
Journal of Engineering and Technology for Industrial Applications

ITEGAM-JETIA

Manaus, v.10n.48, p. 92-102. July/August., 2024.

DOI: https://doi.org/10.5935/jetia. v10i48.991

RESEARCH ARTICLEOPEN ACCESS

ISSN ONLINE: 2447-0228

Journal homepage: www.itegam-jetia.org

SOFTWARE DEFECT PREDICTION USING GLOBAL AND LOCAL MODELS

*Vikas Suhag1, Sanjay Kumar Dubey2 and Bhupendra Kumar Sharma3

1,2 Department of Computer Science and Engineering, Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India.
3 Northern India Textile Research Association, Ghaziabad, Uttar Pradesh, India.

1 http://orcid.org/0000-0002-6341-6375 , 2 http://orcid.org/0000-0003-3808-6623 , 3 http://orcid.org/0009-0003-1577-3647

Email: *vikasuhag@hotmail.com1 , skdubey1@amity.edu2 , drbkjpr@ymail.com3

ARTICLE INFO ABSTRACT

Article History

Received: December 08th, 2024

Reviseed: July 08th, 2024

Accepted: July 08th, 2024

Published: July 18th, 2024

Despite intense investigation in the area of software defect prediction, there are some critical

regions that still need attention. Heterogeneity of data is one of these areas that seek

attention. Local models have gained focus in resolving the problem of heterogeneity.

Limited studies have proven local models to be better than global models, so there is

contradiction among researcher. Various researchers also considered feature selection as a

method to mitigate the affect of heterogeneity. Our study presents a hybrid feature selection

strategy with global and local (GL) models of software defect prediction (SDP). The

proposed Hybrid Feature Selection Strategy (HFSS) has additionally improved the

predicting power of GL models. Empirical results showcase that local models have

preferential results than global models. Our study compared proposed approach with

baselines techniques from literature on three PROMISE projects and traditional global

models. Our proposed approach achieved better results in terms of accuracy, precision,

recall and f-measure.

Keywords:

Local models,

global models,

defect prediction,

machine learning,

feature selection.

Copyright ©2024 by authors and Galileo Institute of Technology and Education of the Amazon (ITEGAM). This work is licensed

under the Creative Commons Attribution International License (CC BY 4.0).

I. INTRODUCTION

With growing complexity of the software, it is generally

hard to develop software that is free from anomalies or defects.

Errors or bugs might creep in during development due to logical or

typographical errors. These errors must be detected timely for the

reduction in maintenance cost of the software and ensure timely

delivery of the project. For years, the companies have been

deploying various testing techniques to identify bugs in the

software[1]. But as the project size increases, testing becomes

complex, costly, time consuming and finding defects becomes

tedious.

Shippey [2] utilized the Abstract Syntax Tree n-grams to

identify fault inducing code features. Zhou [3] developed deep

forest models using the cascade strategy of ensemble learning (EL)

and deep learning for effective SDP. Jayanthi & Florence [4]

presented solution for improving performance of software defect

prediction (SDP) by combining feature reduction and classification

using artificial neural network. D. Rodriguez et. al. [5] proposed

Zero Inflated Poisson (ZIP) models for SDP using R packages.

Ostrand et. al. [6] and Borandag et. al. [7] proposed SDP using

negative binomial regression and majority vote feature selection

based Naive Bayes (NB), k-nearest Neighbour (KNN), J48 models

respectively. Therefore, recently researchers started working on

software defect prediction.

SDP is one kind of software quality assurance techniques,

which aims to detect proneness to defect by learning from defect

data [8]. SDP helps in optimal allocation of resources for

development and maintenance. Various SDP techniques have

arisen over the time viz. Cross Project Defect Prediction (CPDP)

[9], Within Project Defect Prediction (WPDP) [10], and techniques

based on local models [11], global models [11], few shot learning

[12], transfer learning [13] etc.

Most of defect prediction techniques use machine learning

models to predict bugs. Machine learning models uses labelled

source code metrics data to train and test the model. Herbold et.al.

[14] used several combinations of complexity metrics such as lines

of code (LOC), average method complexity (AMC), McCabe’s

cyclomatic complexity (MCC), maximum and average cyclomatic

complexity among methods, hallstead metrics. Nam et.al. [15] used

LOC [16], MCC, halstead and various other metrics are used by

rearchers are number of additions[17], number of deletions[17].

Analysing such source code metrics can give useful insights about

the code, so as to predict future defects. Thus, SDP helps us

mailto:vikasuhag@hotmail.com
mailto:skdubey1@amity.edu
mailto:drbkjpr@ymail.com

One, Two and Three, ITEGAM-JETIA, Manaus, v.10 n.48, p. 92-102, July/August., 2024.

recognize bugs in source code by analyzing the source code metrics

data.

Most of the studies on SDP have used the machine

learning models on the entire dataset of project, where data values

are not evenly distributed, causing the problem of heterogeneity

within the dataset. Heterogeneity is mainly caused by the different

measurements standards and data differences between projects. But

dataset contain some internal regions of data, which are

homogeneous in nature. These homogeneous units of data within

projects can help resolve heterogeneity issues. So homogeneous

regions are created using clusters and then the modelling

techniques are applied on those regions. The resulting models are

termed as local models. However, in global models, the prediction

models are applied over the complete dataset as a single unit as

shown in Fig. 1 [18].

Figure 1: GL models

Source: Authors, (2024).

 Research questions: In our study, we provided a hybrid

feature selection strategy (HFSS) to find the most important feature

set from dataset, local models to mitigate the effect of

heterogeneity of data. Just in Time (JIT) GL models integrated with

end to end software defect prediction framework for real-time

defect prediction using commit level data. So we set out certain

research question such as

1. How does our Hybrid feature selection strategy enhance the

performance of SDP?

2. How local models enhance the performance over global

models?

The remainder of the paper is coordinated as follows. In

section 2, we examined the connected work about the utilization of

GL models for defect prediction. Section 3 presents HFSS. Section

4 elaborates the experimental setup with algorithms to implement

GL models with HFSS. Section 5 gives the exploratory outcomes

and contrasts the outcomes with existing investigations. Then we

present the lessons gained from analysis. Finally we conclude our

findings in section 6.

II. RELATED WORK

There has been enormous exploration in the space of SDP.

In a study by J.Ostrand [6], they considered the heterogeneity of

data to be the reason for conclusion instability in various studies.

They observed that most studies don’t have a conclusion about

which method is best rather studies just classify the methods being

best in different contexts. So they proposed the concept of global

and local (GL) models for which they developed two algorithms

namely “WHERE” to cluster the data and “WHICH” to learn local

lessons from each cluster. Xu et.al. [8] finds the problem to keep

data private while training models on private data distributed over

several devices and issue of scalability in large models. So they

proposed a federated learning approach which uses local

representations on individual devices and global models across

multiple devices.

Problem of heterogeneity of data has been a concern in

multiple studies. To deal with this concern, S. Amasaki [9] used

local model in a case study over social data resulting in no

advantage in performance in comparison to global models. So

proposed a hybrid approach using GL models i.e. Multivariate

Adaptive Regression Splines (MARS). In other study Pan et.al.

[10] applied metric selection to remove less informative metrics

from the source project followed by metrics matching between

source and target using methods of percentiles, Kolmogorov-

Smirnov Test, Spearman’s correlation.

However, the issues in defect prediction still exist. For

instance, Menzies et al. discussed the issue of conclusion instability

in software engineering research [19]. He states that studies do not

provide a final conclusion regarding which technique or solution is

best, and just classify the results based on the deployed techniques.

They consider that conclusion instability is mainly caused by data

heterogeneity. Their review uncovered that when similar strategies

are applied globally to all information and when applied to intra-

cluster information, and the outcomes are very unique. They found

that local analysis has better results when the same methods are

applied to GL data [19]. Feature selection, instance selection,

extension of data collection and monte carlo simulation over space

options have been effective in handling instability problems.

There is lack of studies which focus on local models for

SDP. The local models were first introduced by Menzies et al.

[19][18] for defect prediction and effort estimation, and later

studied by Bettenburg et al.[20][21]. Both of them observe similar

results for precision in defect prediction. In the third study,

Scanniello[22] investigated the dependencies among the classes as

criteria for clustering or grouping using borderFlow clustering

algorithm rather than similar properties of classes.

Yang conducted an experiment to check validity of local

models in JIT SDP context [11]. The experimental study was done

on five open source software projects (OSSP) with three scenarios

cross-validation, cross project validation, and time-wise cross-

validation. They used k-medoids to split training data in several

homogeneous regions for local models. Logistic Regression (LR)

and effort aware linear regression (EALR) were used for

classification models and effort aware predictor [11]. Their

empirical results showed that local models performed worse than

global models in classification. Another researcher [23]studied the

impact of leading and trailing source lines of code changed in

commit. They called it context metrics and carried out an empirical

study on six open source projects for JIT defect

prediction[23].Their context metrics outperformed the traditional

code churn metrics with respect to the Area Under receiver

operating characteristic Curve (AUC) and Metthews Correlation

Coefficient. Zhang and colleagues proposed an effort aware Tri-

training (EATT) semi-supervised method for JIT defect

prediction[17]. Trautsch et al. proposed a cost saving model for JIT

defect prediction by improving data collection, data labelling and

feature selection. They considered the manually validated issues

and improved Sliwerski-Zimmermann-Zeller (SZZ) algorithm for

Page 93

One, Two and Three, ITEGAM-JETIA, Manaus, v.10 n.48, p. 92-102, July/August., 2024.

labelling the data and carried out a case study on thirty eight java

projects[24].

 Poncin developed a framework for analysing software

repositories for combining different repositories and matching

emails sent about a file, file modification and bug reports[25].

Thong [26] proposed a framework using deep learning to

automatically extract features from code changes, commit

messages to identify the defects and conducted experiments on QT

and OPENSTACK. Aalok [27] studied the concept of sleeping

defects. Sleeping defects are those which are not recognized in

intermediate release but in later release. They analysed six open

source projects from Github from the Apache ecosystem.

Finding a relation between commits and bugs has been a

challenging task since the beginning of software defect prediction.

SZZ is a heuristic based solution for finding defect inducing

changes. Different researchers have fostered their own

implementation of the SZZ algorithm. [28] presented an open

implementation of SZZ for Github repositories. Fukushima [29]

has proposed JIT models which provide eager feedback as

compared to traditional models. They have used data from multiple

software projects to produce training data and also integrate

multiple models to create ensemble models. Jing et al. has provided

a solution to class imbalance problems using Subclass

Discriminant Analysis (SDA) [30]. SDA is a feature learning

method, which divides a class into multiple subclasses and learns

features from it using robust classification.

Borandag [7] proposed a feature selection algorithm using

majority vote from multiple filters namely information gain,

symmetrical uncertainty, Relief-F and correlation based filters.

Shippey [2] utilized AST N-grams to identify the most encouraging

features for software defect prediction. A cluster based approach

FeSCH (Feature selection using Clusters of Hybrid data) [31] was

proposed to extract the software features using the ranking strategy,

feature selection ratio and classifiers for cross project defect

prediction. Shivajikumar [32] empirically compared various

attribute selection filter and wrapper method to obtain the feature

set with optimal performance using SVM and Naive Bayes. They

used scores from gain ratio attribute evaluation, chi-squared

attribute evaluation, significance attribute evaluation, relief-F

attribute selection and wrapper methods to select the features in an

iterative manner until optimal performance is reached.

Motivation:

Menzies [19] found that, local models are superior to

global models but Yang [11] contradicts their finding by presenting

poor performance of local models in comparison to global models

for classification. Pecorelli [33] presented no difference in

performance of GL models. So it becomes significant to explore

GL models in depth and present a tangible solution.

Data collected from repositories is not that clean to be directly

consumable in predictive models. Supervised machine learning

models suffers from various issue due to missing values, redundant

data, irrelevant data, outliers, imbalanced and highly unrelated

data. These pitfalls in data could be due to different scale of

measurements for attributes, attribute types like Boolean or

numeric, dependence among attributes like age is derived from date

of birth, data collection issues. So attribute / feature selection play

a crucial role in predictive performance of supervised machine

learning algorithms as stated in [10] [31]. Jayanthi & Florence [4]

used Principal Component Analysis (PCA) based feature reduction

to improve accuracy of classification models. Borandag [7]

proposed Majority vote based feature selection by first ranking the

metrics on the basis of their importance and followed by voting

scheme. Chao Ni [34] proposed two step feature selection method

which includes, initial feature cluster selection based on density

followed by ranking to choose appropriate cluster. Shivaji et. al.

[32] utilizes various feature selection techniques such as Gain ratio,

Chi-Squared, Relief-F, wrapper method using SVM and NB. So we

proposed HFSS presented in next section.

Most studies consider the problem of heterogeneity, high

variability in dataset and their solution include developing local

models, multivariate adaptive regression splines and metrics

selection to improve the performance of prediction models. In our

study, we are using GL models in conjunction with HFSS for defect

prediction. This study is first of its kind to the best of our

knowledge.

III. HYBRID FEATURE SELECTION STRATEGY (HFSS)

HFSS uses two methods of feature selection to prepare data

for best predictions. First is univariate selection technique which

uses statistical tests to find the features with best relationship with

target class. In this technique, we use chi-squared statistical test-

based technique to find relationship score of each attribute with the

target attribute. Second is feature importance determination

technique which uses extra tree classifier to give scores to each

feature in dataset, higher the score more the relevance of feature

for target attribute.

Chi-squared based selectKBest approach

We implemented our approach using the library functions

from scikitlearn python library using selectKBest() function with

chi-squared statistical method. It provides the score of relationship

between features and the target class. Since chi-square is a

univariate test so it does not consider the inter-relation between

features. This is a kind of filter method which brings the top

features with high relation with target feature. Feature score for all

attributes of KC1 dataset are shown in Table 1.

Extra tree classifier (ETC)

Extra Tree classifier is ensemble learning based feature

importance technique, which determine the importance of features

by aggregating the results from multiple de-correlated decision

trees. De-correlated decision tree uses random samples of n

features from original dataset. Each decision tree gets the n number

of features selected and information gain is calculated for all of the

selected features. Information gain determines the reduction in

entropy by transforming the dataset. Increase in information gain

of a variable reduces the entropy and divide the data into multiple

groups for effective classification.

In our case we are using a binary classification, so entropy

can be calculated as

Entropy = -(p(0) * log(P(0)) + p(1) * log(P(1)))

Data with a 50/50 distribution of samples for the two groups would

have maximum entropy, whereas an highly imbalanced dataset

with a distribution of 20/80 would have smaller entropy for a

randomly drawn sample from the data.

Information gain is used as the decision criteria to select the

best features from dataset.

IG(S, a) = H(S) – H(S | a)

where IG(S,a) is the information gain for dataset S for a

random attribute a, H(S) is the entropy of dataset before any

transformation, H(S|a) is the conditional entropy for given dataset

with respect to attribute a, which can be calculated as

H(S | a) = sum v in a Sa(v)/S * H(Sa(v))

where Sa(v)/S is the proportion of the number of samples in

the dataset with attribute a has the value v, and H(Sa(v)) is the

entropy of each group of samples where attribute a has the value v.

Page 94

One, Two and Three, ITEGAM-JETIA, Manaus, v.10 n.48, p. 92-102, July/August., 2024.

Finally aggregating the information gain of each feature of

dataset provides the ETC score. ETC score for KC1 dataset are

depicted in Table 1. This can be accomplished utilizing the scikit-

learn python libraries.

Table 1: Feature selection using SelectKBest and ETC of KC1
Feature

index

SelectKBest

Score (A)

ETC Score

(B)

Product

(A*B)

Average of A

& B

0 16.515864 0.10062259 1.661869012 8.308243295

1 13.864425 0.03607222 0.500120589 6.95024861

2 4.850053 0.02296492 0.111381079 2.43650896

3 11.928183 0.03742913 0.446461512 5.982806065

4 13.951151 0.05930609 0.827388217 7.005228545

5 12.065444 0.06277575 0.757417296 6.064109875

6 11.653458 0.04660503 0.54310976 5.850031515

7 24.944794 0.05937611 1.481124832 12.50208506

8 15.896106 0.06095661 0.968972734 7.978531305

9 7.361797 0.05576291 0.410515224 3.708779955

10 12.364661 0.04277111 0.528850276 6.203716055

11 7.361727 0.05531765 0.407233438 3.708522325

12 16.276982 0.07621391 1.240532441 8.176597955

13 18.683501 0.05439372 1.016265122 9.36894736

14 19.307992 0.06350016 1.226060581 9.68574608

15 13.253962 0.05855625 0.776102312 6.656259125

16 15.128712 0.07149166 1.081576735 7.60010183

17 14.083211 0.03588416 0.505364197 7.05954758

 Mean 0.805019 6.958112

Source: Authors, (2024).

In order to optimize the accuracy of our supervised machine

learning models, we took two cases of feature selection depending

upon the scores obtained using selectKBest and ETC. In first case

we multiplied the score of selectKBest and ETC values while in

second case we took the average of two scores. After calculating

product and average of scores, it is critical to decide the number of

attributes to be selected. For that we took mean of product and

average scores and used it as minimum threshold value to

determine the number of attributes to be chosen. So features

selected as per threshold values shown in Table 1, for product

metrics are 0, 7,12,14,16,13,8,4 and for average metrics are

7,14,13,0,12,8,16,17,4,1. So a total of eight features are selected

using product metrics and ten features are selected using average

metrics.

IV. EXPERIMENTAL SETUP

 In this section, we first describe the datasets used in our

experiment. Then we introduce the models selected to carry out

defect prediction. We provide the details of our empirical setup,

which enhances the software defect prediction as compared to

traditional techniques.

 Dataset: We applied our proposed approach to existing

benchmark dataset from PROMISE repository. PROMISE dataset

was developed by Jureczko et. al. [35] containing defect data from

java projects. PROMISE repository datasets are downloaded from

the internet in .csv format. Selected projects from PROMISE are

JM1, PC3 and KC1. Since all these software projects dataset

contain some extra attributes in comparison to software metrics

used by our framework. So removing the extra features make this

data directly usable for our framework. JM1, PC3 and KC1

contains 10885, 1563, 2109 rows respectively. Detailed statistics

of dataset are shown in Table 2.

Table 2: Statistics of dataset

Project
Number.of

rows

Numbers of

attributes
% buggy

Duplicates

entries

KC1 2109 22 15.45 900

JM1 10885 22 19.35 0

PC3 1563 38 10.23 157

Source: Authors, (2024).

Data Pre-processing: Data pre-processing plays a critical role in

order to build high performing prediction models. Our system

deploys five steps of data pre-processing.

1. Duplicate Removal: In this step all the duplicate entries

are removed while keeping only the first entry.

2. Handling missing values: The data contained some blank

or empty fields. Their values might be either optional or

left out due to developer’s negligence. The mean of the

attribute method was used to fill those gaps.

3. Scaling: Scaling of data becomes important when

distance based modelling is used rather than tree based.

So normalization of data is a required for SVM, KNN and

Naive Bayes while not for Random Forest.

4. Managing Outliers: The outliers in the data have a

tremendous impact on the predictive power. There are a

number of outliers handling techniques like z-score, IQR,

removal of outliers etc. This study used the z-score >3 as

a threshold to mitigate outliers in our dataset.

5. Feature selection: When attributes of a dataset are tightly

coupled, leading to overfitting and underfitting problems.

Then it becomes obvious to reduce dimensions by

selection of relevant features only. Our hybrid feature

selection technique discussed in section 3 is used for

feature selection. Features selected for each data will be

different since the feature scores obtained using our

approach are calculated dynamically.

 Model selection: In our experiment, we applied four

machine learning models to measure the efficiency of our proposed

approach. Most machine learning algorithm suffers from the

problem of either overfitting or underfitting. Overfitting refers to a

model that models the training data excessively well while

underfitting refers to a data model that cannot train a model

properly and cannot generalize to new data. Both of these lead to

poor performance of models. Overfitting is more probable with

non-parametric and non-linear models that have greater

adaptability when learning a target function. We applied three non-

parametric models KNN, Random Forest (RF), SVM and one

parametric model Naive Bayes (NB). There are two reasons for

choosing these models for defect prediction. First these models are

widely used in research community and have proven their ability.

Secondly there exist some underlying differences in their

implementation while performance is quite comparable with other

baselines studies. All these models have been utilized with their

default parameter setting using scikit learn python libraries, which

make our experiment effectively reproducible.

 Model building: Our approach deploys two types of

models, namely global models and local models. Global models

use complete available data from a given dataset to build prediction

models, while internally partitioning it into training and test sets.

Algorithm for Global Models:

Page 95

One, Two and Three, ITEGAM-JETIA, Manaus, v.10 n.48, p. 92-102, July/August., 2024.

1. IMPORT required libraries including Scikit learn

2. IMPORT the dataset in .csv format

3. PRE-PROCESSING

a. Remove duplicates from data while keeping the

first row.

b. Replace missing values with mean of attribute

values.

c. REMOVE Outliers using z-score values < 3

d. FEATURE SELECTION using Hybrid Feature

selection Strategy [section 3]

4. SCALE data using MinMaxScaler

5. Split data into training and test set in 70:30 ratio.

6. FOREACH model RF, SVM, KNN and NB

a. Train classifier model using training set.

b. Calculate performance metrics (accuracy,

precision, recall, f-measure) of model using

available test set.

END FOREACH

 In Local models, whole of the data is first splitted into

homogeneous regions and then individual classification algorithms

are applied to individual regions. These models help in handling

problems of heterogeneity in data [14]. Herbold et.al. [14]

evaluated the local models and investigated their advantages and

drawbacks in cross project scenarios. They also compared the local

models with global models and transfer learning models in cross

project. They found negative improvement using the local model

in comparison to global models.

In our system, we initially partitioned data into different regions in

local models, but in later phase local models are similar to global

models. Hence deploy the machine learning models to create

training and testing sets before finally building the model. Our

algorithm uses k-means to create clusters. Since dataset size of our

most projects is in thousands only, so we selected k=2, so that each

of the cluster contains some data values.

Algorithm for Local Models:

1. IMPORT required libraries including Scikit learn

2. IMPORT the dataset in .csv format

3. PRE-PROCESSING

a. Remove duplicates from data while keeping the

first row.

b. Replace missing values with mean of attribute

values.

c. REMOVE Outliers using z-score values < 3

d. FEATURE SELECTION using Hybrid Feature

selection Strategy [section 3]

4. SCALE data using MinMaxScaler

5. CREATE CLUSTERS(C1 and C2) using k-means

clustering with k=2

6. FOREACH CLUSTER C1 and C2

a. Drop target column from dataset.

b. Split data into training and test set in 70:30 ratio.

c. FOREACH model RF, SVM, KNN and NB

i. Train classifier model using training

set.

ii. Calculate performance metrics

(accuracy, precision, recall, f-measure)

of model using available test set.

iii. END FOREACH

END FOREACH

Table 3: Data dimensions of the experiment.

Project
Model

type
Cluster

Dataset

Size

After

Duplicate

Removal

Training

Size

Test

Size

JM1 Local C1
(10885,

19)

(8883,

19)

(1192,

10)

(511,

10)

JM1 Local C2
(10885,

19)

(8883,

19)

(4601,

10)

(1973,

10)

JM1 Global -
(10885,

19)

(8883,

19)

(5793,

18)

(2484,

18)

KC1 Global -
(2109,

19)

(1209,

19)
(775, 18)

(333,

18)

KC1 Local C1
(2109,

19)

(1209,

19)
(531, 10)

(228,

10)

KC1 Local C2
(2109,

19)

(1209,

19)
(244, 10)

(105,

10)

PC3 Local C1
(1563,

19)

(1406,

19)
(574, 10)

(246,

10)

PC3 Local C2
(1563,

19)

(1406,

19)
(347, 10)

(150,

10)

PC3 Global -
(1563,

19)

(1406,

19)
(921, 18)

(396,

18)

Source: Authors, (2024).

 Table 3 showcase the dataset dimension of all three

projects after cleaning of dataset to remove duplicates and division

into training and testing set for machine learning models.

Evaluation measure: A number of performance evaluation

methods are available for machine learning classifiers. We use four

performance indicators i.e. Accuracy, Precision, Recall and f-

measure. These are most widely used in research community which

make comparison of results easy with other baseline studies.

Accuracy is an indicator of how many classifications are correct.

Precision and recall contradict each other, so keeping balance of

both is required. Higher the recall will lead to low precision. While

F-measure is a harmonic mean of recall and precision, which give

the most accurate measure of performance of predictive model.

Page 96

One, Two and Three, ITEGAM-JETIA, Manaus, v.10 n.48, p. 92-102, July/August., 2024.

 Baseline methods: To prove the effectiveness of our

approach we compared our HFSS with two baseline studies for

defect prediction techniques i.e. DPDF [3], Neural Network

classifier based approach [4]. In their study Zhou et. al. proved that

their deep forest based model for software defect prediction using

cascade multilayer ensemble of random forest has better

performance than gcForest. They compared DPDF using 25

projects from NASA, PROMISE, AEEEM and Relink datasets.

They also used z-score to process the original data. Jayanthi et. al.

[4] applied improved version of PCA using artificial neural

network to establish the performance of their models on 4 projects

from PROMISE dataset. Since their study used artificial neural

network (ANN) and they have provided no nomenclature to their

technique, so we will denote their technique as “ANN” in our

comparison. Both of these studies use accuracy, precision, recall

and f-measure as common measure of performance.

 In RQ 1, we evaluate HFSS impact on performance of our

machine learning models using RF, SVM, KNN and NB. HFSS

deploy two methods to generate importance score for each attribute

from dataset, so feature selection process is totally dynamic and

features selected for each dataset can vary since only highly scoring

top ten features are selected. More the target feature relies on any

attribute better will be prediction. We applied HFSS on GL models

using RF, SVM, KNN and NB.

 In RQ 2, we evaluate the effect of heterogeneity of data

on the performance of machine learning models using RF, SVM,

KNN and NB. A local model uses internal clustering to find the

non-heterogeneous region of data that exist within dataset. Global

models uses complete data as single unit which is bifurcated into

training set and testing set while in local models each cluster is

further bifurcated into training and testing set so resulting in quite

smaller dataset. Both GL models also use our hybrid feature

selection strategy to further upscale the prediction performance of

software defect prediction.

 We performed our experiment using Intel (R) Core(TM)

i5 -7200U CPU @ 2.50GHz, 8GB RAM. The programming

language for scripting is Python 3.7 installed in Windows 10

operating system.

V. RESULTS AND DISCUSSIONS

In this section, we provide the empirical results from our

study to answer the research questions.

RQ 1: How does our Hybrid feature selection strategy

enhance the performance of SDP?

To the best of our knowledge, we are the first one to propose

a hybrid feature selection strategy using a univariate selection

technique using chi-square statistical test and ensemble learning

based feature importance technique to find the best possible

features to give highly performing software defect prediction

results. We provide the empirical results for baseline datasets using

HFSS. In this research question we are concerned with only hybrid

feature selection approach, so we will be comparing our global

models using hybrid approach with baselines results. In order to

make the understanding easier, we have highlighted the best results

in tabular data by making them bold.

Table 4: Experimental results for project KC1 using average of features score

Project Model Accuracy Recall Precision f-measure

 Global Local Global Local Global Local Global Local

 G C1 C2 G C1 C2 G C1 C2 G C1 C2

KC1 RF 0.89 0.93 0.70 0.98 0.99 0.86 0.90 0.93 0.74 0.94 0.96 0.79

 SVM 0.89 0.92 0.69 0.98 1.00 0.97 0.90 0.92 0.69 0.94 0.96 0.81

 NB 0.89 0.80 0.59 0.98 0.82 0.73 0.90 0.96 0.69 0.94 0.88 0.71

 KNN 0.89 0.92 0.68 0.98 1.00 0.98 0.90 0.92 0.68 0.94 0.96 0.81

 ANN 0.87 0.98 0.87 0.92

Source: Authors, (2024).

Table 5: Experimental results for project KC1 using product of features score

Project Model Accuracy Recall Precision f-measure

 Global Local Global Local Global Local Global Local

 G C1 C2 G C1 C2 G C1 C2 G C1 C2

KC1 RF 0.89 0.93 0.68 0.98 0.99 0.88 0.91 0.94 0.71 0.94 0.96 0.78

 SVM 0.89 0.93 0.67 0.98 1.00 0.98 0.91 0.93 0.67 0.94 0.96 0.80

 NB 0.89 0.82 0.56 0.98 0.85 0.72 0.91 0.95 0.65 0.94 0.90 0.68

 KNN 0.89 0.93 0.66 0.98 1.00 0.99 0.91 0.93 0.66 0.94 0.96 0.79

 ANN 0.87 0.98 0.87 0.92

Source: Authors, (2024).

In Table 4, we have results of our model using features

selected by taking average of feature score. It can be seen that we

have only one baseline study named ANN, accuracy of ANN is

lower than accuracy of our models using RF, SVM, NB and KNN.

In case of recall, our global models have equal results than that of

ANN. But in case of precision and f-measure our models lead with

3% and 2% respectively in comparison to ANN. In Table 5, we

have results of our models using features selected by taking product

of feature scores. In this case results obtained by our models are

higher than baseline study. But the results from this experiment are

even higher than the results from earlier experiment. Table 4 and

Table 5 results for our global models are same in case of accuracy,

recall and f-measure but 1% higher precision when product of

features score is used as selection critieria.

Page 97

One, Two and Three, ITEGAM-JETIA, Manaus, v.10 n.48, p. 92-102, July/August., 2024.

Table 6 Experimental results for project JM1 using average of features score

Project Model Accuracy Recall Precision f-measure

 Global Local Global Local Global Local Global Local

 G C1 C2 G C1 C2 G C1 C2 G C1 C2

JM1 RF 0.81 0.78 0.91 0.96 0.96 0.97 0.83 0.80 0.94 0.89 0.87 0.95

 SVM 0.81 0.78 0.92 0.96 0.99 1.00 0.83 0.78 0.92 0.89 0.88 0.96

 NB 0.81 0.75 0.87 0.96 0.88 0.95 0.83 0.81 0.92 0.89 0.85 0.93

 KNN 0.81 0.78 0.92 0.96 0.99 1.00 0.83 0.79 0.92 0.89 0.88 0.96

 DPDF 0.79 0.15 0.49 0.23

 ANN 0.83 0.98 0.83 0.90

Source: Authors, (2024).

Table 7 Experimental results for project JM1 using product of features score

Project Model Accuracy Recall Precision f-measure

 Global Local Global Local Global Local Global Local

 G C1 C2 G C1 C2 G C1 C2 G C1 C2

JM1 RF 0.81 0.79 0.90 0.96 0.95 0.97 0.83 0.82 0.92 0.89 0.88 0.95

 SVM 0.81 0.80 0.90 0.96 0.99 1.00 0.83 0.80 0.90 0.89 0.89 0.95

 NB 0.81 0.76 0.13 0.96 0.87 0.03 0.83 0.83 0.94 0.89 0.85 0.07

 KNN 0.81 0.79 0.90 0.96 0.98 1.00 0.83 0.80 0.90 0.89 0.88 0.95

 DPDF 0.79 0.15 0.49 0.23

 ANN 0.83 0.98 0.83 0.90

Source: Authors, (2024).

 In Table 6 and Table 7, we have our results of using

machine learning models on JM1 dataset, for this dataset we have

one more baseline study DPDF [3]. Our global models for JM1 fail

to surpass the performance of ANN in terms of accuracy, precision,

recall and f-measure but our models performed better than the

DPDF, which have 2% lower accuracy, while precision, recall and

f-measure of DPDF are very low at 15%, 49% and 23%

respectively. For JM1, both of our feature selection criteria have

produced same results.

Table 8 Experimental results for project PC3 using average of features score

Project Model Accuracy Recall Precision f-measure

 Global Local Global Local Global Local Global Local

 G C1 C2 G C1 C2 G C1 C2 G C1 C2

PC3 RF 0.91 0.93 0.88 0.98 0.99 0.97 0.93 0.93 0.90 0.95 0.96 0.93

 SVM 0.91 0.93 0.88 0.98 1.00 1.00 0.93 0.93 0.88 0.95 0.97 0.94

 NB 0.91 0.89 0.82 0.98 0.93 0.88 0.93 0.95 0.91 0.95 0.94 0.90

 KNN 0.91 0.93 0.88 0.98 1.00 1.00 0.93 0.93 0.88 0.95 0.97 0.94

 DPDF 0.90 0.07 0.26 0.11

 ANN 0.90 0.99 0.90 0.95

Source: Authors, (2024).

Table 9 Experimental results for project PC3 using product of features score

Project Model Accuracy Recall Precision f-measure

 Global Local Global Local Global Local Global Local

 G C1 C2 G C1 C2 G C1 C2 G C1 C2

PC3 RF 0.91 0.96 0.85 0.98 1.00 0.96 0.93 0.96 0.88 0.95 0.98 0.92

 SVM 0.91 0.96 0.86 0.98 1.00 1.00 0.93 0.96 0.86 0.95 0.98 0.92

 NB 0.91 0.93 0.79 0.98 0.97 0.85 0.93 0.97 0.91 0.95 0.97 0.88

 KNN 0.91 0.96 0.86 0.98 1.00 1.00 0.93 0.96 0.86 0.95 0.98 0.92

 DPDF 0.90 0.07 0.26 0.11

 ANN 0.90 0.99 0.90 0.95

Source: Authors, (2024).

Page 98

One, Two and Three, ITEGAM-JETIA, Manaus, v.10 n.48, p. 92-102, July/August., 2024.

In Table 8 and Table 9, we presented our results of

experiment based on the features selected using average and

product of feature score obtained by hybrid feature selection

strategy for PC3 dataset. It can be observed in the tables that, our

models outperformed in terms of accuracy and precision when

compared to ANN and DPDF while in case of recall and f-measure

ANN has better performance. Performance of models is same for

both types of feature selection criteria which lead us to experiment

more with the criteria of setting the final score of feature selection.

Since all three dataset has different metrics set, we applied

our hybrid approach individually to grab the most important

features out of the total metrics set. In comparison to baselines

studies DPDF [3] and ANN [4], our prediction results in terms of

accuracy, precision, recall and f-measure are highly significant.

Since our dataset share only two common dataset with DPDF and

three common dataset between ANN. Our results when compared

with DPDF are 10% higher for JM1, 6% more for PC3 dataset in

terms of accuracy. While results for precision, recall and f-measure

using our technique are above 90% for each dataset, while DPDF

results are below 50%. So there is a huge improvement in

performance using hybrid feature selection strategy. When

compared with ANN, for KC1 dataset our accuracy, precision,

recall and f-measure are 6%, 2%, 8% and 4% higher respectively.

For JM1 dataset, our accuracy, precision, recall and f-measure are

7%, 2%, 7% and 5% higher respectively. For PC3 dataset, our

accuracy, precision, recall and f-measure are 6%, 1%, 7% and 3%

higher respectively.

Reasons for our approach to achieve better performance are

as follows:1.

Compared with traditional machine learning approach and

approach considered as baseline, our approach uses a more robust

hybrid feature selection strategy which makes our models perform

better by utilizing the best set of features and dynamic selection of

features by calculating the importance score of each attribute on the

fly:2.

 Initially we adopted the process to find the most

importance by taking mean of the scores obtained using product

and average. But using mean of scores as threshold resulted in quite

less number of features to be selected for model building and

thereby resulting in poor performance. So we analysed the results

from multiple iteration of experiment that the performance of all

those models was satisfactory where number of features selected

are more than 8 and less than 12. Finally it was observed that the

models with 10 features selection have the majority and best

performance. So we set the number of features to be selected be top

10 on the basis of scores obtained using product and average.

Figure:2 Dropline representation of empirical results using GL model with hybrid feature selection approach based on product.

Source: Authors, (2024).

Page 99

One, Two and Three, ITEGAM-JETIA, Manaus, v.10 n.48, p. 92-102, July/August., 2024.

Figure:3 Dropline representation of empirical results using GL model with hybrid feature selection approach based on average.

Source: Authors, (2024).

Additional inferences can be deduced by comparing the

dropline graphs shown in Fig. 2 and Fig. 3, which showcase the

performance of our approach with different criteria of feature

selection using hybrid feature selection approach. Product criteria

of feature selection have attained better performance than average

criteria for both GL models in majority of projects as well as

performance metrics such as accuracy, precision, recall and f-

measure.

RQ 2: How local models enhance the performance over global

models?

All traditional models as well as the baseline models uses

complete dataset to generate training and testing set for their deep

forest and neural network, which suffers from the problem of

heterogeneity, our local models handle this problem by creating

homogeneous clusters of data internally. So each local models

creates two clusters C1 and C2, then further process to build

models is similar to global models.

 Results of KC1 shown in Erro! Argumento de opção
desconhecido. depicts that accuracy of our global models is

higher than the baseline study ANN because of hybrid feature

selection strategy using average of features scores. This

performance is further enhanced by using local models and it is

evident from the results that local models score higher accuracy

than that of global model, but it is true for only C1 cluster. Cluster

C2 has poor performance as compared with its peer cluster C1,

global and baseline ANN. These trends are repeated for precision,

recall and f-measure too. In Table 5, we have prediction

performance of our local models using hybrid feature selection

strategy using product of feature scores. The results are better when

compared to criteria of average feature score.

 Erro! Argumento de opção desconhecido. depicts

the result of dataset JM1, global models has poor accuracy as

compared to ANN, while our local models have better accuracy

than ANN. But only one cluster C2 has obtained better accuracy,

C1 has accuracy lower than global models too. In case of precision,

recall and f-measure global models have poor performance as

compared to ANN but much higher than DPDF. Similar to

accuracy, all of the local models of cluster C2 have best

performance of all but C1 being least performing of all. In Table 7,

we have results from criteria of selection as product of feature

scores. Similar pattern of results can be observed when compared

to criteria of average of features scores. When compared side by

side, cluster C1 and C2 in Table 6 and Table 7, results in later case

are comparatively better.

 Table 8 and Table 9 shows the empirical results of dataset

PC3, our global models have outperformed in terms of accuracy

and precision when compared with baseline studies ANN and

DPDF. But they fail to outperform the baseline ANN in terms of

recall while resulting in equal performance in terms of f-measure.

Till now for project KC1 and JM1 we have observed that local

models have performed better than our global models. Same is the

case with this project; local models have better results in C1 and

poor results in cluster C2. Following the patterns observed in

project KC1 and JM1, our feature selection criteria of product of

feature scores have always performed better the criteria of average

of features score.

 For each project, we get one observation of accuracy,

precision, recall and f-measure for global models and 2

observations for cluster C1 and C2 of local models. A total of 12

observations are obtained for each machine learning model

corresponding to each project. So we have a total of 144

observations with 48 observations per projects. For global models

all of the machine learning models (SVM, NB, RF and KNN) have

equal performance in terms of accuracy, precision, recall and f-

measure. SVM and NB have dominance in at least one of

performance metrics results of cluster C1 and C2 of local models.

SVM has highest accuracy in all three projects in cluster C1

defeating the baseline results. SVM also has highest recall and f-

measure for all three projects with two highest in cluster C1 and

one highest in C2. NB has highest precision for all three projects

with leading twice in cluster C1 and once in C2. From the above

Page 100

One, Two and Three, ITEGAM-JETIA, Manaus, v.10 n.48, p. 92-102, July/August., 2024.

facts obtained from empirical study, we can deduce that SVM and

NB based machine learning models are sufficient to build efficient

defect prediction system. SVM is non-parametric model and NB is

parametric model, so they contradict each other and can be

effectively used to balance the performance.

 Overall by observing the results for three projects KC1,

JM1 and PC3 as represented in Fig. 2, we can conclude that local

models in conjunction with our hybrid feature selection strategy

have proven to be most effective in terms of accuracy, precision,

recall and f-measure than global models as well as the two baseline

studies. We can analyse that results are quite different for cluster

C1 and C2. This is because most of our dataset have imbalance data

which results in one of the cluster being highly homogeneous and

other cluster being left with the outliers and heterogeneous dataset

and reduced dataset size. We call this as one-cluster problem where

one cluster fails to obtain sufficient data due to grouping of

majority in other cluster. Reduction is size has negative impact on

performance when combined with heterogeneous data.

VI. CONCLUSION

This study aims to boost the performance of SDP techniques

by investigating the problem of heterogeneity within dataset using

GL models. Local models provide the basis for mitigation of

problem of heterogeneity by identifying internal regions of

homogeneous data. We used four machine learning algorithms

namely RF, SVM, KNN and NB for implementing our proposed

approach and tested the validity of Hybrid Feature Selection

Strategy (HFSS). We computed the performance of our approach

in terms of accuracy, precision, recall and f-measure.

According to empirical study conducted on three projects of

PROMISE repository, results indicate that our proposed approach

using local models in conjunction with HFSS has achieved better

results than baseline studies. Local models have proven to be

convincing in obtaining homogeneous clusters of data. Certain

local models suffered due to minimum data requirements when

majority of data is group in one cluster while other cluster

containing only outliers leading to one-cluster problem. In

summary, our results show that our approach is practically feasible

and can be applied on any datasets. In future, we will apply our

approach to more datasets and try to provide solution to one-cluster

problem.

VI. AUTHOR’S CONTRIBUTION

Conceptualization: Vikas Suhag, Sanjay Kumar Dubey and

Bhupendra Kumar Sharma.

Methodology: Vikas Suhag, Sanjay Kumar Dubey and Bhupendra

Kumar Sharma.

Investigation: Vikas Suhag, Sanjay Kumar Dubey and Bhupendra

Kumar Sharma.

Discussion of results: Pradip Vikas Suhag, Sanjay Kumar Dubey

and Bhupendra Kumar Sharma.

Writing – Original Draft: Vikas Suhag, Sanjay Kumar Dubey and

Bhupendra Kumar Sharma.

Visualization, Writing, Editing: Vikas Suhag, Sanjay Kumar

Dubey and Bhupendra Kumar Sharma.

Resources: Vikas Suhag, Sanjay Kumar Dubey and Bhupendra

Kumar Sharma.

Supervision: Vikas Suhag, Sanjay Kumar Dubey and Bhupendra

Kumar Sharma.

Approval of the final text: Vikas Suhag, Sanjay Kumar Dubey

and Bhupendra Kumar Sharma.

VII. REFERENCES

[1] D. Paterson, J. Campos, R. Abreu, G. M. Kapfhammer, G. Fraser, and P.

McMinn, “An Empirical Study on the Use of Defect Prediction for Test Case
Prioritization,” in 2019 12th IEEE Conference on Software Testing, Validation and

Verification (ICST), Apr. 2019, pp. 346–357, doi: 10.1109/ICST.2019.00041.

[2] T. Shippey, D. Bowes, and T. Hall, “Automatically identifying code features for

software defect prediction: Using AST N-grams,” Inf. Softw. Technol., vol. 106,

pp. 142–160, Feb. 2019, doi: 10.1016/j.infsof.2018.10.001.

[3] T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, “Improving defect prediction with

deep forest,” Inf. Softw. Technol., vol. 114, no. July, pp. 204–216, 2019, doi:
10.1016/j.infsof.2019.07.003.

[4] R. Jayanthi and L. Florence, “Software defect prediction techniques using
metrics based on neural network classifier,” Cluster Comput., vol. 22, no. S1, pp.

77–88, Jan. 2019, doi: 10.1007/s10586-018-1730-1.

[5] D. Rodriguez, J. Dolado, J. Tuya, and D. Pfahl, “Software defect prediction with

zero-inflated Poisson models,” pp. 2–5, Oct. 2019, [Online]. Available:
http://arxiv.org/abs/1910.13717.

[6] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location and
number of faults in large software systems IEEE Transactions on Software

Engineering, 31 (2005),” Pp., vol. 340, no. 4, pp. 340–355, 2005.

[7] E. Borandag, A. Ozcift, D. Kilinc, and F. Yucalar, “Majority vote feature

selection algorithm in software fault prediction,” Comput. Sci. Inf. Syst., vol. 16,

no. 2, pp. 515–539, 2019, doi: 10.2298/CSIS180312039B.

[8] X. Yu, M. Wu, Y. Jian, K. E. Bennin, M. Fu, and C. Ma, “Cross-company defect

prediction via semi-supervised clustering-based data filtering and MSTrA-based
transfer learning,” Soft Comput., vol. 22, no. 10, pp. 3461–3472, 2018, doi:

10.1007/s00500-018-3093-1.

[9] S. Amasaki, “On Applicability of Cross-project Defect Prediction Method for

Multi-Versions Projects,” in Proceedings of the 13th International Conference on

Predictive Models and Data Analytics in Software Engineering - PROMISE, 2017,
pp. 93–96, doi: 10.1145/3127005.3127015.

[10] C. Pan, M. Lu, B. Xu, and H. Gao, “An improved CNN model for within-
project software defect prediction,” Appl. Sci., vol. 9, no. 10, pp. 1–28, 2019, doi:

10.3390/app9102138.

[11] X. Yang, H. Yu, G. Fan, K. Shi, and L. Chen, “Local versus Global Models for

Just-In-Time Software Defect Prediction,” Sci. Program., vol. 2019, pp. 1–13, Jun.

2019, doi: 10.1155/2019/2384706.

[12] W. Y. Chen, Y. C. F. Wang, Y. C. Liu, Z. Kira, and J. Bin Huang, “A closer

look at few-shot classification,” 7th Int. Conf. Learn. Represent. ICLR 2019, no.
2018, pp. 1–17, 2019.

[13] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-company
software defect prediction,” Inf. Softw. Technol., vol. 54, no. 3, pp. 248–256, 2012,

doi: 10.1016/j.infsof.2011.09.007.

[14] S. Herbold, A. Trautsch, and J. Grabowski, “Global vs. local models for cross-

project defect prediction,” Empir. Softw. Eng., vol. 22, no. 4, pp. 1866–1902, Aug.

2017, doi: 10.1007/s10664-016-9468-y.

[15] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, “Heterogeneous Defect

Prediction,” IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 874–896, Sep. 2018, doi:
10.1109/TSE.2017.2720603.

[16] Y. Li, Z. Huang, Y. Wang, and B. Fang, “Evaluating data filter on cross-project
defect prediction: Comparison and improvements,” IEEE Access, vol. 5, pp. 25646–

25656, 2017, doi: 10.1109/ACCESS.2017.2771460.

[17] W. Li, W. Zhang, X. Jia, and Z. Huang, “Effort-Aware semi-Supervised just-

in-Time defect prediction,” Inf. Softw. Technol., vol. 126, no. June, p. 106364,
2020, doi: 10.1016/j.infsof.2020.106364.

[18] T. Menzies et al., “Local versus global lessons for defect prediction and effort
estimation,” IEEE Trans. Softw. Eng., vol. 39, no. 6, pp. 822–834, 2013, doi:

10.1109/TSE.2012.83.

[19] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and D. Cok, “Local vs.

global models for effort estimation and defect prediction,” 2011 26th IEEE/ACM

Page 101

One, Two and Three, ITEGAM-JETIA, Manaus, v.10 n.48, p. 92-102, July/August., 2024.

Int. Conf. Autom. Softw. Eng. ASE 2011, Proc., pp. 343–351, 2011, doi:

10.1109/ASE.2011.6100072.

[20] N. Bettenburg, M. Nagappan, and A. E. Hassan, “Think locally, act globally:

Improving defect and effort prediction models,” IEEE Int. Work. Conf. Min. Softw.

Repos., pp. 60–69, 2012, doi: 10.1109/MSR.2012.6224300.

[21] N. Bettenburg, M. Nagappan, and A. E. Hassan, “Towards improving statistical

modeling of software engineering data: think locally, act globally!,” Empir. Softw.
Eng., vol. 20, no. 2, pp. 294–335, 2015, doi: 10.1007/s10664-013-9292-6.

[22] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies, “Class level fault
prediction using software clustering,” 2013 28th IEEE/ACM Int. Conf. Autom.

Softw. Eng. ASE 2013 - Proc., pp. 640–645, 2013, doi:

10.1109/ASE.2013.6693126.

[23] M. Kondo, D. M. German, O. Mizuno, and E. H. Choi, “The impact of context

metrics on just-in-time defect prediction,” Empir. Softw. Eng., vol. 25, no. 1, pp.
890–939, 2020, doi: 10.1007/s10664-019-09736-3.

[24] A. Trautsch, S. Herbold, and J. Grabowski, “Static source code metrics and

static analysis warnings for fine-grained just-in-time defect prediction,” Proc. - 2020
IEEE Int. Conf. Softw. Maint. Evol. ICSME 2020, pp. 127–138, 2020, doi:

10.1109/ICSME46990.2020.00022.

[25] W. Poncin, A. Serebrenik, and M. Van Den Brand, “Process mining software

repositories,” Proc. Eur. Conf. Softw. Maint. Reengineering, CSMR, pp. 5–13,

2011, doi: 10.1109/CSMR.2011.5.

[26] T. Hoang, H. Khanh Dam, Y. Kamei, D. Lo, and N. Ubayashi, “DeepJIT: An

End-to-End Deep Learning Framework for Just-in-Time Defect Prediction,” in 2019
IEEE/ACM 16th International Conference on Mining Software Repositories

(MSR), May 2019, vol. 2019-May, pp. 34–45, doi: 10.1109/MSR.2019.00016.

[27] A. Ahluwalia, D. Falessi, and M. Di Penta, “Snoring: A noise in defect

prediction datasets,” IEEE Int. Work. Conf. Min. Softw. Repos., vol. 2019-May, pp.

63–67, 2019, doi: 10.1109/MSR.2019.00019.

[28] M. Borg, O. Svensson, K. Berg, and D. Hansson, “SZZ unleashed: an open

implementation of the SZZ algorithm - featuring example usage in a study of just-
in-time bug prediction for the Jenkins project,” in Proceedings of the 3rd ACM

SIGSOFT International Workshop on Machine Learning Techniques for Software

Quality Evaluation - MaLTeSQuE 2019, 2019, pp. 7–12, doi:
10.1145/3340482.3342742.

[29] T. Fukushima et al., An empirical study of just-in-time defect prediction using

cross-project models, vol. 21, no. 5. Empirical Software Engineering, 2014.

[30] X. Y. Jing, F. Wu, X. Dong, and B. Xu, “An Improved SDA Based Defect

Prediction Framework for Both Within-Project and Cross-Project Class-Imbalance

Problems,” IEEE Trans. Softw. Eng., vol. 43, no. 4, pp. 321–339, 2017, doi:
10.1109/TSE.2016.2597849.

[31] C. Ni, W. S. Liu, X. Chen, Q. Gu, D. X. Chen, and Q. G. Huang, “A Cluster
Based Feature Selection Method for Cross-Project Software Defect Prediction,” J.

Comput. Sci. Technol., vol. 32, no. 6, pp. 1090–1107, 2017, doi: 10.1007/s11390-

017-1785-0.

[32] S. Shivaji, E. James Whitehead, R. Akella, and S. Kim, “Reducing features to

improve code change-based bug prediction,” IEEE Trans. Softw. Eng., vol. 39, no.
4, pp. 552–569, 2013, doi: 10.1109/TSE.2012.43.

[33] F. Pecorelli and D. Di Nucci, “Adaptive selection of classifiers for bug
prediction: A large-scale empirical analysis of its performances and a benchmark

study,” Sci. Comput. Program., vol. 205, p. 102611, May 2021, doi:

10.1016/j.scico.2021.102611.

[34] C. Ni, W.-S. Liu, X. Chen, Q. Gu, D.-X. Chen, and Q.-G. Huang, “A Cluster

Based Feature Selection Method for Cross-Project Software Defect Prediction,” J.
Comput. Sci. Technol., vol. 32, no. 6, pp. 1090–1107, 2017, doi: 10.1007/s11390-

017-1785-0.

[35] M. Jureczko and L. Madeyski, “Towards identifying software project clusters

with regard to defect prediction,” ACM Int. Conf. Proceeding Ser., 2010, doi:

10.1145/1868328.1868342.

Page 102

