Determination of Naturally Occurring Radioactive Materials-norm (Ra-226, Ra-228) in synthetic flowback developed at laboratory scale from rocks of the la LUNA-1 well, colombia, and benchmarking with Marcellus and eagle ford shale plays

  • Jenny Paola Rueda Ecopetrol S.A, Innovation and Technology Center - Colombian Petroleum Institute (ICP), Piedecuesta, Santander, Colombia http://orcid.org/0000-0002-4243-2288
  • Javier Perez Ecopetrol S.A, Innovation and Technology Center - Colombian Petroleum Institute (ICP), Piedecuesta, Santander, Colombia http://orcid.org/0000-0003-2320-0200
  • Alvaro Villar Garcia Ecopetrol S.A, Innovation and Technology Center - Colombian Petroleum Institute (ICP), Piedecuesta, Santander, Colombia http://orcid.org/0000-0002-3555-1190
  • Jose Manuel Usuriaga Ecopetrol S.A, Innovation and Technology Center - Colombian Petroleum Institute (ICP), Piedecuesta, Santander, Colombia http://orcid.org/0000-0002-8827-2021

Abstract

The current decade has been characterized by significant changes in global energy, among which the development of new hydrocarbon deposits, including Unconventional, stand out. In Colombia, the need for exploration of these deposits has been evidenced by the lack of reserves of conventional. One of the main problems identified in the production of these resources is the perception of direct negative effects on the environment, including water as a resource. As part of efforts aimed at identifying potential effects on future production of source rock deposits in Colombia, experiments have been conducted to detect the presence or increase of radioactive elements in the flowback water from hydraulic fracturing fluids, which is one of the main issues identified in currently producing fields in world. Samples from La Luna-1, the first stratigraphic Shale Gas/ Oil Well in Colombia were used. This experimental research was intended to obtain measurements of “NORM Test with Lower Detection Limits” from a synthetic flowback from the digestion of rock samples and fracture fluids (slick water) including HCl at 15%. The results show low concentrations of NORM from synthetic flowback; to contextualize this data was carried a benchmarking with two important unconventional deposits, Marcellus and Eagle Ford Shales.

Downloads

Download data is not yet available.

References

Agencia Nacional de Hidrocarburos, ANH, “Reservas de crudo y gas del país Corte a 31 de diciembre de 2020”. www. Anh.gov.co. accessed on 12 July 2021. https://www.anh.gov.co/Operaciones-Regal%c3%adas-y-Participaciones/SiteAssets/estadisticas-del-sector/modulo-de-gestion-de-reservas/Presentacio%cc%81n%20Balance-Reservas_IRR2020_Prelim_10-06-2021.pdf

EIA, “Golden Rules for a Golden Age of Gas”, World Energy Outlook Special Report on Unconventional Gas. International Energy Agency, Paris. 2012. www.worldenergyoutlook.org.

Schneider Frederic., Beicip Franlap. “Yacimientos No Convencionales. Foro “Preguntas y respuestas sobre el fracking”, Agencia Nacional de Hidrocarburos. ANH Colombia. 2014. https://www.anh.gov.co/Seguridad-comunidades-y-medio-ambiente/Estrategia-ambiental/Proyectos/Yacimientos-no-convencionales/Paginas/default.aspx

Skalany Miriam,. “Informe estimulación por fractura hidráulica en formaciones no convencionales. Experiencia en Mendoza sobre Vaca Muerta”, Secretaria de ambiente y Ordenamiento territorial, Gobierno Mendoza. 2018. https://www.mendoza.gov.ar/dpa/wp-content/uploads/sites/34/2018/04/Informe-Estimulaci%C3%B3n-Hidraulica-Mendoza-Vaca-Muerta.pdf

Euzen, Tristan, “Shale Gas: An Overview”, Ifp Technologies Canada Inc., Calgary. Technical Report, 2011. DOI: 10.13140/RG.2.1.2236.6242

Ecopetrol. Metodología de Estratigrafía de Secuencias aplicada a la evaluación de yacimientos No Convencionales. Internal Report. 2014.

EIA, “Technically Recoverable Shale Oil and Shale Gas Resources: Northern South America”. 2013. https://www.eia.gov/analysis/studies/worldshalegas/pdf/Northern_South_America_Columbia_Venezuela_2013.pdf

Usuriaga, J., Bravo, O., Casas, O., Cardona, J., “Water Management Alternatives for Hydrocarbon Production from Source Rocks in Colombia”, ACGGP. 2018.

Hughes, J. D. “Energy: A reality check on the shale revolution”, Nature, vol 494, pp 307-308. February 2013.

Álvarez-Fernández I, Arenillas-González A, Cayola-Cortés FJ, Cienfuegos-Suárez P, García de la Noceda-Márquez C, Loredo-Pérez J, Martínez-Orio R, Mazadiego-Martínez LF, Vázquez-Teijeira D, Vicuña-Irusta JC, Tarín-Egoscozabal I. “Gas no Convencional en España, una Oportunidad de Futuro”, Consejo Superior de Colegios de Ingenieros de Minas. 2013.

Usuriaga Torres Jose Manuel. “Diseño de un fluido entrecruzado Guar_Boro Compatible con Agua de Producción y Flowback para el fracturamiento hidráulico en Yacimiento en Roca Generadora en el Valle Medio del Magdalena”, énfasis en Ingenieria de Producción de Hidrocarburos. Universidad Industrial de Santander, Tesis de Grado para optar el Titulo de Maestría. 2019.

Almond, S., Clancy, S.A., Davies, R.J. Worral F., “The flux of radionuclides in flowback fluid from shale gas exploitation”. Environmental Science and Pollution Research, vol 21, pp 12316–12324. 2014. DOI: https://doi.org/10.1007/s11356-014-3118-y. How radioactive is fracking flowback water? ReFINE Briefing Note.

Kaufman, P., Penny, G.S., Paktinat, J., SPE 119900. “Critical evaluations of additives used in shale slickwater fracs.” SPE Shale Gas Production Conference, Irving, Texas. 2008.

Chong, K. K., Grieser, W. V., Passman, A., Tamayo, C. H., Modeland, N., Burke, B. “A Completions Guide Book to Shale-Play Development: A Review of Successful Approaches Towards Shale-Play Stimulation in the Last Two Decades”. Canadian Unconventional Resources & International Conference, Calgary, 19-21 October. CSUG / SPE 133874. 2010.

Cipolla, Craig L., Warpinski, Norman Raymond, Mayerhofer, Michael J., Lolon, Elyezer, and Michael C. Vincent. “The Relationship between Fracture Complexity, Reservoir Properties, and Fracture Treatment Design” Paper presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, September 2008, DOI: https://doi.org/10.2118/115769-MS

Houseworth James. “Chapter 2, Advanced Well Stimulation Technologies In: An Independent Scientific Assessment of Well Stimulation in California”. Volume I, Well Stimulation Technologies and their Past, Present, and Potential Future Use in California. 2015.

Earle, S. “Physical Geology” – 2nd Edition. Victoria, B.C.: BCcampus. 2019. Retrieved from https://opentextbc.ca/physicalgeology2ed/.

Perry, S. A. “Understanding naturally occurring radioactive material in the Marcellus Shale". Marcellus Shale. Issue no 4. pp 1-8. August 2011.

EPA, United States Environmental Protection Agency. “Technologically Enhanced Naturally Occurring Radioactive Materials From Uranium Mining, Volume 1: Mining and Reclamation Background, Volume 2: Investigation of Potential Health, Geographic, and Environmental Issues of Abandoned Uranium Mines”. 2008.

Brown, Valeria. “Radionuclides in Fracking Wastewater: Managing a Toxic Blend”. Environmental health perspectives. vol. 122. no. 2. Pp 50-55. February 2014. DOI: http://dx.doi.org/10.1289/ehp.122-A50

Núñez Lagos Roglá, R. “La radioactividad ambiental”. Revista Logos Ciencia & Tecnología, vol. 2 no. 2. pp 50-61. 2011. DOI: https://doi.org/10.22335/rlct.v2i2.82

Landis, Joshua, Sharma, Mukul, Renock, Devon, Niu, Danielle. “Rapid desorption of radium isotopes from black shale during hydraulic fracturing. 1. Source phases that control the release of Ra from Marcellus Shale”. Chemical Geology, vol. 496, pp 1-13 2018. DOI: https://doi.org/10.1016/j.chemgeo.2018.06.013

OGP Report No. 412, “Guidelines for the management of Naturally Occurring Radioactive Material (NORM) in the oil & gas industry”, September 2008, www.ogp.org.uk

Liendo Perales Ana Maria, “Prospección geofísica de los radioelementos uranio, torio, potasio y minerales paragéneticos asociados. Estudio al suroeste del estado Aragua para demostrar la capacidad de las técnicas de espectrometría de radiación gamma, en la exploración y evaluación preliminar de recursos minerales y energéticos”. Tesis Universidad Central de Venezuela. 2003.

Noordmann J., Weyer S., Georg R. B., Jöns S., Sharma M., “238U/235U isotope ratios of crustal material, rivers and products of hydrothermal alteration: New insights on the oceanic U isotope mass balance. Isotopes in Environmental and Health Studies”. vol. 52. pp 141–163. 2016. DOI: 10.1080/10256016.2015.1047449

Baykal, Gökhan, Saygılı, Altug. “A new technique to reduce the radioactivity of fly ash utilized in the construction industry”. Fuel. Vol. 90. pp 1612-1617. 2011. DOI: 10.1016/j.fuel.2011.01.006.

Felmlee, J. K., and Cadigan, R. A., “Determination of radium in source rocks by using radium in Crystal Springs, Great Salt Lake area, Utah: U.S”. Geological Survey, Open-file Report 78-102. 1978. DOI: https://doi.org/10.3133/ofr78102

Gundersen, L. C. S., and Szabo, Z., “Natural radionuclides in earth, air, and water, and the effect on human health; in, Energy and the Environment— Application of Geosciences to Decision-making”, L. M. H. Carter, ed.: U.S. Geological Survey, Circular 1108. 1995.

Bigelow, E.L. “Introduction to Wireline Log Analysis”. Houston, Texas: Western Atlas International. 1992.

Eguilior, S., Hurtado, A., Recreo, F. “Riesgos asociados a la radioactividad natural en los proyectos de extracción de gas no convencional”. Congreso Nacional del Medio Ambiente, CONAMA 2014, 20 pp. 2014.

Ecopetrol. Columna estratigráfica Valle Medio del Magdalena_actualización de topes pozo La Luna 1. Internal Report. 2019

Schlumberger, https://www.glossary.oilfield.slb.com/es/Terms/f/fracture_acidizing.aspx

EPA, United States Environmental Protection Agency. “Method 903.0: Alpha-Emitting Radium Isotopes in Drinking Water”. 1980. www.epa.gov.

Evans, Peter, Jonkers, Gert, Steffan, Ernst-Michael, Campbell, John, Lloret, Carla. “Guidelines for the Management of Naturally Occurring Radioactive Material (NORM) in the Oil and Gas Industry”, 2016. DOI: 10.2118/179272-MS.

EIA, U.S. Energy Information Administration, “Independent Statistics & Analysis. Shale oil and shale gas resources are globally abundant. Basins with assessed shale oil and shale gas formations”. 2014.

EIA, U.S. Energy Information Administration, “Independent Statistics & Analysis. Drilling Productivity Report. For key tight oil and gas shale gas regions”, 2021.

Blakey, R., “Paleogeographic Maps”. 2013. http://cpgeosystems.com/paleomaps .html

Torres, E. “Unconventional Gas Shale Assessment of La Luna Formation, In the Central and South Areas of the Middle Magdalena Valley Basin, Colombia”. M.S Thesis, University of Oklahoma. 2013.

Casadiego-Quintero, E., Ríos-Reyes, C. A. “Lithofacies analysis and depositional environment of The Galembo member of La Luna Formation”. CT&F - Ciencia, Tecnología y Futuro, vol 6. no 4. pp 37 - 56. 2016. DOI: https://doi.org/10.29047/01225383.02

Liborius, Andreina, Slatt, Roger. “Geological Characterization of La Luna Formation as an Unconventional Resource in Lago De Maracaibo Basin, Venezuela”. Conference Paper. Unconventional Resources Technology Conference (URTeC). 2016. DOI: 10.15530/urtec-2016-2461968

Mort, Haydon. “Biogeochemical changes during the Cenomanian-Turonian Oceanic Anoxic Event (OAE 2)”. Thesis Doctorate in Science. Universidade de Neuchâtel, Suíssa. 2020. https://doc.rero.ch/record/7944/files/these_MortH.pdf

Jenkyns, Hugh. “Geochemistry of Oceanic Anoxic Events”. Geochemistry Geophysics Geosystems – Geochemistry geophysics geosystems. vol. 11. no. 3. March 2010. DOI:10.1029/2009GC002788.

Perez-Infante, J., Paul, F., Max., F. “Global and local controls influencing the deposition of the La Luna Formation (Cenomanian-Campanian), western Venezuela”. Elsevier, Chemical Geology, vol. 130. pp 271-288. 1996.

Evenick, Jonathan. “Late Cretaceous (Cenomanian and Turonian) organofacies and TOC maps: Example of leveraging the global rise in public-domain geochemical source rock data”. Marine and Petroleum Geology. Vol 111. pp 301-308. 2020. DOI: https://doi.org/10.1016/j.marpetgeo.2019.08.037

EIA, U.S. “Marcellus Shale Play, Geology review”. 2017.

Gomez, A. “Integrated geological characterization and distribution of the salada Member, La Luna Formation, in the central area of the Middle Magdalena Basin, Colombia”. Norman, Oklahoma: M.S Thesis The University of Oklahoma. 2014.

Bank, T. “Uranium geochemistry in the Marcellus shale: effects on metal mobilization”. Hydraulic Fracturing Technical Workshop 1 - 08 presentation by Tracy Bank, Department of Geology at the University of Buffalo. 2010. https://www.epa.gov/hfstudy/trace-metal-geochemistry-and-mobility-marcellus-shale

Taylor, Ty. "Lithostratigraphic and Petrophysical Analysis of the Middle Devonian Marcellus Shale at the Mamont Prospect, Westmoreland County, Pennsylvania". 2013. All Theses. 1775. https://tigerprints.clemson.edu/all_theses/1775

Boyce, Matthew, Carr, Timothy. “Lithostratigraphy and Petrophysics of the Devonian Marcellus Interval in West Virginia and Southwestern Pennsylvania”. Unconventional Energy Resources: Making the Unconventional Conventional vol 29. 2009. DOI: https://doi.org/10.5724/gcs.09.29.0254

Allard David. “An Investigation of the Radiological Aspects of Pennsylvania’s Oil and Gas Activities”, APHL Meeting. 2019. https://www.aphl.org/conferences/proceedings/Pages/APHL-2019-Proceeedings.aspx

Rowan, E.L., Engle, M.A., Kirby, C.S., and Kraemer, T.F. “Radium content of oil- and gas-field produced waters in the northern Appalachian Basin (USA)—Summary and discussion of data”. U.S. Geological Survey Scientific Investigations Report 2011–5135, 31 p. 2011. http://pubs.usgs.gov/sir/2011/5135/

Aranguren-Campos, Fabian, A., Calderón-Carrillo, Zuly, Usuriaga-Torres, José, M. “A selection methodology of Flowback treatment technologies and Water reuse in Hydraulic Fracturing in source rocks - A strategy to reduce the Environmental Impacts in Colombia”. CT&F- Ciencia, Tecnología y Futuro, vol. 7. No. 1. pp 5-30. 2017.

Rengifo, J., Calderon Z., Perez E. “Estudio de analogías y sus posibles aplicaciones en las formaciones del Valle Medio del Magdalena, a partir del análisis histórico del desarrollo de los shale plays en Estados Unidos”. XVI Congreso Colombiano de Petroleo y Gas. Acipet. 2015.

Za Za Energy Company Corporation, Presentation, Investor Presentation December 2014, p. 14., http://www.zazaenergy.com/

http://www.rrc.texas.gov/oil-and-gas/major-oil-and-gas-formations/eagle-ford-shale/, April 2021.

EIA, U.S. “Updates to the EIA Eagle Ford”. 2014.

Kearns Timothy. “Chemostratigraphy of the Eagle Ford formation”. Master Degree Thesis. UTA. 2011. https://rc.library.uta.edu/uta-ir/handle/10106/9590

Boling, Kenneth. “Controls on the accumulation of organic matter in the Eagle Ford Group”. Thesis Master Degree. Central Texas, USA. 2014. https://www.researchgate.net/publication/309126984

Fertl, W.H., Stapp, W.L., Vaello, D.B., W.C. Vercellino. "Spectral Gamma-Ray Logging in the Texas Austin Chalk Trend." Journal or Petroleum Technology. 32. pp 481–488. Macrh 1980. DOI: https://doi.org/10.2118/7431-PA

Brunick, J. “Depositional Dynamics of the Upper Eagle Ford (Upper Cretaceous): Karnes and Gonzales Counties, South Texas”. 2017. Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/1889

Hendershott, Zachary Paul. "Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas". 2012. LSU Master's Theses. 863. https://digitalcommons.lsu.edu/gradschool_theses/863

Pope, Michael, Wehner, Matthew, Peavey, Eric, Conte, Roy, Donovan, Art. “Surface to Subsurface Correlation of Eagle Ford Equivalent Strata From West to South Texas”. Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, Texas, USA. 2017. DOI: 10.15530/urtec-2017-2716442.

Palacios, Virginia E. “Baseline groundwater quality testing needs in the Eagle Ford shale region”. Master's project, Duke University. 2012. https://hdl.handle.net/10161/5370.

Geltman, Elizabeth and LeClair, Nichole. “Regulation of Radioactive Fracking Wastes”. Vermont Journal of Environmental Law, vol. 19, 2018. Available at SSRN: https://ssrn.com/abstract=3030255

S.G. Landsberger, G. George. “An evaluation of 226 Ra and 228 Ra in drinking water in several counties in Texas, USA”, Journal of Environmental Radioactivity, vol. 125. 2013. ISSN 0265-931X, https://doi.org/10.1016/j.jenvrad.2013.02.016

National Research Council. “Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials”. Washington, DC: The National Academies Press. 1999. https://doi.org/10.17226/6360.

Published
2021-08-31
How to Cite
Rueda, J., Perez, J., Garcia, A., & Usuriaga, J. (2021). Determination of Naturally Occurring Radioactive Materials-norm (Ra-226, Ra-228) in synthetic flowback developed at laboratory scale from rocks of the la LUNA-1 well, colombia, and benchmarking with Marcellus and eagle ford shale plays. ITEGAM-JETIA, 7(30), 45-61. https://doi.org/10.5935/jetia.v7i30.770
Section
Articles