Monitoreo de la dosis efectiva anual (DEA) en suelos superficiales de los arrozales de Ahero, Kenia

  • Mukanda Kere Wanyama Departamento de Ciencia, Tecnología e Ingeniería; Universidad Kibabii, P.O BOX 1699-50200, Bungoma, Kenia http://orcid.org/0000-0003-2667-8525
  • Michael Nakitare Waswa Departamento de Ciencia, Tecnología e Ingeniería; Universidad Kibabii, P.O BOX 1699-50200, Bungoma, Kenia http://orcid.org/0000-0003-2479-862X
  • Linda Ouma Departamento de Ciencia, Tecnología e Ingeniería; Universidad Kibabii, P.O BOX 1699-50200, Bungoma, Kenia http://orcid.org/0000-0002-4975-2495

Resumen

Se investigaron las dosis efectivas anuales (DEA) tanto de DEA (dentro) como de AED (fuera) en los suelos superficiales de los campos de arroz de Ahero, Kenia. El riesgo para la salud asociado de los suelos de los cuatro campos (Campo 1, Campo 2, Campo 3 y Campo 4) se midió utilizando una técnica espectrométrica de rayos gamma que emplea un detector dopado con yoduro de sodio y talio. Se recolectaron cinco muestras de suelo superficial a una profundidad de 15 a 20 cm del Campo 1, Campo 2, Campo 3 y dos muestras del Campo 4. La DEA promedio (in) de 0,30 ± 0,01 mSv/y una DEA promedio (fuera ) de 0,20 ± 0,01 mSv/y para el campo 1, un DEA promedio (in) de 0,19 ± 0,01 mSv/y, un DEA promedio (out) de 0,20 ± 0,01 mSv/y para el campo 2, un DEA promedio (in) de 0,28 ± 0,01 mSv/y y un DEA (salida) promedio de 0,18 ± 0,01 mSv/y para el campo 3 y un DEA (entrada) promedio de 0,34 ± 0,01 mSv/y y un DEA (salida) promedio de 0,23 ± 0,01 mSv/ y para el campo 4. Todos los valores de DEA, tanto dentro como fuera de los cuatro campos, estaban por debajo del nivel recomendado de 1 mSv/y. Los valores indican que no existe ningún riesgo para la salud asociado con los suelos superficiales del área de estudio para los agricultores y la población en general.

Descargas

La descarga de datos todavía no está disponible.

Citas

Hameed, P. S., Pillai, G. S., &Mathiyarasu, R. (2014). A study on the impact of phosphate fertilizers on the radioactivity profile of cultivated soils in Srirangam (Tamil Nadu, India). Journal of Radiation Research and Applied Sciences, 7(4), 463-471.

United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report, Volume I: Report to the General Assembly, with Scientific Annexes-Sources. United Nations.

Ribeiro, F. C. A., Silva, J. I. R., Lima, E. S. A., do AmaralSobrinho, N. M. B., Perez, D. V., &Lauria, D. C. (2018). Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties. Journal of environmental radioactivity, 182, 34-43.

Ugbede, F. O., Osahon, O. D., &Agbalagba, E. O. (2021). Radiological Risk Assessment of 238U, 232 Th and 40 K in Soil and Their Uptake by Rice Cultivated in CAS Paddy Environment of Abakaliki, Nigeria. Chemistry Africa, 1-11.

Encabo, R. R., Cruz, P. T. F., Bonga, A. C., DelaSada, C. L., Omandam, V. J., Olivares, J. U., ... & Feliciano, C. P. (2020). Measurement of ambient gamma dose rate in Metro Manila, Philippines, using a portable NaI (TI) scintillation survey meter. Environmental Monitoring and Assessment, 192, 1-9.

Emelue, H. U., Jibiri, N. N., & Eke, B. C. (2014). Excess lifetime cancer risk due to gamma radiation in and around Warri refining and petrochemical company in Niger Delta, Nigeria. Journal of Advances in Medicine and Medical Research, 2590-2598.

Raburu, P. O., &Masese, F. O. (2012). Development of a fish‐based index of biotic integrity (FIBI) for monitoring riverine ecosystems in the Lake Victoria drainage Basin, Kenya. River Research and Applications, 28(1), 23-38.

Gaafar, I., Elbarbary, M., Sayyed, M. I., Sulieman, A., Tamam, N., Khandaker, M. U., ... & Hanfi, M. Y. (2022). Assessment of Radioactive Materials in Albite Granites from Abu Rusheid and Um Naggat, Central Eastern Desert, Egypt. Minerals, 12(2), 120.

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., &Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68(6), 394-424.

Nahar, A., Asaduzzaman, K., Islam, M. M., Rahman, M. M., & Begum, M. (2018). Assessment of natural radioactivity in rice and their associated population dose estimation. Radiation Effects and Defects in Solids, 173(11-12), 1105-1114.

Mukanda, K. W., Waswa, M. N., & Ouma, L. (2022). Radiological risk assessment of 238U, 232TH and 40K in the top soils of ahero paddy fields of Kisumu county, Kenya. ITEGAM-JETIA, 8(36), 32-36.

United Nations. Scientific Committee on the Effects of Atomic Radiation. (2011). Sources and Effects of Ionizing Radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2008 Report to the General Assembly, with Scientific Annexes (Vol. 2). United Nations Publications.

Ugbede, F. O. (2020). Distribution of 40K, 238U and 232Th and associated radiological risks in River sand sediments across Enugu East, Nigeria. Environmental Nanotechnology, Monitoring & Management, 14, 100317.

Mburu, C., Kinyua, R., Karani, G., & Kiiyukia, C. (2018). Work Related Ill Heath among Farm Workers at Ahero Irrigation Scheme, Kenya. International Journal of Science and Research, 2319-7064.

KNBS, K. (2019). Kenya Population and Housing Census Volume I: Population BCounty and Sub-County. Vol. I, 2019.

M'marete, C. K. (1991). The bearing capacity of the soils of Ahero irrigated rice fields under the exposure to land preparation traffic (Doctoral dissertation, University of Nairobi).

Ajayi, O. S., & Dike, C. G. (2016). Radiological hazard assessment of natural radionuclides in soils of some oil-producing areas in Nigeria. Environmental Forensics, 17(3), 253-262.

SureshGandhi, M., Ravisankar, R., Rajalakshmi, A., Sivakumar, S., Chandrasekaran, A., &Anand, D. P. (2014). Measurements of natural gamma radiation in beach sediments of north east coast of Tamilnadu, India by gamma ray spectrometry with multivariate statistical approach. Journal of Radiation Research and Applied Sciences, 7(1), 7-17.

Hashim, N. O., Rathore, I. V. S., Kinyua, A. M., & Mustapha, A. O. (2004). Natural and artificial radioactivity levels in sediments along the Kenyan coast. Radiation physics and chemistry, 71(3-4), 805-806.

Jibiri, N. N., Alausa, S. K., &Farai, I. P. (2009). Assessment of external and internal doses due to farming in high background radiation areas in old tin mining localities in Jos-plateau, Nigeria. Radioprotection, 44(2), 139-151

Gad, A., Saleh, A., &Khalifa, M. (2019). Assessment of natural radionuclides and related occupational risk in agricultural soil, southeastern Nile Delta, Egypt. Arabian Journal of Geosciences, 12(6), 1-15.

Paquet, F., Bailey, M. R., Leggett, R. W., Lipsztein, J., Marsh, J., Fell, T. P., ...& Harrison, J. D. (2017). ICRP publication 137: occupational intakes of radionuclides: part 3. Annals of the ICRP, 46(3-4), 1-486.

Publicado
2023-08-31
Cómo citar
Wanyama, M., Waswa, M., & Ouma, L. (2023). Monitoreo de la dosis efectiva anual (DEA) en suelos superficiales de los arrozales de Ahero, Kenia. ITEGAM-JETIA, 9(42), 29-33. https://doi.org/10.5935/jetia.v9i42.873
Sección
Articles