Production of Antimicrobial Compounds using Thermophilic Bacteria Species Bacillus subtilis and Bacillus Tequilensis

Abstract

Infections caused by resistant bacteria are a growing public health problem, consequently, a new source of microorganisms that can be used for antimicrobial production is needed. One of the microorganisms capable of producing antimicrobials is the thermophilic bacteria, namely B. subtilis and B. tequilensis. Due to having hot temperature-resistant enzymes, they are not easily damaged. Therefore, this study aims to produce new antimicrobials from B.subtilis and B.tequilensis. The antimicrobial activity was observed in 5 thermophilic bacterial isolates using the disk diffusion method. The results showed the strongest zone of inhibition (disk diameter = 6mm) or antimicrobial activity against S.aureus which was classified as gram-positive was discovered in B.subtilis UTMP15 (10.27 mm) at the incubation time of 24 hours, and against E.coli classified as gram-negative,it was in B. Subtilis UTMP12 (8.59 mm) at 48 hours. Hence, the isolate is a potential antimicrobial agent.

Downloads

Download data is not yet available.

References

L. Cai, L. Ye, A. H. Y. Tong, S. Lok, and T. Zhang, “Biased Diversity Metrics Revealed by Bacterial 16S Pyrotags Derived from Different Primer Sets,” PLoS One, vol. 8, no. 1, pp. 1–11, 2013, doi: 10.1371/journal.pone.0053649.

M. O. Baltaci, B. Genc, S. Arslan, G. Adiguzel, and A. Adiguzel, “Isolation and Characterization of Thermophilic Bacteria from Geothermal Areas in Turkey and Preliminary Research on Biotechnologically Important Enzyme Production,” Geomicrobiol. J., vol. 34, no. 1, pp. 1–12, 2016, doi: 10.1080/01490451.2015.1137662.

G. N. Gupta, S. Srivastava, S. K. Khare, and V. Prakash, “Extremophiles: An Overview of Microorganism from Extreme Environment,” Int. J. Agric. Environ. Biotechnol., vol. 7, no. 2, pp. 371–380, 2014, doi: 10.5958/2230-732x.2014.00258.7.

M. Kumar, A. N. Yadav, R. Tiwari, R. Prasanna, and A. K. Saxena, “Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs,” Ann. Microbiol., vol. 64, no. 2, pp. 741–751, 2014, doi: 10.1007/s13213-013-0709-7.

P. K. Busk and L. Lange, “Cellulolytic Potential of Thermophilic Species from Four Fungal Orders,” AMB Express, vol. 3, pp. 1–10, 2013, doi: 10.1186/2191-0855-3-47.

S. Acharya and A. Chaudhary, “Bioprospecting thermophiles for cellulase production: A review,” Brazilian J. Microbiol., vol. 43, no. 3, pp. 844–856, 2012, doi: 10.1590/S1517-83822012000300001.

G. Singh, A. Bhalla, P. Kaur, N. Capalash, and P. Sharma, “Laccase from prokaryotes: A new source for an old enzyme,” Rev. Environ. Sci. Biotechnol., vol. 10, no. 4, pp. 309–326, 2011, doi: 10.1007/s11157-011-9257-4.

A. Khalil, “Isolation and characterization of three thermophilic bacterial strains (lipase, cellulose and amylase producers) from hot springs in Saudi Arabia,” African J. Biotechnol., vol. 10, no. 44, pp. 8834–8839, 2011, doi: 10.5897/ajb10.1907.

S. Sethi, R. Kumar, and S. Gupta, “Antibiotic production by microbes isolated from soil,” IJPSR, vol. 4, no. 8, pp. 2967–2973, 2013, doi: 10.13040/IJPSR.0975-8232.4(8).2967-73.

G. S. Bbosa, N. Mwebaza, J. Odda, D. B. Kyegombe, and M. Ntale, “Antibiotics/antibacterial drug use, their marketing and promotion during the post-antibiotic golden age and their role in emergence of bacterial resistance,” Health (Irvine. Calif)., vol. 06, no. 05, pp. 410–425, 2014, doi: 10.4236/health.2014.65059.

A. K. Chakraborty, “High mode contamination of multi-drug resistant bacteria in Kolkata: Mechanism of gene activation and remedy by heterogeneous phyto-antibiotics,” Indian J. Biotechnol., vol. 14, no. 2, pp. 149–159, 2015.

J. O’ Neil, “Review on Antibiotic resisitance. Antimicrobial Resistance : Tackling a crisis for the health and wealth of nations,” Heal. Wealth Nations, no. December, pp. 1–16, 2014, [Online]. Available: https://amr-review.org/sites/default/files/AMR Review Paper - Tackling a crisis for the health and wealth of nations_1.pdf.

C. Lynch, N. Mahida, and J. Gray, “Antimicrobial stewardship: a COVID casualty?,” J. Hosp. Infect., vol. 106, no. 3, pp. 401–403, 2020, doi: 10.1016/j.jhin.2020.10.002.

H. Getahun, I. Smith, K. Trivedi, S. Paulin, and H. H. Balkhy, “Tackling antimicrobial resistance in the COVID-19 pandemic,” Challenges to Tackling Antimicrob. Resist., pp. 442-442A, 2020, doi: 10.1017/9781108864121.004.

E. Zavala-Flores and J. Salcedo-Matienzo, “Medicación prehospitalaria en pacientes hospitalizados por COVID-19 en un hospital público de Lima-Perú,” Acta Medica Peru., vol. 37, no. 3, pp. 393–395, 2020, doi: 10.35663/amp.2020.373.1277.

A. Deljou and S. Goudarzi, “Green extracellular synthesis of the silver nanoparticles using Thermophilic Bacillus Sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria,” Iran. J. Biotechnol., vol. 14, no. 2, pp. 25–32, 2016, doi: 10.15171/ijb.1259.

S. Ifandi and M. Alwi, “Isolation of Thermophilic Bacteria from Bora Hot Springs in Central Sulawesi,” Biosaintifika, vol. 10, no. 2, pp. 291–297, 2018, doi: 10.15294/biosaintifika.v10i2.14905.

M. K. Panda, M. K. Sahu, and K. Tayung, “Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India,” Iran. J. Microbiol., vol. 5, no. 2, pp. 159–165, 2013.

N. Wijayati, C. Astutiningsih, S. Mulyati, and I. Artikel, “Transformasi α-Pinena dengan Bakteri Pseudomonas aeruginosa ATCC 25923,” Biosaintifika J. Biol. Biol. Educ., vol. 6, no. 1, pp. 24–28, 2014, doi: 10.15294/biosaintifika.v6i1.2931.

E. Fachrial, S. Anggraini, Harmileni, T. T. Nugroho, and Saryono, “Isolation and molecular identification of carbohydrase and protease producing Bacillus subtilis JCM 1465 isolated from Penen Hot Springs in North Sumatra, Indonesia,” Biodiversitas, vol. 20, no. 12, pp. 3493–3498, 2019, doi: 10.13057/biodiv/d201205.

E. Fachrial, Harmileni, S. Anggraini, T. T. Nugroho, and Saryono, “Inulinase Activity of Thermophilic Bacteria isolated from Hot Springs of Penen Village, North Sumatera, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 406, no. 1, pp. 1–11, 2019, doi: 10.1088/1755-1315/406/1/012012.

E. Fachrial et al., “Molecular identification of cellulase and protease producing bacillus tequilensis utmsa14 isolated from the geothermal hot spring in lau sidebuk debuk, North Sumatra, Indonesia,” Biodiversitas, vol. 21, no. 10, pp. 4719–4725, 2020, doi: 10.13057/biodiv/d211035.

S. A. Muhammad, S. Ahmad, and A. Hameed, “Antibiotic production by thermophilic Bacillus specie SAT-4,” Pak. J. Pharm. Sci., vol. 22, no. 3, pp. 339–345, 2009.

M. Balouiri, M. Sadiki, and S. K. Ibnsouda, “Methods for in vitro evaluating antimicrobial activity: A review,” J. Pharm. Anal., vol. 6, no. 2, pp. 71–79, 2016, doi: 10.1016/j.jpha.2015.11.005.

J. Olmos, “Bacillus subtilis A Potential Probiotic Bacterium to Formulate Functional Feeds for Aquaculture,” J. Microb. Biochem. Technol., vol. 06, no. 07, pp. 1–8, 2014, doi: 10.4172/1948-5948.1000169.

F. M. F. Elshaghabee, N. Rokana, R. D. Gulhane, C. Sharma, and H. Panwar, “Bacillus as potential probiotics: Status, concerns, and future perspectives,” Front. Microbiol., vol. 8, no. AUG, pp. 1–15, 2017, doi: 10.3389/fmicb.2017.01490.

I. Sorokulova, “Modern Status and Perspectives of Bacillus Bacteria as Probiotics,” J. Probiotics Heal., vol. 1, no. 4, pp. 1–5, 2013, doi: 10.4172/2329-8901.1000e106.

A. Valdez, G. Yepiz-Plascencia, E. Ricca, and J. Olmos, “First Litopenaeus vannamei WSSV 100% oral vaccination protection using CotC::Vp26 fusion protein displayed on Bacillus subtilis spores surface,” J. Appl. Microbiol., vol. 117, no. 2, pp. 347–357, 2014, doi: 10.1111/jam.12550.

F. S. Tareq, M. A. Lee, H. S. Lee, J. S. Lee, Y. J. Lee, and H. J. Shin, “Gageostatins A-C, antimicrobial linear lipopeptides from a marine Bacillus subtilis,” Mar. Drugs, vol. 12, no. 2, pp. 871–885, 2014, doi: 10.3390/md12020871.

N. Hidayati et al., “Bacillus tequilensis Isolated from Fermented Intestine of Holothuria Scabra Produces Fibrinolytic Protease with Thrombolysis Activity,” IOP Conf. Ser. Earth Environ. Sci., vol. 707, no. 1, 2021, doi: 10.1088/1755-1315/707/1/012008.

S. Syukur, H. A, and E. Fachrial, “Probiotics and strong antimicrobial of buffalo milk fermentation (Dadih) from different places in west Sumatera Indonesia,” Res. J. Pharm. Biol. Chem. Sci., vol. 7, no. 6, pp. 386–392, 2016.

R. J. Worthington and C. Melander, “Combination Approaches to Combat Multi-Drug Resistant Bacteria The problem of multi drug-resistant bacteria,” Trends Biotechnol., vol. 31, no. 3, pp. 177–184, 2013, doi: 10.1016/j.tibtech.2012.12.006.Combination.

K. Sethy and N. Behera, “Antimicrobial activity of thermotolerant bacterial isolate from coal mine spoil,” Microbiol. Res. (Pavia)., vol. 6, no. 26, pp. 5459–5463, 2012, doi: 10.5897/ajmr11.1551.

Published
2021-10-29
How to Cite
Andriyani, H., Natacia, N., & Fachrial, E. (2021). Production of Antimicrobial Compounds using Thermophilic Bacteria Species Bacillus subtilis and Bacillus Tequilensis. ITEGAM-JETIA, 7(31), 18-25. https://doi.org/10.5935/jetia.v7i31.776
Section
Articles