Efectos de las condiciones de lubricación en las fuerzas de mecanizado y la rugosidad de la superficie en el ranurado radial

  • Elias S. C. Espíndola Departamento de Ingeniería Mecánica (DEMEC), Universidad Federal de Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil http://orcid.org/0000-0003-2845-4373
  • Heraldo J. Amorim Departamento de Ingeniería Mecánica (DEMEC), Universidad Federal de Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil http://orcid.org/0000-0002-0498-6378
  • André J. Souza Departamento de Ingeniería Mecánica (DEMEC), Universidad Federal de Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil http://orcid.org/0000-0001-5649-7333

Resumen

El ranurado radial es un proceso de mecanizado que generalmente se aplica para generar ranuras para el alivio de la rosca, el posicionamiento de la junta tórica o incluso las operaciones de corte. Debido a las altas fuerzas de mecanizado y a la dificultad de remoción de viruta, el ranurado radial se considera un proceso crítico y los fluidos de corte se aplican generalmente para enfriar, lubricar y ayudar en la remoción de viruta. El aire comprimido (AIR) y la lubricación de cantidad mínima (MQL) son métodos de lubricación por enfriamiento estudiados como alternativas ecológicas a las aplicaciones convencionales de inundación (WET) de los fluidos de corte. Aunque ya se aplica desde hace años en varios procesos de mecanizado, la investigación asociada al uso de técnicas alternativas de enfriamiento por lubricación en el ranurado radial es incipiente. Este trabajo presenta un análisis comparativo de estos métodos (WET, MQL y AIR) y sus efectos de ranurado radial. En cada caso, se utilizó un diseño factorial de experimentos para evaluar la influencia de las condiciones de lubricación-enfriamiento, la velocidad de corte y la velocidad de avance sobre la fuerza de avance, la fuerza de corte y la rugosidad de la superficie. Los resultados indican que tanto AIR como MQL pueden ser sustitutos adecuados de la lubricación HÚMEDA tradicional cuando se consideran los componentes de fuerza activa y el acabado de la superficie. Además, se obtuvieron fuerzas de corte menores con el mecanizado AIR para ranurado radial, seguido del mecanizado MQL y WET.

Descargas

La descarga de datos todavía no está disponible.

Citas

Smith, G. T., Cutting Tool Technology: Industrial Handbook, Springer, London, 2008. https://doi.org/10.1007/978-1-84800-205-0.

López de Lacalle, L. N., Lamikiz, A., Fernández de Larrinoa, J. and Azkona, I., “Advanced cutting tools”, In: Machining of Hard Materials, Springer, London, pp. 33-86, 2011. https://doi.org/10.1007/978-1-84996-450-0_2.

Canter, N., "Metalworking fluids: the quest for bioresistance", Tribol. Lubr. Technol., vol. 75, no. 3, pp. 46-58, 2019. http://upisecke.za.net/MWF_biocide.pdf.

Dahmus, I. B. and Gutowski, T.G. "An environmental analysis of machining", In: Proc. ASME IMECE Conf., Anaheim, California, Nov. 13-19, 2004. http://web.mit.edu/ebm/www/Publications/ASME2004-62600.pdf.

Sharma, V. S., Dogra, M. and Suri, N. M., "Cooling techniques for improved productivity in turning", Int. J. Mach. Tools Manuf., vol. 49, no. 6, pp. 435-453, 2009. https://doi.org/10.1016/j.ijmachtools.2008.12.010.

Carou, D., Rubio, E. M. and Davim, J. P., "A note on the use of the minimum quantity lubrication (MQL) system in turning", Ind. Lubr. Tribol., vol. 67, no. 3, pp. 256-261, 2015. https://doi.org/10.1108/ILT-07-2014-0070.

Rao, R..V., "Cutting fluid selection for a given machining application", In: Decision Making in the Manufacturing Environment, Springer, London, pp 97-114, 2007. https://doi.org/10.1007/978-1-84628-819-7_8.

Araújo Jr., A. S., Sales, W. F., Silva, R. B. et al., "Lubri-cooling and tribological behavior of vegetable oils during milling of AISI 1045 steel focusing on sustainable manufacturing", J. Clean. Prod., vol. 156, pp. 635-647, 2017. https://doi.org/10.1016/j.jclepro.2017.04.061.

Katna, R., Singha, K., Agrawala, N. and Jain, S., "Green manufacturing – performance of a biodegradable cutting fluid", Mat. Manuf. Process, vol. 32, no. 13, pp. 1522-1527, 2017. https://doi.org/10.1080/10426914.2017.1328119.

Ozimina, D., Madej, M., Kowalczyk, J. and Ozimina, E., “Tool wear in dry turning and wet turning with non-toxic cutting fluid”, Ind. Lubr. Tribol., vol. 70, no. 9, pp. 1649-1653, 2018. https://doi.org/10.1108/ILT-02-2018-0080.

Wickramasinghe, K. C., Perera, G. I. P. and Herath, H. M. C. M., "Formulation and performance evaluation of a novel coconut oil-based metalworking fluid", Mat. Manuf. Process., vol. 32, no. 9, pp. 1026-1033, 2017. https://doi.org/10.1080/10426914.2016.1257858.

Ranganath, M.S. and Vipin, H., "Optimization of process parameters in turning operation using response surface methodology: a review", IJETAE, vol. 4, no.10, pp. 351-360, 2014. https://ijetae.com/files/Volume4Issue10/IJETAE_1014_55.pdf.

Varghese, V., Ramesh, M. R. and Chakradhar, B., "Experimental investigation and optimization of machining parameters for sustainable machining", Mater. Manuf. Process., vol 33, no. 16, pp. 1782-1792, 2018. https://doi.org/10.1080/10426914.2018.1476760.

Dhar, N. R., Islam, M. W., Islam, S. and Mithu, M. A. H., "The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel", J. Mater. Process. Technol., vol. 171, pp. 93-99, 2006. https://doi.org/10.1016/j.jmatprotec.2005.06.047.

Lohar, D. V. and Nanavaty, C. R., "Performance evaluation of minimum quantity lubrication (MQL) using CBN tool during hard turning of AISI 4340 and its comparison with dry and wet turning", Bonfring Int. J. Ind. Eng. Manage. Sci., vol. 3, pp. 102-106, 2013. https://doi.org/10.9756/BIJIEMS.4392.

Kurgin, S., Dasch, J. M., Simon, D. L. et al., "Evaluation of the convective heat transfer coefficient for minimum quantity lubrication (MQL)", Ind. Lubr. Tribol., vol. 64, no. 6, pp. 376-386, 2012. https://doi.org/10.1108/00368791211262516.

Islam, M. N., "Effect of additional factors on dimensional accuracy and surface finish of turned parts", Mac. Sci. Technol., vol. 17, no. 1, pp. 145-162, 2013. https://doi.org/10.1080/10910344.2012.747936.

Frăţilă, D. and Caizar, C., "Investigation of the influence of process parameters and cooling method on the surface quality of AISI-1045 during turning", Mater. Manuf. Process., vol. 27, no. 10, pp. 1123-1128, 2008. https://doi.org/10.1080/10426914.2012.677905.

Tasdelen, B., Thordenberg, H. and Olofsson, D., "An experimental investigation on contact length during minimum quantity lubrication (MQL) machining", J. Mater. Process. Technol., vol. 203, no. 1-3, pp. 221-231, 2008. https://doi.org/10.1016/j.jmatprotec.2007.10.027.

Das, R. K., Kumar, R., Sarkar, G. et al., "Comparative machining performance of hardened AISI 4340 steel under dry and minimum quantity lubrication environments", Mater. Today: Proc., vol. 5, no. 11, pp. 24898-24906, 2018. https://doi.org/10.1016/j.matpr.2018.10.289.

Kumar, S., Singh, D. and Kalsi, N. S., "Analysis of surface roughness during machining of hardened AISI 4340 steel using minimum quantity lubrication", Mater. Today: Proc., vol. 4, no. 2, pp. 3627-3635, 2017. https://doi.org/10.1016/j.matpr.2018.10.289.

Okokpujie, I. P., Bolu, C. A., Ohunakin, O. S. et al., "A review of recent application of machining techniques, based on the phenomena of CNC machining operations", Procedia Manuf., vol. 35, pp. 1054-1060, 2019. https://doi.org/10.1016/j.promfg.2019.06.056.

Masoudi, S., Vafadar, A., Hadad, M. and Jafarian, F., "Experimental investigation into the effects of nozzle position, workpiece hardness, and tool type in MQL turning of AISI 1045 steel", Mater. Manuf. Process., vol. 33, no. 9, pp. 1011-1019, 2018. https://doi.org/10.1080/10426914.2017.1401716.

Rahim, E. A. and Dorairaju, H., "Evaluation of mist flow characteristic and performance in minimum quantity lubrication (MQL) machining", Meas., vol. 123, pp. 213-225, 2018. https://doi.org/10.1016/j.measurement.2018.03.015.

Sani, A. S. A., Rahim, E. A., Sharif, S. and Sasahara, H., "Machining performance of vegetable oil with phosphonium- and ammonium-based ionic liquids via MQL technique", J. Clean. Prod., vol. 209, pp. 947-964, 2019. https://doi.org/10.1016/j.jclepro.2018.10.317.

Dixit, U. S., Sarma, D. K. and Davim, J. P., "Machining with minimal cutting fluid", In: Environmentally Friendly Machining, Springer, Boston, pp 9-17, 2012. https://doi.org/10.1007/978-1-4614-2308-9_2.

Elshwain, A. E. I., Redzuan, N. and Yusof, N. M., "Machinability of nickel and titanium alloys under of gas-based coolant-lubricants (CLs): a review", Int. J. Res. Eng. Technol., vol. 2, no. 11, pp. 690-702, 2013. https://doi.org/10.15623/ijret.2013.0211106.

Stanford, M., Lister, P. M., Morgan, C. and Kibble, K. A., "Investigation into the use of gaseous and liquid nitrogen as a cutting fluid when turning BS 970-80A15 (En32b) plain carbon steel using WC–Co uncoated tooling", J. Mater. Process. Technol., vol. 209, no. 2, pp. 961-972, 2009. https://doi.org/10.1016/j.jmatprotec.2008.03.003.

Sarma, D. K. and Dixit, U. S., "A comparison of dry and air-cooled turning of grey cast iron with mixed oxide ceramic tool", J. Mater. Process. Technol., vol. 190, no. 1-3, pp. 160-172, 2007. https://doi.org/10.1016/j.jmatprotec.2007.02.049.

Yildiz, Y. and Nalbant, M., "A review of cryogenic cooling in machining processes", Int. J. Mach. Tools Manuf., vol. 48, no. 9, pp. 947-964, 2008. https://doi.org/10.1016/j.ijmachtools.2008.01.008.

Shokrani, A., Dhokia, V., Muñoz-Escalona, P. and Newman, S. T., "State-of-the-art cryogenic machining and processing", Int. J. Comput. Integr. Manuf., vol. 26, no. 7, pp. 616-648, 2013. https://doi.org/10.1080/0951192X.2012.749531.

Ross, K. N. S. and Manimaran, G., "Machining investigation of Nimonic‑80A superalloy under cryogenic CO2 as coolant using PVD‑TiAlN/TiN coated tool at 45°", Arab. J. Sci. Eng., vol. 45, pp. 9267-9281, 2020. https://doi.org/10.1007/s13369-020-04728-8.

Shokrani, A., Dhokia, V. and Newman, S.T., "Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluid", Int. J. Mach. Tools Manuf., vol. 57, pp. 83-101, 2012. https://doi.org/10.1016/j.ijmachtools.2012.02.002.

Dhananchezian, M., Kumar, M. P. and Rajadurai, A., "Experimental investigation of cryogenic cooling by liquid nitrogen in the orthogonal machining process", Int. J. Recent. Trend Eng., vol. 1, no. 5, pp. 55-59, 2009.

Jerold, B. D. and Kumar, M. P., "Experimental comparison of carbon dioxide and liquid nitrogen cryogenic coolants in turning of AISI 1045 steel", Cryogenics, vol. 52, no. 10, pp. 569-574, 2012. https://doi.org/10.1016/j.cryogenics.2012.07.009.

Obikawa, T., Kamata, Y. and Shinozuka, J., "High-speed grooving with applying MQL", Int. J. Mach. Tools Manuf., vol. 46, no. 14, pp. 1854-1861, 2006. https://doi.org/10.1016/j.ijmachtools.2005.11.007.

Machai, C., Iqbal, A., Biermann, D. et al., "On the effects of cutting speed and cooling methodologies in grooving operation of various tempers of β-titanium alloy", J. Mater. Process. Technol., vol. 213, no. 7, pp. 1027-1037, 2013. https://doi.org/10.1016/j.jmatprotec.2013.01.021.

Oschelski, T. B., Urasato, W. T., Amorim, H. J. and Souza, A. J. "Effect of cutting conditions on surface roughness in finish turning Hastelloy X superalloy", Mater. Today: Proc., vol. 44, no. 1, pp. 532-537, 2021. https://doi.org/10.1016/j.matpr.2020.10.211.

Polly, M. S., Mayrhofer, A. and Souza, A. J., "Performance of ISO P and ISO S carbide tools in hard turning of AISI 4140 under dry and MQL conditions", Ingeniare Rev. Chil. Ing., vol. 28, no. 1, pp. 95-105, 2020. https://doi.org/10.4067/S0718-33052020000100095.

Liang, X., Liu, Z., Liu, W. and Li, X., "Sustainability assessment of dry turning Ti-6Al-4V employing uncoated cemented carbide tools as clean manufacturing process", J. Clean. Prod., vol. 214, pp. 279-289, 2019. https://doi.org/10.1016/j.jclepro.2018.12.196.

Sartori, S., Moro, L., Ghiotti, A. and Bruschi, S., "On the tool wear mechanisms in dry and cryogenic turning additive manufactured titanium alloys", Tribol. Int., vol. 105, pp. 264-273, 2019. https://doi.org/10.1016/j.triboint.2016.09.034.

Hadad, M. and Sadeghi, B., "Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy", J. Clean. Prod., vol. 54, pp. 332-343, 2013. https://doi.org/10.1016/j.jclepro.2013.05.011.

Amorim, H. J. and Kunrath, A. O. N., "Study of the relationship between tool wear and surface finish in turning with carbide tool", Adv. Mat. Res., vol. 902, pp. 95-100, 2014. https://doi.org/10.4028/www.scientific.net/amr.902.95.

Benardos, P. G. and Vosniakos, G. -C., "Predicting surface roughness in machining: a review", Int. J. Mach. Tools Manuf., vol. 43, no. 8, pp. 833-844, 2003. https://doi.org/10.1016/S0890-6955(03)00059-2.

Diniz, A. E. and Micaroni, R., "Cutting conditions for finish turning process aiming: the use of dry cutting", Int. J. Mach. Tools Manuf., vol. 42, no. 8, pp. 899-904, 2002. https://doi.org/10.1016/S0890-6955(02)00028-7.

Publicado
2021-10-29
Cómo citar
Espíndola, E., Amorim, H., & Souza, A. (2021). Efectos de las condiciones de lubricación en las fuerzas de mecanizado y la rugosidad de la superficie en el ranurado radial. ITEGAM-JETIA, 7(31), 26-34. https://doi.org/10.5935/jetia.v7i31.772
Sección
Articles