Proposal of a programmable logic controller based on open hardware

Abstract

Industrial automation is dominated by solutions that are implemented with distributed controllers, such as programmable logic controllers. Currently, companies such as Industrial Shields, Norvi, Controllino, or Arduino offer industrial controller solutions that are based on open hardware. These, although they do not have the capacity to work in applications that require high safety integrity levels, represent a low-cost alternative to traditional solutions. This study is the result of the collaboration between Universidad Central Marta Abreu de Las Villas and company CEDAI UEB Villa Clara. The objective of this article is to make a proposal for a programmable controller based on open hardware that is an economical and flexible alternative for industrial automation. The MCI-VC v1.0 is intended to be a compact, low-cost, STM32 microcontroller-based controller that complies with parts of the IEC 61131 standard. The controller will have digital and analog inputs, digital outputs, and RS485, Ethernet, USB, and SPI communication for expansion modules. The proposal is conceptually cheaper than its counterparts, which should allow obtaining a competitive product. The design meets the defined technical requirements and has higher performance than several commercialized controllers.

Downloads

Download data is not yet available.

Author Biographies

David Kairuz Cabrera, University Central “Marta Abreu” de Las Villas. Santa Clara, Villa Clara, Cuba

Automatic Engineer from Marta Abreu de Las Villas Central University. Ph.D Student. Member of the Robotic Automation and Perception Group (GARP). Instructor in the Department of Automatic Control of the Faculty of Electrical Engineering

Delvis Garcia Garcia, Ph.D., University Central “Marta Abreu” de Las Villas. Santa Clara, Villa Clara, Cuba

Automatic Engineer from Universidad Central “Marta Abreu” de Las Villas, Ph.D. ,Assistant Professor of the Department of Automatic Control of the Faculty of Electrical Engineering, (UCLV), member of the Robotic Automation and Perception Group

Arley Bosh Quirós, CEDAI. Santa Clara, Villa Clara, Cuba

Telecommunications and Electronics Engineer (UCLV, 2005). Principal Specialist of the UEB CEDAI-Villa Clara. Designer of automatic control systems and networks in industry and hotel sectors. Works in the R + D + i area of the company, leading several projects. Member of the Technical Advisory Council of CEDAI Nacional

Jorge Lemus Ramos, CEDAI. Santa Clara, Villa Clara, Cuba

Automatic Engineer (UCLV, 2011) and Master in Automatic (UCLV, 2019). Specialist in TAEC, Principal Specialist of the Development Group of the UEB of Villa Clara in the Empresa de Automatización Integral (CEDAI). Specialist in the development of IIOT products based on hardware and free software platforms, development or management of automation projects and consulting on general automation issues

References

L. I. Minchala, J. Peralta, P. Mata-Quevedo, and J. Rojas, “An Approach to Industrial Automation Based on Low-Cost Embedded Platforms and Open Software,” Applied Sciences 2020, Vol. 10, Page 4696, vol. 10, no. 14, p. 4696, Jul. 2020, doi: 10.3390/APP10144696.

R. Henrique Hatahara da Fonseca and F. Rocha Pinto, “The Importance of the Programmable Logic Controller ‘PLC’ in the Industry in the Automation Process,” International Research Journal of Engineering and Technology, 2019. Available: www.irjet.net

M. A. Sehr et al., “Programmable Logic Controllers in the Context of Industry 4.0,” IEEE Trans Industr Inform, vol. 17, no. 5, pp. 3523–3533, May 2021, doi: 10.1109/TII.2020.3007764.

K. Oprzędkiewicz, “Real-time requirements meeting in PLC control system,” Science, Technology and Innovation, vol. 5, no. 2, pp. 1–8, Jun. 2019, doi: 10.5604/01.3001.0013.2568.

A. D. La Espriella-Babiloni, “Comparación entre tecnologías emergentes y tradicionales en automatización e instrumentación industrial,” Sostenibilidad, Tecnología y Humanismo, vol. 10, no. 1, pp. 70–77, Jan. 2019, doi: 10.25213/2216-1872.11.

W. A. Carreño Remolina, M. A. Ayala Robayo, and C. A. Verdugo Durán, “Desarrollo de un PLC con microcontrolador ATmega328p como parte de la integración en sistemas para la automatización de tareas en la gestión integral académico industrial,” 2020. Available: http://repositorio.uts.edu.co:8080/xmlui/handle/123456789/682

Z. Alavi and K. Meehan, “Enhancing a Control Systems Design Course by Using Experiential Learning Model,” in ASEE Annual Conference and Exposition, Conference Proceedings, American Society for Engineering Education, Jun. 2019. doi: 10.18260/1-2--32744.

M. Al-Kuwaiti, N. Kyriakopoulos, and S. Hussein, “A comparative analysis of network dependability, fault-tolerance, reliability, security, and survivability,” IEEE Communications Surveys and Tutorials, vol. 11, no. 2, pp. 106–124, 2009, doi: 10.1109/SURV.2009.090208.

O. D. Araujo Ayala, E. A. Góchez Zelaya, and C. E. Navarro Masferrer, “Fabricación de PLC utilizando microcontroladores para uso didáctico con características industriales,” 2018. Available: http://redicces.org.sv/jspui/handle/10972/3392

Oficina Nacional de Normalización, Autómatas Programables Parte 1 Información General Norma Cubana. Cuba, 2003.

Bezák Tomáš, “Usage of IEC 61131 and IEC 61499 standards for creating distributed control systems,” 2012. Available: https://www.db-thueringen.de/receive/dbt_mods_00019545

International Electrotechnical Commission, Programmable Controllers Part 2 Equipment requirements and tests. 2003.

A. Lazalde, D. Vila-Viñas, and J. Torres, “Hardware libre Recomendaciones para el fomento de la innovación ciudadana,” Ecuador, 2014. Available: http://www.gnu.org/copyleft/fdl.html

Margolis Michael, Jepson Bepson, and Weldin Nicholas Robert, Arduino Cookbook: recipes to begin, expand, and enhance your projects, Third. O’Reilly Media, 2020. Available: https://books.google.com.cu/books?hl=en&lr=&id=3b3dDwAAQBAJ&oi=fnd&pg=PP1&dq=arduino+cookbook+margolis&ots=eFKT-69KYa&sig=DY7EnJpHDe817GR5fILpeNFzPqE&redir_esc=y#v=onepage&q=arduino%20cookbook%20margolis&f=false

S. Ansari, A. Ayob, M. S. Hossain Lipu, M. H. M. Saad, and A. Hussain, “Comparison of the IoT Based Modules for Solar PV Environment: A Review,” 2020 IEEE Student Conference on Research and Development, SCOReD 2020, pp. 401–405, Sep. 2020, doi: 10.1109/SCORED50371.2020.9250946.

B. Morawski, D. Głowacki, and A. Głowacka, “Low-Cost Data Acquisition Unit for Flight Tests,” Fatigue of Aircraft Structures, vol. 2019, no. 11, pp. 121–130, Dec. 2020, doi: 10.2478/FAS-2019-0012.

M. Evans, J. Noble, and J. Hochenbaum, Arduino in action. 2013.

H. K. Kondaveeti, N. K. Kumaravelu, S. D. Vanambathina, S. E. Mathe, and S. Vappangi, “A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations,” Comput Sci Rev, vol. 40, p. 100364, May 2021, doi: 10.1016/J.COSREV.2021.100364

S. J. Johnston and S. J. Cox, “The Raspberry Pi: A Technology Disrupter, and the Enabler of Dreams,” Electronics 2017, Vol. 6, Page 51, vol. 6, no. 3, p. 51, Jul. 2017, doi: 10.3390/ELECTRONICS6030051.

S. O. Ooko, “A Comparison of Arduino, Raspberry Pi and ESP8266 Boards Security of wireless networks View project Internet of Things View project,” 2019. Available: https://www.researchgate.net/publication/337707190

N. S. Yamanoor and S. Yamanoor, “High quality, low cost education with the Raspberry Pi,” GHTC 2017 - IEEE Global Humanitarian Technology Conference, Proceedings, vol. 2017-January, pp. 1–5, Dec. 2017, doi: 10.1109/GHTC.2017.8239274.

Marwedel Peter, Embedded System Series, Third. Dortmund, Germany: Springer, 2018. Available: http://www.springer.com/series/8563

C. Noviello, “Mastering STM32 A step-by-step guide to the most complete ARM Cortex-M platform,” 2015. Available: http://leanpub.com/mastering-stm32

Y. Feng et al., “Corrosion behavior of printed circuit boards in tropical marine atmosphere,” Int J Electrochem Sci, vol. 14, pp. 11300–11301, 2019, doi: 10.20964/2019.12.73.

Microelectronics ST, “Products and solutions for Smart Industry Contents,” United Kingdom, Apr. 2021.

G. Brown, “Discovering the STM32 Microcontroller,” 2016.

A. Martinez, E. Hernandez-Rodriguez, L. Hernandez, O. Schalm, R. A. Gonzalez-Rivero, and D. Alejo-Sanchez, “Design of a low-cost system for the measurement of variables associated with air quality,” IEEE Embed Syst Lett, Jun. 2022, doi: 10.1109/LES.2022.3196543.

E. H. Rodríguez, O. Schalm, and A. Martínez, “Development of a low-cost measuring system for the monitoring of environmental parameters that affect air quality for human health,” ITEGAM-JETIA, vol. 6, no. 22, pp. 22–27, Apr. 2020, doi: 10.5935/2447-0228.20200013.

E. Hernandez-Rodriguez, D. Kairúz-Cabrera, A. Martinez, R. A. González-Rivero, and O. Schalm, “Low-Cost Portable System for the Estimation of Air Quality,” Studies in Systems, Decision and Control, vol. 464, pp. 287–297, 2023, doi: 10.1007/978-3-031-26361-3_25/COVER.

P. Seneviratne, “Building Arduino PLCs,” Building Arduino PLCs, 2017, doi: 10.1007/978-1-4842-2632-2.

G. Vieira, J. Barbosa, P. Leitao, and L. Sakurada, “Low-cost industrial controller based on the raspberry pi platform,” Proceedings of the IEEE International Conference on Industrial Technology, vol. 2020-February, pp. 292–297, Feb. 2020, doi: 10.1109/ICIT45562.2020.9067148.

Arsheen Mir and Swarnalatha R, “Implementation of an industrial automation system model using an Arduino,” Journal of Engineering Science and Technology, pp. 4131–4144, Dec. 2018, Accessed: Jun. 03, 2023. Available: https://www.researchgate.net/profile/Arsheen-Mir/publication/330365845_Implementation_of_an_industrial_automation_system_model_using_an_Arduino/links/5c5a138845851582c3d17271/Implementation-of-an-industrial-automation-system-model-using-an-Arduino.pdf

G. E. Real, M. Florencia Jaure, and A. O. Vitali, “Data acquisition and industrial control system based on Arduino Due using open-source hardware and software,” Proceedings of 2018 Technologies Applied to Electronics Teaching, TAEE 2018, Sep. 2018, doi: 10.1109/TAEE.2018.8476072.

V. L. Méndez González and K. M. Zambrano Flores, “Implementación de Módulos de Aprendizaje Orientados a la Instrumentación Física y Virtual en El Sector Industrial, Mediante Plc’s Arduino,” 2020. Available: http://dspace.ups.edu.ec/handle/123456789/19023

Industrial Shields, “M-Duino Family User Guide,” Barcelona, Spain, 2016.

E. J. Ortega, “Diseño e implementación de una plataforma de aprendizaje de la placa PLC-Arduino para estudiantes de ingeniería,” May 2022. Available: https://upcommons.upc.edu/handle/2117/372765

J. M. Valencia-Henao, G. R. Solarte-Martínez, and L. E. M.-G. G. R. Solarte-Martínez, “Analysis and Interface Design for Arduino based PLC connection with Allen Bradley PLC,” Scientia et Technica, vol. 24, Sep. 2019.

R. Rivero Leo, “Diseño de un PLC industrial usando hardware libre,” 2015. Available: https://academica-e.unavarra.es/xmlui/handle/2454/18085

Iconic Devices, “Norvi IIOT for Industrial IOT Aplications,” Sri Lanka, 2020.

Iconic Devices, “Norvi Arita Product Data sheet,” Sri Lanka, 2020.

L. O. Aghenta and M. T. Iqbal, “Low-Cost, Open Source IoT-Based SCADA System Design Using Thinger.IO and ESP32 Thing,” Electronics 2019, Vol. 8, Page 822, vol. 8, no. 8, p. 822, Jul. 2019, doi: 10.3390/ELECTRONICS8080822.

L. O. Aghenta and M. T. Iqbal, “Design and implementation of a low-cost, open source IoT-based SCADA system using ESP32 with OLED, ThingsBoard and MQTT protocol,” AIMS Electronics and Electrical Engineering, vol. 4, no. 1, pp. 57–86, Dec. 2019, doi: 10.3934/ELECTRENG.2020.1.57.

R. S. Salazar Quinaucho, “Simulación de dos sistemas de control industrial mediante Controllino a través de una interfaz humano máquina HMI,” Dec. 2020. Available: http://bibdigital.epn.edu.ec/handle/15000/21509

Controllino, “Mini, Maxi and Mega Instruction Manual,” Austria, May 2018.

Arduino, “Arduino Opta Collective Datasheet,” Product Reference Manual. Monza, Apr. 07, 2023.

“Welcome Opta, our first-ever micro PLC with Industrial IoT capabilities | Arduino Blog.” https://blog.arduino.cc/2022/11/08/welcome-opta-our-first-ever-micro-plc-with-industrial-iot-capabilities/.

M. Diez -Rodríguez, A. -López, and H. Vicash -Gokoel, “Automatización de puestos de trabajo de accionamientos eléctricos,” Ingeniería Energética, vol. 31, no. 3, p. 6 a la 12, May 2011. Available: https://rie.cujae.edu.cu/RIE/article/view/274

S. De, Y. Luis Llámez De Varona, M. Alberto, G. Abreu, and B. Luis Martínez Jiménez, “Sistema de Automatización de Biorreactores de Inmersión Temporal,” Universidad Central “Marta Abreu” de Las Villas, Santa Clara, 2009.

C. y E. del N. G. E. C. División Nicaro Empresa de Servicios de Computación, “Productos para la Automatización Grupo de Ingeniería y Desarrollo.” https://slideplayer.es/slide/12188383/.

C. Alcaraz and J. Lopez, “Analysis of requirements for critical control systems,” International Journal of Critical Infrastructure Protection, vol. 5, no. 3–4, pp. 137–145, Dec. 2012, doi: 10.1016/J.IJCIP.2012.08.003.

Published
2023-08-31
How to Cite
Cabrera, D., Garcia, D., Quirós, A., Ramos, J., & Laguardia, A. (2023). Proposal of a programmable logic controller based on open hardware. ITEGAM-JETIA, 9(42), 41-47. https://doi.org/10.5935/jetia.v9i42.878
Section
Articles