Ampliación mediante modelización matemática de reactores anaeróbicos para el tratamiento de aguas residuales de levadura.

Resumen

El tratamiento de aguas residuales mediante digestión anaeróbica es una solución viable para el vertido de residuos líquidos industriales con diferentes niveles de contaminación. La cinética de la reacción de digestión anaeróbica, en reactores tubulares de laboratorio, por un consorcio de microorganismos para tratar residuos líquidos de una industria de levaduras alimentarias no se ajusta a una ecuación de Monod, sino a un ajuste numérico realizado con el programa Table Curve 2D. Donde se determinó 0.65 d-1 como tasa máxima de crecimiento celular y otros parámetros de la cinética microbiana. El error con el que el modelo seleccionado describe los resultados experimentales es ± 24 mg/L. El análisis matemático de los modelos utilizados se realizó en el software MATLAB®, el cual permitió la determinación de un novedoso número adimensional, denominado Gai, que facilitó el análisis, escalamiento mediante modelado matemático y dimensionamiento de los reactores anaeróbicos a escala industrial para el tratamiento de 430 m3/d de residuos. Se dimensionaron biorreactores tubulares con una altura total de 18,93 m y 2,4 m de diámetro. También se determinó el caudal requerido de 2,91 m3/h. El número de Gai es una relación entre los fenómenos que rigen el proceso estudiado, la conversión y las constantes de tiempo de residencia, estando involucrados dos mecanismos principales en el proceso: flujo convectivo y conversión. Una vez demostrado que no existen restricciones difusionales en la hoja anaerobia.

Descargas

La descarga de datos todavía no está disponible.

Citas

R. Cortés Martínez, F. Ramos Miranda, J. E. Miño Valdés, O. Pérez Navarro y E. González Suárez, “Modelación y simulación de procesos en la intensificación de instalaciones de la industria química”, +Ingenio, Jul - Dic 2020 V2 N2, pp. 22–36, febrero de 2021. [Online]. https://doi.org/10.36995/j.masingenio.2021.02.02.002

M. J. Wade, “Not just numbers: Mathematical modelling and its contribution to anaerobic digestion processes”, Processes, vol. 8, n.º 8, p. 888, julio de 2020. Accessed: Oct. 11 2023. Aviable: https://doi.org/10.3390/pr8080888

F. A. Ortega Quintana, H. Álvarez y H. A. Botero Castro, “Enfrentando el modelado de bioprocesos: Una revisión de las metodologías de modelado”, Rev. ION, vol. 30, n.º 1, pp. 73–90, junio de 2017. Accessed Oct. 11 2023. [Online]. Aviable: https://doi.org/10.18273/revion.v30n1-2017006

S. Emebu, J. Pecha y D. Janáčová, “Review on anaerobic digestion models: Model classification & elaboration of process phenomena”, Renewable Sustain. Energy Rev., vol. 160, p. 112288, mayo de 2022. [Online]. Aviable: https://doi.org/10.1016/j.rser.2022.112288

A. Basile et al., “Modelling of microbial interactions in anaerobic digestion: From black to glass box”, Current Opinion Microbiol., vol. 75, p. 102363, octubre de 2023. Accessed Oct 19 2023. [Online]. Aviable: https://doi.org/10.1016/j.mib.2023.102363

Z. Barahmand y G. Samarakoon, “Anaerobic digestion process modeling under uncertainty: A narrative review”, Int. J. Energy Prod. Manage., vol. 8, n.º 1, pp. 41–54, marzo de 2023. [Online]. Aviable: https://doi.org/10.18280/ijepm.080106

S. S. Hosseini y J. F. M. Denayer, “Biogas upgrading by adsorption processes: Mathematical modeling, simulation and optimization approach – A review”, J. Environmental Chem. Eng., vol. 10, n.º 3, p. 107483, junio de 2022. [Online]. Aviable: https://doi.org/10.1016/j.jece.2022.107483

L. E. Solís Granda, “Modelación matemática del tratamiento anaerobio de aguas residuales urbanas para la hacienda teresita, sector agrícola de milagro”, Tesis de maestría, Univ. Estatal Milagro, Guayas, 2022. [Online]. Aviable: http://repositorio.unemi.edu.ec/handle/123456789/6050

N. W. F. Kossen, “Scale-up in Biotechnology”, en Recent Advances in Biotechnology. Dordrecht: Springer Neth., 1992, pp. 147–182. Accessed Oct. 19 2023. [Online]. Aviable: https://doi.org/10.1007/978-94-011-2468-3_7

N. Mahendrasinh Kosamia, M. Samavi, K. Piok y S. Kumar Rakshit, “Perspectives for scale up of biorefineries using biochemical conversion pathways: Technology status, techno-economic, and sustainable approaches”, Fuel, vol. 324, p. 124532, septiembre de 2022. Accessed Oct. 19 2023. [Online]. Aviable: https://doi.org/10.1016/j.fuel.2022.124532

L. C. Moreira, P. O. Borges, R. M. Cavalcante y A. F. Young, “Simulation and economic evaluation of process alternatives for biogas production and purification from sugarcane vinasse”, Renewable Sustain. Energy Rev., vol. 163, p. 112532, julio de 2022. Accessed Oct. 19 2023. [Online]. Aviable: https://doi.org/10.1016/j.rser.2022.112532

Y.-H. Du, M.-Y. Wang, L.-H. Yang, L.-L. Tong, D.-S. Guo y X.-J. Ji, “Optimization and Scale-Up of Fermentation Processes Driven by Models”, Bioengineering, vol. 9, n.º 9, p. 473, septiembre de 2022. Accessed Oct. 19 2023. [Online]. Aviable: https://doi.org/10.3390/bioengineering9090473

G. Wang, C. Haringa, H. Noorman, J. Chu y Y. Zhuang, “Developing a Computational Framework To Advance Bioprocess Scale-Up”, Trends Biotechnol., vol. 38, n.º 8, pp. 846–856, agosto de 2020. Accessed Oct. 19 2023. [Online]. Aviable: https://doi.org/10.1016/j.tibtech.2020.01.009

I. Rodríguez y G. Blázquez, Escalado de reactores químicos y biológicos. Granada: UGR, 2010.

J. Xia, G. Wang, M. Fan, M. Chen, Z. Wang y Y. Zhuang, “Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains”, Chin. J. Chem. Eng., diciembre de 2020. Accessed Oct. 19 2023. [Online]. Aviable: https://doi.org/10.1016/j.cjche.2020.12.004

S. J. Allan, P. A. De Bank y M. J. Ellis, “Bioprocess Design Considerations for Cultured Meat Production With a Focus on the Expansion Bioreactor”, Frontiers Sustain. Food Syst., vol. 3, junio de 2019. Accessed Oct. 19 2023. [Online]. Aviable: https://doi.org/10.3389/fsufs.2019.00044

Vertimiento de aguas residuales a las aguas terrestres y al alcantarillado — especificaciones, NC 27: 2012, Organismo Nacional de Normalización de la República de Cuba, La Habana, 2012.

M. Figueroa, O. Pérez, L. Zumalacárregui y A. Cruz, “Evaluación económica de la producción de levadura torula a partir de balances en secciones de la planta”, Rev. Cent. Azucar, vol. 49, n.º 3, pp. 90–99, 2022. Accessed el 22 de octubre de 2023. [Online]. Aviable: http://centroazucar.uclv.edu.cu/index.php/centro_azucar/article/view/717

A. Mishra, M. Kumar, N. S. Bolan, A. Kapley, R. Kumar y L. Singh, “Multidimensional approaches of biogas production and up-gradation: Opportunities and challenges”, Bioresource Technol., vol. 338, p. 125514, octubre de 2021. Accessed Oct. 11 2023. [Online]. Aviable: https://doi.org/10.1016/j.biortech.2021.125514

A. Kasinath et al., “Biomass in biogas production: Pretreatment and codigestion”, Renewable Sustain. Energy Rev., vol. 150, p. 111509, octubre de 2021. Accessed Oct. 11 2023. [Online]. Aviable: https://doi.org/10.1016/j.rser.2021.111509

C. A. de Lemos Chernicharo y T. Bressani-Ribeiro, Eds., Anaerobic Reactors for Sewage Treatment: Design, Construction and Operation. IWA Publ., 2019. Accessed Oct. 11 2023. [Online]. Aviable: https://doi.org/10.2166/9781780409238

J. Pacheco, “Evaluación técnica de la eficiencia de remoción de materia orgánica de agua residual proveniente del Servicio Nacional Textil - SENATEX en un biorreactor UASB a escala laboratorio.”, Tesis de grado, Univ. Mayor SAn Andres, La Paz, 2023. [Online]. Aviable: http://repositorio.umsa.bo/xmlui/handle/123456789/31251

k.J. Fernández-Andreade et al. “Evaluation of mass transfer in packed column for competitive adsorption of Tartrazine and brilliant blue FCF: A statistical analysis”, Results Eng., vol.14, p.100449, junio de 2022. Accessed Oct. 19 2023. [Online] Aviable: https://doi.org/10.1016/j.rieng.2022.10044

C. Menéndez y S. Pires, Tratamientos de agua y Gestión y Tratamiento de residuos. La Habana: Ed. CUJAE, 2011. [Online]. Aviable: https://www.researchgate.net/profile/Carlos-Menendez-Gutierrez/publication/284188773_Tratamiento_de_Agua_y_Gestion_y_Tratamiento_de_Residuos/links/5655bda308aefe619b1b68d2/Tratamiento-de-Agua-y-Gestion-y-Tratamiento-de-Residuos.pdf

M. Fernández, “Diseño de un reactor anaerobio UASB para el aprovechamiento energético de residuos lácteos a escala piloto”, Tesis de grado, Univ. Central "Marta Abreu" Villas, Santa Clara, 2020. [Online]. Aviable: https://dspace.uclv.edu.cu/handle/123456789/19

N. Deliiski, N. Tumbarkova y G. Zlateski, “Computation by visual fortran of polinoms, obtained by means of software package Table Curve 2d”, Int. J. - Wood, Des. & Technol., Vol.7, No.1, pp. 15–22, 2018. [Online]. Aviable: http://94.149.148.70/en/wood_journal/archive/vol_7_no1/vol_7_no1_fulltext_3

A. Forero, “Diseño y construcción de un prototipo de biorreactor para determinación de coeficientes cinéticos de tratamiento de agua residual para el laboratorio de tratamiento de aguas de la Universidad Santo Tomás - Sede Bogotá”, Tesis de grado, UNIV. ST. TOMAS, Bogotá, 2021. Accessed el 10 de octubre de 2023. [Online]. Aviable: http://hdl.handle.net/11634/37718

Y. Pererva, C. D. Miller y R. C. Sims, “Approaches in Design of Laboratory-Scale UASB Reactors”, Processes, vol. 8, n.º 6, p. 734, junio de 2020. Accessed Oct. 19 2023. [Online]. Aviable: https://doi.org/10.3390/pr8060734

I. Dunn, E. Heinzle, J. Prenosil y I. J, Biological Reaction Engineering. Wiley, 2003.

T. T. U. Dinh, S. Soda, T. A. H. Nguyen, J. Nakajima y T. H. Cao, “Nutrient removal by duckweed from anaerobically treated swine wastewater in lab-scale stabilization ponds in Vietnam”, Sci. Total Environ., vol. 722, p. 137854, junio de 2020. Accessed el 13 de octubre de 2023. [Online]. Aviable: https://doi.org/10.1016/j.scitotenv.2020.137854

X. Dai et al., “Biomethane production by typical straw anaerobic digestion: Deep insights of material compositions and surface properties”, Bioresource Technol., vol. 313, p. 123643, octubre de 2020. Accessed el 13 de octubre de 2023. [Online]. Aviable: https://doi.org/10.1016/j.biortech.2020.123643

MathWorks. “MATLAB Documentation”. MathWorks - Makers of MATLAB and Simulink - MATLAB & Simulink. Accessed el 13 de octubre de 2023. [Online]. Aviable: https://www.mathworks.com/help/matlab/

I. Simeonov, “Laboratory experiments and mathematical modelling of anaerobic digestion of organic wastes in a cascade of two bioreactors”, Екологично инженерство и опазв. на околната среда, No.2, pp. 75–82, 2019. Accessed el 4 de octubre de 2023. [Online]. Aviable: http://ecoleng.org/archive/2019/2/75-82

Y. Tao et al., “Biogas productivity of anaerobic digestion process is governed by a core bacterial microbiota”, Chem. Eng. J., vol. 380, p. 122425, enero de 2020. Accessed el 13 de octubre de 2023. [Online]. Aviable: https://doi.org/10.1016/j.cej.2019.122425

Publicado
2023-12-30
Cómo citar
Barreto, G., & Rico, I. (2023). Ampliación mediante modelización matemática de reactores anaeróbicos para el tratamiento de aguas residuales de levadura. ITEGAM-JETIA, 9(44), 9-17. https://doi.org/10.5935/jetia.v9i44.938
Sección
Articles