Dispersion and turbulence: A close relationship unveiled by means of state function
Abstract
This article reviews the physical conditions that natural, turbulent flows meet to be considered in “Dynamic Equilibrium”, a condition that greatly facilitates the analysis of flows, thanks to the concept of “equiprobability”, in such a way that the tracer dyes can give an essential information of the dynamics of the current. A general State Function is proposed for this dynamic, which allows to study Advection and Dispersion for virtually all types of river beds, achieving a series of compact and precise relationships, both in hydraulics and thermodynamics. This approach allows us to obviate the limiting use of non-linear differential equations, as "mandatory" characterization of fluid dynamics. With this new method, a practical case from the technical literature is analyzed, and it is solved in detail, comparing it with the classic method of Statistical Moments. Conclusions on results, and recommendations are made.
Downloads
References
P. W. Anderson, «Physics: the opening to complexity.», Proc. Natl. Acad. Sci. U. S. A., vol. 92, n.o 15, pp. 6653-6654, jul. 1995.
I. Prigogine and G. Nicolis, “La estructura de lo complejo”. Alianza Editorial. Madrid, 1987.
D. Kondepudi and I. Prigogine, “Modern Thermodynamics”. Wiley, USA, 1996.
L.B. Leopold and W. Langbein, “The concept of entropy in landscape evolution”. USGS Paper 502-A, 1962.
I. Prigogine, “The end of certainty”. Free Press, USA. 1997.
I. Prigogine, “Las leyes del caos”. Critica, Barcelona, 1997.
R. Penrose, “The Cycles of time”. Random House, Barcelona.2010.
D. Kondepudi and I. Prigogine I., Ibid, 1996.
J. Frenkel, “Kinetic theory of liquids”. Dover, USA, 1955.
A. Christofoletti, “Geomofologia fluvial”. Edgard Blucher, Sao Paulo. 1981.
T. Ochoa, “Hidraulica de rios y procesos morfológicos”. ECOE Ediciones, Bogota, 2011.
A.Constain, C. Peña-Guzman and D. Mesa, “Equivalence of local and general mass transport rates in natural beds in dynamic equilibrium", Aqualac, Montevideo, 2015. V7. 1-02.
A. Constaín and R. Lemos, «Una ecuacion de la velocidad media del flujo en regimen no uniforme, su relacion con el fenomeno de dispersion como funcion del tiempo y su aplicacion a los estudios de calidad de agua», Ing. Civ., vol. 164, pp. 114-135, 2011.
A. Constain, «Definición y análisis de una función de evolución de solutos dispersivos en flujos naturales», Dyna, vol. 175, pp. 173-181, 2012.
H.B. Fischer “Dispersion predictions in Natural streams”. Journal of Sanitary Engineering división, ASCE, october, 1968.
H.B. Fischer. “Longitudinal dispersion in laboratoryand natural streams”. Report No. KH-R-12, June 1966, USA.
T. Makela. and A. Annila, “Natural patterns of energy dispersal”. Physics of life review. 7 (2010)
R Godfrey. and B. Frederick, “Stream dispersión at selected sites”. USGS 433-K Paper. 1070.
L. B Leopold, «Downstream change of velocity in rivers», Am. J. Sci., vol. 251, n.o 8, pp. 606-624, ago. 1953.
J.L. Martin and S.C McCutcheon, “Hydrodynamics and transport for wáter quality modeling”. Lewis. Boca ratón. 1999.
H.B. Fischer. Ibid. 1966
J.L Martin and S.C McCutcheon. ibid. 1999.
L. B. Leopold. Ibid 1953.
This work is licensed under a Creative Commons Attribution 4.0 International License.