 3 presents HFSS. Section 

4 elaborates the experimental setup with algorithms to implement 

GL models with HFSS. Section 5 gives the exploratory outcomes 

and contrasts the outcomes with existing investigations. Then we 

present the lessons gained from analysis. Finally we conclude our 

findings in section 6. 

II. RELATED WORK 

There has been enormous exploration in the space of SDP. 

In a study by J.Ostrand [6], they considered the heterogeneity of 

data to be the reason for conclusion instability in various studies. 

They observed that most studies don’t have a conclusion about 

which method is best rather studies just classify the methods being 

best in different contexts. So they proposed the concept of global 

and local (GL) models for which they developed two algorithms 

namely “WHERE” to cluster the data and “WHICH” to learn local 

lessons from each cluster. Xu et.al. [8] finds the problem to keep 

data private while training models on private data distributed over 

several devices and issue of scalability in large models. So they 

proposed a federated learning approach which uses local 

representations on individual devices and global models across 

multiple devices.  

Problem of heterogeneity of data has been a concern in 

multiple studies. To deal with this concern, S. Amasaki [9] used 

local model in a case study over social data resulting in no 

advantage in performance in comparison to global models. So 

proposed a hybrid approach using GL models i.e. Multivariate 

Adaptive Regression Splines (MARS). In other study Pan et.al. 

[10] applied metric selection to remove less informative metrics 

from the source project followed by metrics matching between 

source and target using methods of percentiles, Kolmogorov-

Smirnov Test, Spearman’s correlation. 

However, the issues in defect prediction still exist. For 

instance, Menzies et al. discussed the issue of conclusion instability 

in software engineering research [19]. He states that studies do not 

provide a final conclusion regarding which technique or solution is 

best, and just classify the results based on the deployed techniques. 

They consider that conclusion instability is mainly caused by data 

heterogeneity. Their review uncovered that when similar strategies 

are applied globally to all information and when applied to intra-

cluster information, and the outcomes are very unique. They found 

that local analysis has better results when the same methods are 

applied to GL data [19]. Feature selection, instance selection, 

extension of data collection and monte carlo simulation over space 

options have been effective in handling instability problems.  

There is lack of studies which focus on local models for 

SDP. The local models were first introduced by Menzies et al. 

[19][18] for defect prediction and effort estimation, and later 

studied by Bettenburg et al.[20][21]. Both of them observe similar 

results for precision in defect prediction. In the third study, 

Scanniello[22] investigated the dependencies among the classes as 

criteria for clustering or grouping using borderFlow clustering 

algorithm rather than similar properties of classes. 

Yang conducted an experiment to check validity of local 

models in JIT SDP context [11]. The experimental study was done 

on five open source software projects (OSSP) with three scenarios 

cross-validation, cross project validation, and time-wise cross-

validation. They used k-medoids to split training data in several 

homogeneous regions for local models. Logistic Regression (LR) 

and effort aware linear regression (EALR) were used for 

classification models and effort aware predictor [11]. Their 

empirical results showed that local models performed worse than 

global models in classification. Another researcher [23]studied the 

impact of leading and trailing source lines of code changed in 

commit. They called it context metrics and carried out an empirical 

study on six open source projects for JIT defect 

prediction[23].Their context metrics outperformed the traditional 

code churn metrics with respect to the Area Under receiver 

operating characteristic Curve (AUC) and Metthews Correlation 

Coefficient. Zhang and colleagues proposed an effort aware Tri-

training (EATT) semi-supervised method for JIT defect 

prediction[17]. Trautsch et al. proposed a cost saving model for JIT 

defect prediction by improving data collection, data labelling and 

feature selection. They considered the manually validated issues 

and improved Sliwerski-Zimmermann-Zeller (SZZ) algorithm for 
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labelling the data and carried out a case study on thirty eight java 

projects[24].  

 Poncin developed a framework for analysing software 

repositories for combining different repositories and matching 

emails sent about a file, file modification and bug reports[25]. 

Thong [26]  proposed a framework using deep learning to 

automatically extract features from code changes, commit 

messages to identify the defects and conducted experiments on QT 

and OPENSTACK. Aalok [27] studied the concept of sleeping 

defects. Sleeping defects are those which are not recognized in 

intermediate release but in later release. They analysed six open 

source projects from Github from the Apache ecosystem. 

Finding a relation between commits and bugs has been a 

challenging task since the beginning of software defect prediction. 

SZZ is a heuristic based solution for finding defect inducing 

changes. Different  researchers have fostered their own 

implementation of the SZZ algorithm. [28] presented an open 

implementation of SZZ for Github repositories. Fukushima [29] 

has proposed JIT models which provide eager feedback as 

compared to traditional models. They have used data from multiple 

software projects to produce training data and also integrate 

multiple models to create ensemble models. Jing et al. has provided 

a solution to class imbalance problems using Subclass 

Discriminant Analysis (SDA) [30]. SDA is a feature learning 

method, which divides a class into multiple subclasses and learns 

features from it using robust classification.  

Borandag [7] proposed a feature selection algorithm using 

majority vote from multiple filters namely information gain, 

symmetrical uncertainty, Relief-F and correlation based filters. 

Shippey [2] utilized AST N-grams to identify the most encouraging 

features for software defect prediction. A cluster based approach 

FeSCH (Feature selection using Clusters of Hybrid data)  [31] was 

proposed to extract the software features using the ranking strategy, 

feature selection ratio and classifiers for cross project defect 

prediction. Shivajikumar [32] empirically compared various 

attribute selection filter and wrapper method to obtain the feature 

set with optimal performance using SVM and Naive Bayes. They 

used scores from gain ratio attribute evaluation, chi-squared 

attribute evaluation, significance attribute evaluation, relief-F 

attribute selection and wrapper methods to select the features in an 

iterative manner until optimal performance is reached. 

Motivation:  

Menzies [19] found that, local models are superior to 

global models but Yang [11] contradicts their finding by presenting 

poor performance of local models in comparison to global models 

for classification. Pecorelli [33] presented no difference in 

performance of GL models. So it becomes significant to explore 

GL models in depth and present a tangible solution.  

Data collected from repositories is not that clean to be directly 

consumable in predictive models. Supervised machine learning 

models suffers from various issue due to missing values, redundant 

data, irrelevant data, outliers, imbalanced and highly unrelated 

data. These pitfalls in data could be due to different scale of 

measurements for attributes, attribute types like Boolean or 

numeric, dependence among attributes like age is derived from date 

of birth, data collection issues. So attribute / feature selection play 

a crucial role in predictive performance of supervised machine 

learning algorithms as stated in [10] [31]. Jayanthi & Florence [4] 

used Principal Component Analysis (PCA) based feature reduction 

to improve accuracy of classification models. Borandag [7] 

proposed Majority vote based feature selection by first ranking the 

metrics on the basis of their importance and followed by voting 

scheme. Chao Ni [34] proposed two step feature selection method 

which includes, initial feature cluster selection based on density 

followed by ranking to choose appropriate cluster. Shivaji et. al. 

[32] utilizes various feature selection techniques such as Gain ratio, 

Chi-Squared, Relief-F, wrapper method using SVM and NB. So we 

proposed HFSS presented in next section. 

Most studies consider the problem of heterogeneity, high 

variability in dataset and their solution include developing  local 

models, multivariate adaptive regression splines and metrics 

selection to improve the performance of prediction models. In our 

study, we are using GL models in conjunction with HFSS for defect 

prediction. This study is first of its kind to the best of our 

knowledge. 

III. HYBRID FEATURE SELECTION STRATEGY (HFSS) 

HFSS uses two methods of feature selection to prepare data 

for best predictions. First is univariate selection technique which 

uses statistical tests to find the features with best relationship with 

target class. In this technique, we use chi-squared statistical test-

based technique to find relationship score of each attribute with the 

target attribute. Second is feature importance determination 

technique which uses extra tree classifier to give scores to each 

feature in dataset, higher the score more the relevance of feature 

for target attribute. 

Chi-squared based selectKBest approach 

We implemented our approach using the library functions 

from scikitlearn python library using selectKBest() function with 

chi-squared statistical method. It provides the score of relationship 

between features and the target class. Since chi-square is a 

univariate test so it does not consider the inter-relation between 

features. This is a kind of filter method which brings the top 

features with high relation with target feature. Feature score for all 

attributes of KC1 dataset are shown in Table 1. 

Extra tree classifier (ETC) 

Extra Tree classifier is ensemble learning based feature 

importance technique, which determine the importance of features 

by aggregating the results from multiple de-correlated decision 

trees. De-correlated decision tree uses random samples of n 

features from original dataset. Each decision tree gets the n number 

of features selected and information gain is calculated for all of the 

selected features. Information gain determines the reduction in 

entropy by transforming the dataset. Increase in information gain 

of a variable reduces the entropy and divide the data into multiple 

groups for effective classification.  

In our case we are using a binary classification, so entropy 

can be calculated as 

Entropy = -(p(0) * log(P(0)) + p(1) * log(P(1))) 

Data with a 50/50 distribution of samples for the two groups would 

have maximum entropy, whereas an highly imbalanced dataset 

with a distribution of 20/80 would have smaller entropy for a 

randomly drawn sample from the data. 

Information gain is used as the decision criteria to select the 

best features from dataset.  

IG(S, a) = H(S) – H(S | a) 

where IG(S,a) is the information gain for dataset S for a 

random attribute a, H(S) is the entropy of dataset before any 

transformation, H(S|a) is the conditional entropy for given dataset 

with respect to attribute a, which can be calculated as  

H(S | a) = sum v in a Sa(v)/S * H(Sa(v)) 

where Sa(v)/S is the proportion of the number of samples in 

the dataset with attribute a has the value v, and H(Sa(v)) is the 

entropy of each group of samples where attribute a has the value v. 
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Finally aggregating the information gain of each feature of 

dataset provides the ETC score. ETC score for KC1 dataset are 

depicted in Table 1. This can be accomplished utilizing the scikit-

learn python libraries. 

Table 1: Feature selection using SelectKBest and ETC of KC1 
Feature 

index 

SelectKBest 

Score (A) 

ETC Score 

(B) 

Product 

(A*B) 

Average of A 

& B 

0 16.515864 0.10062259 1.661869012 8.308243295 

1 13.864425 0.03607222 0.500120589 6.95024861 

2 4.850053 0.02296492 0.111381079 2.43650896 

3 11.928183 0.03742913 0.446461512 5.982806065 

4 13.951151 0.05930609 0.827388217 7.005228545 

5 12.065444 0.06277575 0.757417296 6.064109875 

6 11.653458 0.04660503 0.54310976 5.850031515 

7 24.944794 0.05937611 1.481124832 12.50208506 

8 15.896106 0.06095661 0.968972734 7.978531305 

9 7.361797 0.05576291 0.410515224 3.708779955 

10 12.364661 0.04277111 0.528850276 6.203716055 

11 7.361727 0.05531765 0.407233438 3.708522325 

12 16.276982 0.07621391 1.240532441 8.176597955 

13 18.683501 0.05439372 1.016265122 9.36894736 

14 19.307992 0.06350016 1.226060581 9.68574608 

15 13.253962 0.05855625 0.776102312 6.656259125 

16 15.128712 0.07149166 1.081576735 7.60010183 

17 14.083211 0.03588416 0.505364197 7.05954758 

  Mean 0.805019 6.958112 

Source: Authors, (2024). 

In order to optimize the accuracy of our supervised machine 

learning models, we took two cases of feature selection depending 

upon the scores obtained using selectKBest and ETC. In first case 

we multiplied the score of selectKBest and ETC values while in 

second case we took the average of two scores. After calculating 

product and average of scores, it is critical to decide the number of 

attributes to be selected. For that we took mean of product and 

average scores and used it as minimum threshold value to 

determine the number of attributes to be chosen. So features 

selected as per threshold values shown in Table 1, for product 

metrics are 0, 7,12,14,16,13,8,4 and for average metrics are 

7,14,13,0,12,8,16,17,4,1. So a total of eight features are selected 

using product metrics and ten features are selected using average 

metrics. 

IV. EXPERIMENTAL SETUP 

 In this section, we first describe the datasets used in our 

experiment. Then we introduce the models selected to carry out 

defect prediction. We provide the details of our empirical setup, 

which enhances the software defect prediction as compared to 

traditional techniques.  

 Dataset: We applied our proposed approach to existing 

benchmark dataset from PROMISE repository. PROMISE dataset 

was developed by Jureczko et. al. [35] containing defect data from 

java projects.  PROMISE repository datasets are downloaded from 

the internet in .csv format. Selected projects from PROMISE are 

JM1, PC3 and KC1. Since all these software projects dataset 

contain some extra attributes in comparison to software metrics 

used by our framework. So removing the extra features make this 

data directly usable for our framework. JM1, PC3 and KC1 

contains 10885, 1563, 2109 rows respectively. Detailed statistics 

of dataset are shown in Table 2. 

Table 2: Statistics of dataset 

Project 
Number.of 

rows 

Numbers of 

attributes 
% buggy 

Duplicates 

entries 

KC1 2109 22 15.45 900 

JM1 10885 22 19.35 0 

PC3 1563 38 10.23 157 

Source: Authors, (2024). 

Data Pre-processing: Data pre-processing plays a critical role in 

order to build high performing prediction models. Our system 

deploys five steps of data pre-processing. 

1. Duplicate Removal: In this step all the duplicate entries 

are removed while keeping only the first entry. 

2. Handling missing values: The data contained some blank 

or empty fields. Their values might be either optional or 

left out due to developer’s negligence. The mean of the 

attribute method was used to fill those gaps. 

3. Scaling: Scaling of data becomes important when 

distance based modelling is used rather than tree based. 

So normalization of data is a required for SVM, KNN and 

Naive Bayes while not for Random Forest. 

4. Managing Outliers:  The outliers in the data have a 

tremendous impact on the predictive power. There are a 

number of outliers handling techniques like z-score, IQR, 

removal of outliers etc. This study used the z-score >3 as 

a threshold to mitigate outliers in our dataset. 

5. Feature selection: When attributes of a dataset are tightly 

coupled, leading to overfitting and underfitting problems. 

Then it becomes obvious to reduce dimensions by 

selection of relevant features only. Our hybrid feature 

selection technique discussed in section 3 is used for 

feature selection. Features selected for each data will be 

different since the feature scores obtained using our 

approach are calculated dynamically. 

 Model selection: In our experiment, we applied four 

machine learning models to measure the efficiency of our proposed 

approach. Most machine learning algorithm suffers from the 

problem of either overfitting or underfitting. Overfitting refers to a 

model that models the training data excessively well while 

underfitting refers to a data model that cannot train a model 

properly and cannot generalize to new data. Both of these lead to 

poor performance of models. Overfitting is more probable with 

non-parametric and non-linear models that have greater 

adaptability when learning a target function. We applied three non-

parametric models KNN, Random Forest (RF), SVM and one 

parametric model Naive Bayes (NB). There are two reasons for 

choosing these models for defect prediction. First these models are 

widely used in research community and have proven their ability. 

Secondly there exist some underlying differences in their 

implementation while performance is quite comparable with other 

baselines studies. All these models have been utilized with their 

default parameter setting using scikit learn python libraries, which 

make our experiment effectively reproducible. 

 Model building: Our approach deploys two types of 

models, namely global models and local models. Global models 

use complete available data from a given dataset to build prediction 

models, while internally partitioning it into training and test sets.  

Algorithm for Global Models:  
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1. IMPORT required libraries including Scikit learn 

2. IMPORT the dataset in .csv format 

3. PRE-PROCESSING 

a. Remove duplicates from data while keeping the 

first row. 

b. Replace missing values with mean of attribute 

values. 

c. REMOVE Outliers using z-score values < 3 

d. FEATURE SELECTION using Hybrid Feature 

selection Strategy [section 3] 

4. SCALE data using MinMaxScaler 

5. Split data into training and test set in 70:30 ratio. 

6. FOREACH model RF, SVM, KNN and NB 

a. Train classifier model using training set. 

b. Calculate performance metrics (accuracy, 

precision, recall, f-measure) of model using 

available test set. 

END FOREACH 

 In Local models, whole of the data is first splitted into 

homogeneous regions and then individual classification algorithms 

are applied to individual regions. These models help in handling 

problems of heterogeneity in data [14]. Herbold et.al. [14] 

evaluated the local models and investigated their advantages and 

drawbacks in cross project scenarios. They also compared the local 

models with global models and transfer learning models in cross 

project. They found negative improvement using the local model 

in comparison to global models. 

In our system, we initially partitioned data into different regions in 

local models, but in later phase local models are similar to global 

models. Hence deploy the machine learning models to create 

training and testing sets before finally building the model. Our 

algorithm uses k-means to create clusters. Since dataset size of our 

most projects is in thousands only, so we selected k=2, so that each 

of the cluster contains some data values. 

Algorithm for Local Models: 

1. IMPORT required libraries including Scikit learn 

2. IMPORT the dataset in .csv format 

3. PRE-PROCESSING 

a. Remove duplicates from data while keeping the 

first row. 

b. Replace missing values with mean of attribute 

values. 

c. REMOVE Outliers using z-score values < 3 

d. FEATURE SELECTION using Hybrid Feature 

selection Strategy [section 3] 

4. SCALE data using MinMaxScaler 

5. CREATE CLUSTERS(C1 and C2)  using k-means 

clustering with k=2 

6. FOREACH CLUSTER C1 and C2 

a. Drop target column from dataset. 

b. Split data into training and test set in 70:30 ratio. 

c. FOREACH model RF, SVM, KNN and NB 

i. Train classifier model using training 

set. 

ii. Calculate performance metrics 

(accuracy, precision, recall, f-measure) 

of model using available test set. 

iii. END FOREACH 

END FOREACH 

Table 3: Data dimensions of the experiment. 

Project 
Model 

type 
Cluster 

Dataset 

Size 

After 

Duplicate 

Removal 

Training 

Size 

Test 

Size 

JM1 Local C1 
(10885, 

19) 

(8883, 

19) 

(1192, 

10) 

(511, 

10) 

JM1 Local C2 
(10885, 

19) 

(8883, 

19) 

(4601, 

10) 

(1973, 

10) 

JM1 Global - 
(10885, 

19) 

(8883, 

19) 

(5793, 

18) 

(2484, 

18) 

KC1 Global - 
(2109, 

19) 

(1209, 

19) 
(775, 18) 

(333, 

18) 

KC1 Local C1 
(2109, 

19) 

(1209, 

19) 
(531, 10) 

(228, 

10) 

KC1 Local C2 
(2109, 

19) 

(1209, 

19) 
(244, 10) 

(105, 

10) 

PC3 Local C1 
(1563, 

19) 

(1406, 

19) 
(574, 10) 

(246, 

10) 

PC3 Local C2 
(1563, 

19) 

(1406, 

19) 
(347, 10) 

(150, 

10) 

PC3 Global - 
(1563, 

19) 

(1406, 

19) 
(921, 18) 

(396, 

18) 

Source: Authors, (2024). 

 

 Table 3 showcase the dataset dimension of all three 

projects after cleaning of dataset to remove duplicates and division 

into training and testing set for machine learning models. 

Evaluation measure: A number of performance evaluation 

methods are available for machine learning classifiers. We use four 

performance indicators i.e. Accuracy, Precision, Recall and f-

measure. These are most widely used in research community which 

make comparison of results easy with other baseline studies. 

Accuracy is an indicator of how many classifications are correct. 

Precision and recall contradict each other, so keeping balance of 

both is required. Higher the recall will lead to low precision. While 

F-measure is a harmonic mean of recall and precision, which give 

the most accurate measure of performance of predictive model. 
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 Baseline methods: To prove the effectiveness of our 

approach we compared our HFSS with two baseline studies for 

defect prediction techniques i.e. DPDF [3], Neural Network 

classifier based approach [4]. In their study Zhou et. al. proved that 

their deep forest based model for software defect prediction using 

cascade multilayer ensemble of random forest has better 

performance than gcForest. They compared DPDF using 25 

projects from NASA, PROMISE, AEEEM and Relink datasets. 

They also used z-score to process the original data. Jayanthi et. al. 

[4] applied improved version of PCA using artificial neural 

network to establish the performance of their models on 4 projects 

from PROMISE dataset. Since their study used artificial neural 

network (ANN) and they have provided no nomenclature to their 

technique, so we will denote their technique as “ANN” in our 

comparison. Both of these studies use accuracy, precision, recall 

and f-measure as common measure of performance.  

 In RQ 1, we evaluate HFSS impact on performance of our 

machine learning models using RF, SVM, KNN and NB. HFSS 

deploy two methods to generate importance score for each attribute 

from dataset, so feature selection process is totally dynamic and 

features selected for each dataset can vary since only highly scoring 

top ten features are selected. More the target feature relies on any 

attribute better will be prediction. We applied HFSS on GL models 

using RF, SVM, KNN and NB.  

 In RQ 2, we evaluate the effect of heterogeneity of data 

on the performance of machine learning models using RF, SVM, 

KNN and NB. A local model uses internal clustering to find the 

non-heterogeneous region of data that exist within dataset. Global 

models uses complete data as single unit which is bifurcated into 

training set and testing set while in local models each cluster is 

further bifurcated into training and testing set so resulting in quite 

smaller dataset. Both GL models also use our hybrid feature 

selection strategy to further upscale the prediction performance of 

software defect prediction. 

 We performed our experiment using Intel (R) Core(TM) 

i5 -7200U CPU @ 2.50GHz, 8GB RAM. The programming 

language for scripting is Python 3.7 installed in Windows 10 

operating system. 

 

V. RESULTS AND DISCUSSIONS 

In this section, we provide the empirical results from our 

study to answer the research questions. 

RQ 1: How does our Hybrid feature selection strategy 

enhance the performance of SDP? 

To the best of our knowledge, we are the first one to propose 

a hybrid feature selection strategy using a univariate selection 

technique using chi-square statistical test and ensemble learning 

based feature importance technique to find the best possible 

features to give highly performing software defect prediction 

results. We provide the empirical results for baseline datasets using 

HFSS. In this research question we are concerned with only hybrid 

feature selection approach, so we will be comparing our global 

models using hybrid approach with baselines results. In order to 

make the understanding easier, we have highlighted the best results 

in tabular data by making them bold. 

Table 4: Experimental results for project KC1 using average of features score 

Project Model Accuracy Recall Precision f-measure 

  Global Local Global Local Global Local Global Local 

  G C1 C2 G C1 C2 G C1 C2 G C1 C2 

KC1 RF 0.89 0.93 0.70 0.98 0.99 0.86 0.90 0.93 0.74 0.94 0.96 0.79 

 SVM 0.89 0.92 0.69 0.98 1.00 0.97 0.90 0.92 0.69 0.94 0.96 0.81 

 NB 0.89 0.80 0.59 0.98 0.82 0.73 0.90 0.96 0.69 0.94 0.88 0.71 

 KNN 0.89 0.92 0.68 0.98 1.00 0.98 0.90 0.92 0.68 0.94 0.96 0.81 

 ANN 0.87   0.98   0.87   0.92   

Source: Authors, (2024). 

Table 5: Experimental results for project KC1 using product of features score 

Project Model Accuracy Recall Precision f-measure 

  Global Local Global Local Global Local Global Local 

  G C1 C2 G C1 C2 G C1 C2 G C1 C2 

KC1 RF 0.89 0.93 0.68 0.98 0.99 0.88 0.91 0.94 0.71 0.94 0.96 0.78 

 SVM 0.89 0.93 0.67 0.98 1.00 0.98 0.91 0.93 0.67 0.94 0.96 0.80 

 NB 0.89 0.82 0.56 0.98 0.85 0.72 0.91 0.95 0.65 0.94 0.90 0.68 

 KNN 0.89 0.93 0.66 0.98 1.00 0.99 0.91 0.93 0.66 0.94 0.96 0.79 

 ANN 0.87   0.98   0.87   0.92   

Source: Authors, (2024). 

In Table 4, we have results of our model using features 

selected by taking average of feature score. It can be seen that we 

have only one baseline study named ANN, accuracy of ANN is 

lower than accuracy of our models using RF, SVM, NB and KNN. 

In case of recall, our global models have equal results than that of 

ANN. But in case of precision and f-measure our models lead with 

3% and 2% respectively in comparison to ANN. In Table 5, we 

have results of our models using features selected by taking product 

of feature scores. In this case results obtained by our models are 

higher than baseline study. But the results from this experiment are 

even higher than the results from earlier experiment. Table 4 and 

Table 5 results for our global models are same in case of accuracy, 

recall and f-measure but 1% higher precision when product of 

features score is used as selection critieria. 
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Table 6 Experimental results for project JM1 using average of features score 

Project Model Accuracy Recall Precision f-measure 

  Global Local Global Local Global Local Global Local 

  G C1 C2 G C1 C2 G C1 C2 G C1 C2 

JM1 RF 0.81 0.78 0.91 0.96 0.96 0.97 0.83 0.80 0.94 0.89 0.87 0.95 

 SVM 0.81 0.78 0.92 0.96 0.99 1.00 0.83 0.78 0.92 0.89 0.88 0.96 

 NB 0.81 0.75 0.87 0.96 0.88 0.95 0.83 0.81 0.92 0.89 0.85 0.93 

 KNN 0.81 0.78 0.92 0.96 0.99 1.00 0.83 0.79 0.92 0.89 0.88 0.96 

 DPDF 0.79   0.15   0.49   0.23   

 ANN 0.83   0.98   0.83   0.90   

Source: Authors, (2024). 

Table 7 Experimental results for project JM1 using product of features score 

Project Model Accuracy Recall Precision f-measure 

  Global Local Global Local Global Local Global Local 

  G C1 C2 G C1 C2 G C1 C2 G C1 C2 

JM1 RF 0.81 0.79 0.90 0.96 0.95 0.97 0.83 0.82 0.92 0.89 0.88 0.95 

 SVM 0.81 0.80 0.90 0.96 0.99 1.00 0.83 0.80 0.90 0.89 0.89 0.95 

 NB 0.81 0.76 0.13 0.96 0.87 0.03 0.83 0.83 0.94 0.89 0.85 0.07 

 KNN 0.81 0.79 0.90 0.96 0.98 1.00 0.83 0.80 0.90 0.89 0.88 0.95 

 DPDF 0.79   0.15   0.49   0.23   

 ANN 0.83   0.98   0.83   0.90   

Source: Authors, (2024). 

 In Table 6 and Table 7, we have our results of using 

machine learning models on JM1 dataset, for this dataset we have 

one more baseline study DPDF [3]. Our global models for JM1 fail 

to surpass the performance of ANN in terms of accuracy, precision, 

recall and f-measure but our models performed better than the 

DPDF, which have 2% lower accuracy, while precision, recall and 

f-measure of DPDF are very low at 15%, 49% and 23% 

respectively. For JM1, both of our feature selection criteria have 

produced same results. 

Table 8 Experimental results for project PC3 using average of features score 

Project Model Accuracy Recall Precision f-measure 

    Global Local Global Local Global Local Global Local 
 

  G C1 C2 G C1 C2 G C1 C2 G C1 C2 

PC3 RF 0.91 0.93 0.88 0.98 0.99 0.97 0.93 0.93 0.90 0.95 0.96 0.93 

  SVM 0.91 0.93 0.88 0.98 1.00 1.00 0.93 0.93 0.88 0.95 0.97 0.94 

  NB 0.91 0.89 0.82 0.98 0.93 0.88 0.93 0.95 0.91 0.95 0.94 0.90 

  KNN 0.91 0.93 0.88 0.98 1.00 1.00 0.93 0.93 0.88 0.95 0.97 0.94 

  DPDF 0.90     0.07     0.26     0.11     

  ANN 0.90     0.99     0.90     0.95     

Source: Authors, (2024). 

Table 9 Experimental results for project PC3 using product of features score 

Project Model Accuracy Recall Precision f-measure 

    Global Local Global Local Global Local Global Local 
 

  G C1 C2 G C1 C2 G C1 C2 G C1 C2 

PC3 RF 0.91 0.96 0.85 0.98 1.00 0.96 0.93 0.96 0.88 0.95 0.98 0.92 

  SVM 0.91 0.96 0.86 0.98 1.00 1.00 0.93 0.96 0.86 0.95 0.98 0.92 

  NB 0.91 0.93 0.79 0.98 0.97 0.85 0.93 0.97 0.91 0.95 0.97 0.88 

  KNN 0.91 0.96 0.86 0.98 1.00 1.00 0.93 0.96 0.86 0.95 0.98 0.92 

  DPDF 0.90     0.07     0.26     0.11     

  ANN 0.90     0.99     0.90     0.95     

Source: Authors, (2024). 
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In Table 8 and Table 9, we presented our results of 

experiment based on the features selected using average and 

product of feature score obtained by hybrid feature selection 

strategy for PC3 dataset. It can be observed in the tables that, our 

models outperformed in terms of accuracy and precision when 

compared to ANN and DPDF while in case of recall and f-measure 

ANN has better performance. Performance of models is same for 

both types of feature selection criteria which lead us to experiment 

more with the criteria of setting the final score of feature selection.  

Since all three dataset has different metrics set, we applied 

our hybrid approach individually to grab the most important 

features out of the total metrics set. In comparison to baselines 

studies DPDF [3] and ANN [4], our prediction results in terms of 

accuracy, precision, recall and f-measure are highly significant. 

Since our dataset share only two common dataset with DPDF and 

three common dataset between ANN. Our results when compared 

with DPDF are 10% higher for JM1, 6% more for PC3 dataset in 

terms of accuracy. While results for precision, recall and f-measure 

using our technique are above 90% for each dataset, while DPDF 

results are below 50%. So there is a huge improvement in 

performance using hybrid feature selection strategy. When 

compared with ANN, for KC1 dataset our accuracy, precision, 

recall and f-measure are 6%, 2%, 8% and 4% higher respectively. 

For JM1 dataset, our accuracy, precision, recall and f-measure are 

7%, 2%, 7% and 5% higher respectively. For PC3 dataset, our 

accuracy, precision, recall and f-measure are 6%, 1%, 7% and 3% 

higher respectively. 

Reasons for our approach to achieve better performance are 

as follows:1. 

Compared with traditional machine learning approach and 

approach considered as baseline, our approach uses a more robust 

hybrid feature selection strategy which makes our models perform 

better by utilizing the best set of features and dynamic selection of 

features by calculating the importance score of each attribute on the 

fly:2. 

 Initially we adopted the process to find the most 

importance by taking mean of the scores obtained using product 

and average. But using mean of scores as threshold resulted in quite 

less number of features to be selected for model building and 

thereby resulting in poor performance. So we analysed the results 

from multiple iteration of experiment that the performance of all 

those models was satisfactory where number of features selected 

are more than 8 and less than 12. Finally it was observed that the 

models with 10 features selection have the majority and best 

performance. So we set the number of features to be selected be top 

10 on the basis of scores obtained using product and average. 

 

 
Figure:2 Dropline representation of empirical results using GL model with hybrid feature selection approach based on product. 

Source: Authors, (2024). 
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Figure:3 Dropline representation of empirical results using GL model with hybrid feature selection approach based on average. 

Source: Authors, (2024). 

Additional inferences can be deduced by comparing the 

dropline graphs shown in Fig. 2 and Fig. 3, which showcase the 

performance of our approach with different criteria of feature 

selection using hybrid feature selection approach. Product criteria 

of feature selection have attained better performance than average 

criteria for both GL models in majority of projects as well as 

performance metrics such as accuracy, precision, recall and f-

measure. 

RQ 2: How local models enhance the performance over global 

models? 

All traditional models as well as the baseline models uses 

complete dataset to generate training and testing set for their deep 

forest and neural network, which suffers from the problem of 

heterogeneity, our local models handle this problem by creating 

homogeneous clusters of data internally. So each local models 

creates two clusters C1 and C2, then further process to build 

models is similar to global models. 

 Results of KC1 shown in Erro! Argumento de opção 
desconhecido. depicts that accuracy of our global models is 

higher than the baseline study ANN because of hybrid feature 

selection strategy using average of features scores. This 

performance is further enhanced by using local models and it is 

evident from the results that local models score higher accuracy 

than that of global model, but it is true for only C1 cluster. Cluster 

C2 has poor performance as compared with its peer cluster C1, 

global and baseline ANN. These trends are repeated for precision, 

recall and f-measure too. In Table 5, we have prediction 

performance of our local models using hybrid feature selection 

strategy using product of feature scores. The results are better when 

compared to criteria of average feature score. 

 Erro! Argumento de opção desconhecido. depicts 

the result of dataset JM1, global models has poor accuracy as 

compared to ANN, while our local models have better accuracy 

than ANN. But only one cluster C2 has obtained better accuracy, 

C1 has accuracy lower than global models too. In case of precision, 

recall and f-measure global models have poor performance as 

compared to ANN but much higher than DPDF. Similar to 

accuracy, all of the local models of cluster C2 have best 

performance of all but C1 being least performing of all. In Table 7, 

we have results from criteria of selection as product of feature 

scores. Similar pattern of results can be observed when compared 

to criteria of average of features scores. When compared side by 

side, cluster C1 and C2 in Table 6 and Table 7, results in later case 

are comparatively better. 

 Table 8 and Table 9 shows the empirical results of dataset 

PC3, our global models have outperformed in terms of accuracy 

and precision when compared with baseline studies ANN and 

DPDF. But they fail to outperform the baseline ANN in terms of 

recall while resulting in equal performance in terms of f-measure. 

Till now for project KC1 and JM1 we have observed that local 

models have performed better than our global models. Same is the 

case with this project; local models have better results in C1 and 

poor results in cluster C2. Following the patterns observed in 

project KC1 and JM1, our feature selection criteria of product of 

feature scores have always performed better the criteria of average 

of features score.  

 For each project, we get one observation of accuracy, 

precision, recall and f-measure for global models and 2 

observations for cluster C1 and C2 of local models. A total of 12 

observations are obtained for each machine learning model 

corresponding to each project. So we have a total of 144 

observations with 48 observations per projects. For global models 

all of the machine learning models (SVM, NB, RF and KNN) have 

equal performance in terms of accuracy, precision, recall and f-

measure. SVM and NB have dominance in at least one of 

performance metrics results of cluster C1 and C2 of local models. 

SVM has highest accuracy in all three projects in cluster C1 

defeating the baseline results. SVM also has highest recall and f-

measure for all three projects with two highest in cluster C1 and 

one highest in C2. NB has highest precision for all three projects 

with leading twice in cluster C1 and once in C2. From the above 
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facts obtained from empirical study, we can deduce that SVM and 

NB based machine learning models are sufficient to build efficient 

defect prediction system. SVM is non-parametric model and NB is 

parametric model, so they contradict each other and can be 

effectively used to balance the performance. 

 Overall by observing the results for three projects KC1, 

JM1 and PC3 as represented in Fig. 2, we can conclude that local 

models in conjunction with our hybrid feature selection strategy 

have proven to be most effective in terms of accuracy, precision, 

recall and f-measure than global models as well as the two baseline 

studies. We can analyse that results are quite different for cluster 

C1 and C2. This is because most of our dataset have imbalance data 

which results in one of the cluster being highly homogeneous and 

other cluster being left with the outliers and heterogeneous dataset 

and reduced dataset size. We call this as one-cluster problem where 

one cluster fails to obtain sufficient data due to grouping of 

majority in other cluster. Reduction is size has negative impact on 

performance when combined with heterogeneous data. 

VI. CONCLUSION 

This study aims to boost the performance of SDP techniques 

by investigating the problem of heterogeneity within dataset using 

GL models. Local models provide the basis for mitigation of 

problem of heterogeneity by identifying internal regions of 

homogeneous data. We used four machine learning algorithms 

namely RF, SVM, KNN and NB for implementing our proposed 

approach and tested the validity of Hybrid Feature Selection 

Strategy (HFSS). We computed the performance of our approach 

in terms of accuracy, precision, recall and f-measure. 

According to empirical study conducted on three projects of 

PROMISE repository, results indicate that our proposed approach 

using local models in conjunction with HFSS has achieved better 

results than baseline studies. Local models have proven to be 

convincing in obtaining homogeneous clusters of data. Certain 

local models suffered due to minimum data requirements when 

majority of data is group in one cluster while other cluster 

containing only outliers leading to one-cluster problem. In 

summary, our results show that our approach is practically feasible 

and can be applied on any datasets. In future, we will apply our 

approach to more datasets and try to provide solution to one-cluster 

problem. 
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