Implementación heterogénea de LoRaWan para redes IOT dependientes de aplicaciones

Resumen

En este estudio, presentamos una red LoRa heterogénea dependiente de la aplicación. Los estudios previos sobre LoRaWAN y, en particular, los estudios que se basan en el uso de la velocidad de datos adaptativa para optimizar el rendimiento de la red se basan únicamente en la pérdida de ruta de los nodos de la red con el supuesto de que todos los nodos de la red tienen requisitos similares en términos de velocidad de datos y latencia. En una implementación a gran escala de la vida real, es poco probable que este sea el caso, ya que la tendencia actual de implementación de LoRaWAN muestra que las implementaciones prácticas se basan en servicios. Este enfoque significa que las aplicaciones críticas sufrirán problemas de confiabilidad ya que tendrán que competir con servicios no críticos por los mismos recursos. Para abordar este problema, proponemos una LoRaWAN heterogénea que es capaz de brindar soporte para aplicaciones que van desde tolerantes a demoras hasta intolerantes a demoras con confiabilidad mejorada a través de la asignación preferencial de parámetros de transmisión. Nuestro estudio muestra que este enfoque puede aumentar la probabilidad de una transmisión de enlace ascendente exitosa de las aplicaciones críticas hasta en un 44 por ciento y para transmitir nodos dentro de un radio de 3 km de la puerta de enlace, LoRaWAN heterogénea posee una tasa de entrega de paquetes de enlace ascendente un 20 por ciento más alta en comparación con la red homogénea a costa de un consumo energético ligeramente superior.

Descargas

La descarga de datos todavía no está disponible.

Citas

A. Yegin et al., LoRaWAN protocol: specifications, security, and capabilities. INC, 2020.

U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low Power Wide Area Networks: An Overview,” IEEE Commun. Surv. Tutorials, vol. 19, no. 2, pp. 855–873, 2017, doi: 10.1109/COMST.2017.2652320.

N. El-Rachkidy, A. Guitton, and M. Kaneko, “Collision Resolution Protocol for Delay and Energy Efficient LoRa Networks,” IEEE Trans. Green Commun. Netw., vol. 3, no. 2, pp. 535–551, 2019, doi: 10.1109/TGCN.2019.2908409.

F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T. Watteyne, “Understanding the Limits of LoRaWAN,” IEEE Commun. Mag., vol. 55, no. 9, pp. 34–40, 2017, doi: 10.1109/MCOM.2017.1600613.

M. Bembe, A. Abu-Mahfouz, M. Masonta, and T. Ngqondi, “A survey on low-power wide area networks for IoT applications,” Telecommun. Syst., vol. 71, no. 2, pp. 249–274, 2019, doi: 10.1007/s11235-019-00557-9.

B. S. Chaudhari and M. Zennaro, Introduction to low-power wide-area networks. INC, 2020.

A. Woolhouse, “The Weightless standard,” 2016.

B. Dix-Matthews, R. Cardell-Oliver, and C. Hübner, “Lora parameter choice for minimal energy usage,” RealWSN 2018 - Proc. 7th Int. Work. Real-World Embed. Wirel. Syst. Networks, Part SenSys 2018, pp. 37–42, 2018, doi: 10.1145/3277883.3277888.

Semtech Corporation, “SX1272/3/6/7/8 LoRa Modem Design Guide, AN1200.13,” 2013. [Online]. Available: https://www.rs-online.com/.

Sigfox, “Sigfox Technical Overview,” 2017. [Online]. Available: https://www.disk91.com/wp-content/uploads/2017/05/4967675830228422064.pdf.

J. Schlienz and D. Raddino, “Narrowband Internet of Things Whitepaper,” White Pap. Rohde Schwarz, p. 42, 2016, [Online]. Available: https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma266/1MA266_0e_NB_IoT.pdf.

M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios,” IEEE Wirel. Commun., vol. 23, no. 5, pp. 60–67, 2016, doi: 10.1109/MWC.2016.7721743.

I. Blair et al., “Weightless-P System specification,” pp. 1–103, 2015, [Online]. Available: https://pro-bee-user-content-eu-west-1.s3.amazonaws.com/public/users/Integrators/929cb090-e779-401a-b06c-c629ff6b0fea/ap-cambridgestartuplimi/Weightless-P_v1.03.pdf.

A. Rahmadhani and F. Kuipers, “When lorawan frames collide,” in Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM, 2018, pp. 89–97, doi: 10.1145/3267204.3267212.

T. Voigt, M. Bor, U. Roedig, and J. Alonso, “Mitigating inter-network interference in lora networks,” Int. Conf. Embed. Wirel. Syst. Networks, pp. 323–328, 2017, [Online]. Available: http://arxiv.org/abs/1611.00688.

R. Abbas, A. Al-Sherbaz, A. Bennecer, and P. Picton, “Collision evaluation in low power wide area networks,” Proc. - 2019 IEEE SmartWorld, Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Internet People Smart City Innov. SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019, pp. 1505–1512, 2019, doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00271.

S. Cui and I. Joe, “Collision prediction for a low power wide area network using deep learning methods,” J. Commun. Networks, vol. 22, no. 3, pp. 205–214, 2020, doi: 10.1109/JCN.2020.000017.

LoRa-Alliance, “LoRa Specification,” LoRaTM Alliance, p. 82, 2015, [Online]. Available: https://www.rs-online.com/designspark/rel-assets/ds-assets/uploads/knowledge-items/application-notes-for-the-internet-of-things/LoRaWAN Specification 1R0.pdf.

S. Li, U. Raza, and A. Khan, “How Agile is the Adaptive Data Rate Mechanism of LoRaWAN?,” in 2018 IEEE Global Communications Conference, GLOBECOM 2018 - Proceedings, 2018, pp. 206–212, doi: 10.1109/GLOCOM.2018.8647469.

D. Y. Kim, S. Kim, H. Hassan, and J. H. Park, “Adaptive data rate control in low power wide area networks for long range IoT services,” in Journal of Computational Science, 2017, vol. 22, pp. 171–178, doi: 10.1016/j.jocs.2017.04.014.

V. Hauser and T. Hegr, “Proposal of Adaptive Data Rate Algorithm for LoRaWAN-based Infrastructure,” in IEEE 5th International Conference on Future Internet of Things and Cloud, 2017, pp. 85–90, doi: 10.1109/FiCloud.2017.47.

F. Cuomo, M. Campo, and A. Caponi, “EXPLoRa : EXtending the Performance of LoRa by suitable spreading factor allocations,” in IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) EXPLoRa:, 2017, pp. 1–8.

F. Van Den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Scalability Analysis of Large-Scale LoRaWAN Networks in ns-3,” IEEE Internet Things J., vol. 4, no. 6, pp. 2186–2198, 2017, doi: 10.1109/JIOT.2017.2768498.

K. Q. Abdelfadeel, V. Cionca, and D. Pesch, “Fair Adaptive Data Rate Allocation and Power Control in LoRaWAN,” 19th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2018. 2018, doi: 10.1109/WoWMoM.2018.8449737.

B. Reynders, W. Meert, and S. Pollin, “Power and Spreading Factor Control in Low Power Wide Area Networks,” in IEEE International Conference on Communications (ICC), 2017, pp. 1–6.

M. N. Ochoa, L. Suraty, M. Maman, and A. Duda, “Large Scale LoRa Networks : From Homogeneous to Heterogeneous Deployments,” in 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 2018, pp. 192–199.

S. Garcia, F. D. Larios, J. Barbancho, E. Personal, M. J. Mora-Merchan, and C. Leon, “Heterogeneous LoRa-Based Wireless Multimedia Sensor Network Multiprocessor Platform for Environmental Monitoring,” Sensors (Switzerland), vol. 19, no. 3446, pp. 1–28, 2019.

M. El-Aasser, M. Ashour, and T. Elshabrawy, “LoRa Wide Area Network Pragmatic Heterogeneous IoT Applications, Deployment Using Different Spreading Factors,” pp. 327–338, 2021, doi: 10.1007/978-3-030-64217-4_36.

S. M. Dimitrov and D. M. Tokmakov, “Integrating data from heterogeneous wireless sensor networks based on LoraWan and ZigBee sensor nodes,” in 2020 29th International Scientific Conference Electronics, ET 2020 - Proceedings, 2020, pp. 13–16, doi: 10.1109/ET50336.2020.9238256.

R. Marini, K. Mikhaylov, and G. Pasolini, “LoRaWANSim : A Flexible Simulator for LoRaWAN Networks,” pp. 1–19, 2021.

M. Hata, “Empirical Formula for Propagation Loss in Land Mobile Radio Services,” IEEE Trans. Veh. Technol., vol. 29, no. 3, pp. 317–325, 1980, doi: 10.1109/T-VT.1980.23859.

LoRa Alliance, “LoRaWAN 1.0.3 specification,” 2018. [Online]. Available: https://lora-alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf.

Publicado
2022-04-30
Cómo citar
Agbolade, O., Dahunsi, F., & Oyetunji, S. (2022). Implementación heterogénea de LoRaWan para redes IOT dependientes de aplicaciones. ITEGAM-JETIA, 8(34), 4-11. https://doi.org/10.5935/jetia.v8i34.798
Sección
Articles