Un análisis exhaustivo de los aspectos de simulación, optimización, corrosión y diseño de unidades de destilación de crudo.

  • Abdulrazzaq Saeed Abdullah Departamento de Ingeniería de Técnicas Químicas y Petroquímicas/Facultad Técnica de Ingeniería de Basora/Universidad Técnica del Sur/Basora, Irak http://orcid.org/0000-0001-7215-3098
  • Hassan Wathiq Ayoob Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Basora, Basora, Irak http://orcid.org/0000-0002-1160-3291

Resumen

La función principal de una unidad de destilación de crudo (CDU) dentro de una refinería de petróleo es segregar efectivamente el petróleo crudo en sus fracciones o productos constituyentes en función de sus respectivos puntos de ebullición. La columna de destilación de crudo a menudo sirve como unidad de procesamiento principal en la mayoría de las refinerías, y es fundamental para producir una amplia gama de productos de refinería. Este estudio examina artículos de investigación publicados entre 2013 y 2023 que investigan específicamente cuestiones relacionadas con las unidades de destilación de crudo. La investigación se esfuerza por producir diseños innovadores y construir modelos matemáticos para mejorar la eficiencia de la producción en este contexto. La investigación se centra principalmente en desarrollar un modelo matemático que caracterice con precisión la torre de destilación. Esto se logra utilizando una red neuronal artificial o un enfoque de control predictivo de modelo no lineal. El objetivo principal de la investigación de simulación y optimización es identificar las condiciones operativas óptimas, normalmente empleando herramientas de software como Aspen HYSYS o PRO II. Los resultados del tratamiento de corrosión realizado en la parte superior de la torre fueron satisfactorios. El estudio se centró en la cuestión de la corrosión en las líneas aéreas y en las bombas alrededor de los intercambiadores. Esta investigación de diseño tiene como objetivo investigar posibles modificaciones al diseño de la torre de destilación o al proceso preflash para optimizar los resultados de producción.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ž. Olujić, M. Jödecke, A. Shilkin, G. Schuch, and B. Kaibel, “Equipment improvement trends in distillation,” Chem. Eng. Process. Process Intensif., vol. 48, no. 6, pp. 1089–1104, 2009.

R. J. Hengstebeck, “Petroleum processing: principles and applications,” (No Title), 1959.

F. Li, F. Qian, M. Yang, W. Du, and V. Mahalec, “Product tri-section based crude distillation unit model for refinery production planning and refinery optimization,” AIChE J., vol. 67, no. 2, Feb. 2021, doi: 10.1002/aic.17115.

O. S. Bayomie, O. Y. Abdelaziz, and M. A. Gadalla, “Exceeding Pinch limits by process configuration of an existing modern crude oil distillation unit–A case study from refining industry,” J. Clean. Prod., vol. 231, pp. 1050–1058, 2019.

B. S. Babaqi, “Mathematical Model for Reducing Energy Consumption and Greenhouse Gas Emissions in the Crude Distillation Unit Using the LINGO Program,” in 2019 First International Conference of Intelligent Computing and Engineering (ICOICE), IEEE, 2019, pp. 1–8.

Y. Xiong, X. Shi, Y. Ma, and Y. Chen, “Optimization design of crude oil distillation unit using bi-level surrogate model,” Front. Control Eng., vol. 4, p. 1162318, 2023.

F. Li, F. Qian, W. Du, M. Yang, J. Long, and V. Mahalec, “Refinery production planning optimization under crude oil quality uncertainty,” Comput. Chem. Eng., vol. 151, p. 107361, 2021.

S. A. Rahman and R. Anjana, “Unisim Based Simulation and Analysis of Crude Oil Distillation,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, p. 12094.

F. Al-Shanableh, “Product Quality Prediction of 95% Naphtha Cut Point in Crude Distillation Unit Using Artificial Neural Networks,” in The Proceedings of the International Conference on Smart City Applications, Springer, 2021, pp. 1011–1021.

M. Jobson, L. M. Ochoa-Estopier, D. Ibrahim, L. Chen, G. G. Gosálbez, and J. Li, “Feasibility bounds in operational optimization and design of crude oil distillation systems using surrogate methods,” Chem. Eng. Trans., vol. 61, pp. 1849–1854, 2017.

D. Ibrahim, M. Jobson, and G. Guillén-Gosálbez, “Optimization-based design of crude oil distillation units using rigorous simulation models,” Ind. Eng. Chem. Res., vol. 56, no. 23, pp. 6728–6740, 2017.

Q. Jin, Z. Feng, Q. Liu, X. Du, Y. Zhang, and W. Cai, “An improved economic‐based nonlinear model predictive control strategy for the crude oil distillation process,” Can. J. Chem. Eng., vol. 96, no. 11, pp. 2408–2419, 2018.

W. Muhsin and J. Zhang, “Modelling and optimal operation of a crude oil hydrotreating process with atmospheric distillation unit utilizing stacked neural networks,” in Computer Aided Chemical Engineering, Elsevier, 2017, pp. 2479–2484.

S. Nalinakshan, V. Sivasubramanian, V. Ravi, A. Vasudevan, M. S. R. Sankar, and K. Arunachalam, “Progressive crude oil distillation: An energy-efficient alternative to conventional distillation process,” Fuel, vol. 239, pp. 1331–1337, 2019.

D. C. López C, L. J. Hoyos, C. A. Mahecha, H. Arellano-Garcia, and G. Wozny, “Optimization model of crude oil distillation units for optimal crude oil blending and operating conditions,” Ind. Eng. Chem. Res., vol. 52, no. 36, pp. 12993–13005, 2013.

C. Yan, L. Lv, S. Wei, A. Eslamimanesh, and W. Shen, “Application of retrofitted design and optimization framework based on the exergy analysis to a crude oil distillation plant,” Appl. Therm. Eng., vol. 154, no. June 2018, pp. 637–649, 2019, doi: 10.1016/j.applthermaleng.2019.03.128.

Z. N. Izyan and M. Shuhaimi, “Exergy analysis for fuel reduction strategies in crude distillation unit,” Energy, vol. 66, pp. 891–897, 2014.

M. A. Waheed and A. O. Oni, “Performance improvement of a crude oil distillation unit,” Appl. Therm. Eng., vol. 75, pp. 315–324, 2015.

K. Yang, S. Liu, C. He, B. Zhang, Q. Chen, and M. Pan, “Improving energy saving of crude oil distillation units with optimal operations,” J. Clean. Prod., vol. 263, p. 121340, 2020.

A. L. Mashi and A. Sani, “ENHANCED DIESEL PRODUCTION VIA MODELLING AND SIMULATION OF CRUDE DISTILLATION UNIT II OF KADUNA REFINING AND PETROCHEMICAL COMPANY,” FUDMA J. Sci., vol. 4, no. 1, pp. 383–388, 2020.

M. Kishk, W. M. El-Maghlany, A. Attia, and Y. A. Eldrainy, “Investigation of the Opportunity of Heat Integration in a CDU in Egypt,” Int. Energy J., vol. 22, no. 4, 2022.

P. A. Martin, A. C. Zanin, and D. Odloak, “Integrating real time optimization and model predictive control of a crude distillation unit,” Brazilian J. Chem. Eng., vol. 36, pp. 1205–1222, 2019.

W. M. Shehata, M. I. Mohamed, and F. K. Gad, “Optimal pre-flash drum pressure and optimal inlet tray for pre-flashing vapor in a crude distillation unit”.

A. F. Jumaah, A. A. Amooey, and S. R. Nabavi, “Simulation Multi‐Objective Particle Swarm Optimization of a Crude Oil Distillation Unit,” Chem. Eng. Technol., vol. 46, no. 2, pp. 270–278, 2023.

W. Muhsin and J. Zhang, “Multi-Objective Optimization of a Crude Oil Hydrotreating Process with a Crude Distillation Unit Based on Bootstrap Aggregated Neural Network Models,” Processes, vol. 10, no. 8, p. 1438, 2022.

A. Isah, O. Azeez, D. Kolo, I. Mohammed, and K. Onifade, “Pinch analysis of crude distillation unit using the HINT software and comparison with nonlinear programming technique,” Authorea Prepr., 2020.

A. N. Khalaf, “Steady state simulation of Basrah crude oil refinery distillation unit using aspen hysys,” Univ. Thi-Qar J. Eng. Sci., vol. 9, no. 2, pp. 29–39, 2018.

M. A. Samborskaya, I. A. Gryaznova, and A. V. Volf, “Pre-design optimization of crude oil distillation flowsheet,” Procedia Chem., vol. 15, pp. 134–142, 2015.

M. Ledezma-Martínez, M. Jobson, and R. Smith, “Simulation–optimization-based design of crude oil distillation systems with preflash units,” Ind. Eng. Chem. Res., vol. 57, no. 30, pp. 9821–9830, 2018.

M. Ledezma-Martínez, M. Jobson, and R. Smith, “A new optimization-based design methodology for energy-efficient crude oil distillation systems with preflash units,” Chem. Eng., vol. 69, 2018.

S. M. Ali, H. S. Moshref, H. A. Mohammed, Z. M. Shakor, and S. Mohmud, “Studies and Modeling for Upgrading Units for Heavy Oil Refineries,” J. Pet. Res. Stud., vol. 8, no. 2, pp. 240–255, 2018.

F. KAMIŞLI and A. A. Ahmed, “Simulation and Optimization of A Crude Oil Distillation Unit,” Turkish J. Sci. Technol., vol. 14, no. 2, pp. 59–68, 2019.

C. Patrascioiu and M. Jamali, “Crude distillation process simulation using Unisim Design simulator,” Int. J. Chem. Mol. Eng., vol. 12, no. 7, pp. 340–346, 2018.

L. T. Popoola, J. A. Adeniran, and S. O. Akinola, “Investigations into optimization models of crude oil distillation column in the context of feed stock and market value,” Adv. Chem. Eng. Sci., vol. 2, pp. 1–7, 2012.

M. Arjmand, L. Moreno, and L. Liu, “Energy saving in crude oil atmospheric distillation columns by modifying the vapor feed inlet tray,” Chem. Eng. Technol., vol. 34, no. 8, pp. 1359–1367, 2011.

A. M. Doust, F. Shahraki, and J. Sadeghi, “Simulation, control and sensitivity analysis of crude oil distillation unit,” J. Pet. Gas Eng., vol. 3, no. 6, pp. 99–113, 2012.

M. Gadalla, D. Kamel, and F. Ashour, “A new optimization based retrofit approach for revamping an Egyptian crude oil distillation unit,” Energy Procedia, vol. 36, pp. 454–464, 2013.

M. A. Gadalla, O. Y. Abdelaziz, D. A. Kamel, and F. H. Ashour, “A rigorous simulation-based procedure for retrofitting an existing Egyptian refinery distillation unit,” Energy, vol. 83, pp. 756–765, 2015.

W. Gu, K. Wang, Y. Huang, B. Zhang, Q. Chen, and C. Hui, “Energy optimization for a multistage crude oil distillation process,” Chem. Eng. Technol., vol. 38, no. 7, pp. 1243–1253, 2015.

L. Q. Minh, P. L. T. Duong, and M. Lee, “Global sensitivity analysis and uncertainty quantification of crude distillation unit using surrogate model based on Gaussian process regression,” Ind. Eng. Chem. Res., vol. 57, no. 14, pp. 5035–5044, 2018.

N. Seegulam, F. Coletti, and S. Macchietto, “Effect of Fouling on Control and Energy Recovery in an Industrial CDU Column,” in Computer Aided Chemical Engineering, Elsevier, 2017, pp. 1555–1560.

N. Shankar, V. Sivasubramanian, and K. Arunachalam, “Steady state optimization and characterization of crude oil using Aspen HYSYS,” Pet. Sci. Technol., vol. 34, no. 13, pp. 1187–1194, 2016.

B. Shi, X. Yang, and L. Yan, “Optimization of a crude distillation unit using a combination of wavelet neural network and line-up competition algorithm,” Chinese J. Chem. Eng., vol. 25, no. 8, pp. 1013–1021, 2017.

D.-C. López, C.-A. Mahecha, L.-J. Hoyos, L. Acevedo, and J.-F. Villamizar, “Optimization model of a system of crude oil distillation units with heat integration and metamodeling,” CT&F-Ciencia, Tecnol. y Futur., vol. 3, no. 5, pp. 159–173, 2009.

A. S. Yamashita, A. C. Zanin, and D. Odloak, “Tuning the model predictive control of a crude distillation unit,” ISA Trans., vol. 60, pp. 178–190, 2016.

Y. Kumar, “Corrosion of Top Pump around (TPA) exchangers in Crude Distillation Unit and its remedial measures”.

S. Kumar and A. Mhetre, “A new crude processing method for increasing distillate yield and energy efficiency of the crude distillation unit,” 2019.

P. Schempp, S. Köhler, M. Menzebach, K. Preuss, and M. Tröger, “Corrosion in the crude distillation unit overhead line: Contributors and solutions,” in Proceedings of the European corrosion congress, 2017.

M. R. Hamoudi, A. A. Hamooudi, and B. M. Ali, “Corrosion mitigation in crude oil process by implementation of desalting unit in Erbil refinery,” ASRJETS, vol. 36, no. 1, pp. 224–241, 2017.

Y. Xu, L. Zhang, G. Cui, and Q. Yang, “A heuristic approach to design a cost-effective and low-CO2 emission synthesis in a heat exchanger network with crude oil distillation units,” Energy, vol. 271, p. 126972, 2023.

S. Kumar and A. S. Mhetre, “Comparative techno-economic evaluation of potential processing schemes for petroleum crude oil distillation,” Results Eng., vol. 14, p. 100480, 2022.

M. A. Al-Mayyahi, A. F. A. Hoadley, and G. P. Rangaiah, “Energy optimization of crude oil distillation using different designs of pre-flash drums,” Appl. Therm. Eng., vol. 73, no. 1, pp. 1204–1210, 2014.

Y. H. Kim, “An Energy‐Efficient Crude Distillation Unit with a Prefractionator,” Chem. Eng. Technol., vol. 40, no. 3, pp. 588–597, 2017.

H. K. Mohanta and A. K. Pani, “Support vector regression modeling in recursive just-in-time learning framework for adaptive soft sensing of naphtha boiling point in crude distillation unit,” Pet. Sci., vol. 18, no. 4, pp. 1230–1239, 2021.

D. K. Fayruzov, Y. N. Bel’kov, D. V Kneller, and A. Y. Torgashov, “Advanced process control system for a crude distillation unit. A case study,” Autom. Remote Control, vol. 78, pp. 357–367, 2017.

Publicado
2023-10-31
Cómo citar
Abdullah, A., & Ayoob, H. (2023). Un análisis exhaustivo de los aspectos de simulación, optimización, corrosión y diseño de unidades de destilación de crudo. ITEGAM-JETIA, 9(43), 18-22. https://doi.org/10.5935/jetia.v9i43.894
Sección
Articles