Count of bacteria and yeast in microbial bioproduct using digital image processing

  • Jorge Peña Martín Automatic Control Department, Central University "Marta Abreu" of Las Villas - UCLV. Santa Clara, Cuba http://orcid.org/0000-0002-4627-8775
  • Yelenys Alvarado-Capó Laboratory of Applied Microbiology, Institute of Plant Biotechnology (IBP), Central University "Marta Abreu" of Las Villas - UCLV. Santa Clara, Cuba http://orcid.org/0000-0003-1721-717X
  • Rubén Orozco Morales Automatic Control Department, Central University "Marta Abreu" of Las Villas - UCLV. Santa Clara, Cuba http://orcid.org/0000-0002-6240-1569
  • Tatiana Pichardo Laboratory of Applied Microbiology, Institute of Plant Biotechnology (IBP), Central University "Marta Abreu" of Las Villas - UCLV. Santa Clara, Cuba http://orcid.org/0000-0001-9416-2649
  • Ailet Abreu López Automatic Control Department, Central University "Marta Abreu" of Las Villas - UCLV. Santa Clara, Cuba http://orcid.org/0000-0002-9716-7696

Abstract

The count of microorganisms in substances from different industries, like the count of bacteria and yeasts, is a necessary and important process since long time ago. Traditionally, in the industries this process is performed by experts observing the samples in the microscopes, which is time-consuming and varies depending on the degree of expertise of the experts. Currently, the use of digital images of the samples to be analyzed is a variant widely used for such count task. In that sense, several methods have been created in recent years to make this process, but none of them covers the wide range of diversity that can be found in the real microbiological world. With these ideas as premises, a new method for count bacteria and yeasts in microbial bioproducts using digital images is presented in this paper, in order to provide to experts the approximate number of those microorganism. The method involves basic operations of digital image processing like contour detection, morphological operations and statistical analysis; and it was developed in Python language using the OpenCV library. The results obtained were evaluated by microbiological experts proved to have an acceptable performance for the context of use.

Downloads

Download data is not yet available.

References

C. Li, K. Wang, y N. Xu, «A survey for the applications of content-based microscopic image analysis in microorganism classification domains», Artif. Intell. Rev., vol. 51, n.o 4, pp. 577-646, 2019, doi: https://doi.org/10.1007/s10462-017-9572-4.

F. Kulwa et al., «A state-of-the-art survey for microorganism image segmentation methods and future potential», IEEE Access, vol. 7, pp. 100243-100269, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2930111.

Md. F. Wahid, T. Ahmed, y Md. A. Habib, «Classification of Microscopic Images of Bacteria Using Deep Convolutional Neural Network», en 2018 10th International Conference on Electrical and Computer Engineering (ICECE), 2018, pp. 217-220. doi: https://doi.org/10.1109/ICECE.2018.8636750.

A. Ferrari, S. Lombardi, y A. Signoroni, «Bacterial colony counting with convolutional neural networks in digital microbiology imaging», Pattern Recognit., vol. 61, pp. 629-640, 2017, doi: https://doi.org/10.1016/j.patcog.2016.07.016.

A. Ferrari, S. Lombardi, y A. Signoroni, «Bacterial colony counting by convolutional neural networks», en 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 7458-7461. doi: https://doi.org/10.1109/EMBC.2015.7320116.

J. H. Jung y J. E. Lee, «Real-time bacterial microcolony counting using on-chip microscopy», Sci. Rep., vol. 6, n.o 1, pp. 1-8, 2016, doi: https://doi.org/10.1038/srep21473.

M. Woźniak, D. Polap, L. Kośmider, y T. Clapa, «Automated fluorescence microscopy image analysis of Pseudomonas aeruginosa bacteria in alive and dead stadium», Eng. Appl. Artif. Intell., vol. 67, pp. 100-110, 2018, doi: https://doi.org/10.1016/j.engappai.2017.09.003.

P.-J. Chiang, M.-J. Tseng, Z.-S. He, y C.-H. Li, «Automated counting of bacterial colonies by image analysis», J. Microbiol. Methods, vol. 108, pp. 74-82, 2015, doi: https://doi.org/10.1016/j.mimet.2014.11.009.

D. T. Boukouvalas, R. A. Prates, C. R. L. Leal, y S. A. de Araújo, «Automatic segmentation method for CFU counting in single plate-Serial dilution», Chemom. Intell. Lab. Syst., vol. 195, p. 103889, 2019, doi: https://doi.org/10.1016/j.chemolab.2019.103889.

M. Grossi, C. Parolin, B. Vitali, y B. Riccò, «Computer Vision Approach for the Determination of Microbial Concentration and Growth Kinetics Using a Low Cost Sensor System», Sensors, vol. 19, n.o 24, p. 5367, 2019, doi: https://doi.org/10.3390/s19245367.

D. K. Maurya, «ColonyCountJ: A User-Friendly Image J Add-on Program for Quantification of Different Colony Parameters in Clonogenic Assay», J ClinToxicol, vol. 7, n.o 358, pp. 2161-0495.1000358, 2017. https://doi.org/10.4172/2161-0495.1000358.

H. Ates y O. N. Gerek, «An image-processing based automated bacteria colony counter», en 2009 24th International Symposium on Computer and Information Sciences, 2009, pp. 18-23. doi: https://doi.org/10.1109/ISCIS.2009.5291926.

Q. Geissmann, «OpenCFU, a new free and open-source software to count cell colonies and other circular objects», PloS ONE, vol. 8, n.o 2, p. e54072, 2013, doi: https://doi.org/10.1371/journal.pone.0054072.

G. Corkidi, R. Diaz-Uribe, J. L. Folch-Mallol, y J. Nieto-Sotelo, «COVASIAM: an image analysis method that allows detection of confluent microbial colonies and colonies of various sizes for automated counting», Appl. Environ. Microbiol., vol. 64, n.o 4, pp. 1400-1404, 1998, doi: https://doi.org/10.1128/AEM.64.4.1400-1404.1998.

M. L. Clarke, R. L. Burton, A. N. Hill, M. Litorja, M. H. Nahm, y J. Hwang, «Low-cost, high-throughput, automated counting of bacterial colonies», Cytometry A, vol. 77, n.o 8, pp. 790-797, 2010, doi: https://doi.org/10.1002/cyto.a.20864.

«ImageJ», ago. 24, 2020. https://imagej.net/Welcome (accessed Aug. 24, 2020).

«Fiji», abr. 16, 2021. https://fiji.sc/ (accessed Apr. 16, 2021).

P. Choudhry, «High-throughput method for automated colony and cell counting by digital image analysis based on edge detection», PloS One, vol. 11, n.o 2, p. e0148469, 2016, doi: https://doi.org/10.1371/journal.pone.0148469.

B. Brzozowska, M. Gałecki, A. Tartas, J. Ginter, U. Kaźmierczak, y L. Lundholm, «Freeware tool for analysing numbers and sizes of cell colonies», Radiat. Environ. Biophys., vol. 58, n.o 1, pp. 109-117, 2019, doi: https://doi.org/10.1007/s00411-018-00772-z.

J. G. A. Barbedo, «An algorithm for counting microorganisms in digital images», IEEE Lat. Am. Trans., vol. 11, n.o 6, pp. 1353-1358, 2013, doi: https://doi.org/10.1109/TLA.2013.6710383.

Z. Wang, B. Ma, y Y. Zhu, «Review of Level Set in Image Segmentation», Arch. Comput. Methods Eng., pp. 1-18, 2020, doi: https://doi.org/10.1007/s11831-020-09463-9.

Z. Cai, N. Chattopadhyay, W. J. Liu, C. Chan, J.-P. Pignol, y R. M. Reilly, «Optimized digital counting colonies of clonogenic assays using ImageJ software and customized macros: comparison with manual counting», Int. J. Radiat. Biol., vol. 87, n.o 11, pp. 1135-1146, 2011, doi: https://doi.org/10.3109/09553002.2011.622033.

P. S. Hiremath y P. Bannigidad, «Digital image analysis of cocci bacterial cells using active contour method», en 2010 International Conference on Signal and Image Processing, 2010, pp. 163-168. https://doi.org/10.1109/ICSIP.2010.5697462.

A. Liu, Z. Liu, L. Song, y D. Han, «Adaptive ideal image reconstruction for bacteria colony detection», en Information Technology and Agricultural Engineering, Springer, 2012, pp. 353-360. https://doi.org/10.1007/978-3-642-27537-1_44.

A. González‐Betancourt, P. Rodríguez‐Ribalta, A. Meneses‐Marcel, S. Sifontes‐Rodríguez, J. V. Lorenzo‐Ginori, y R. Orozco‐Morales, «Automated marker identification using the Radon transform for watershed segmentation», IET Image Process., vol. 11, n.o 3, Art. n.o 3, 2017, doi: https://doi.org/10.1049/iet-ipr.2016.0525.

B. Kis, M. Unay, G. D. Ekimci, U. K. Ercan, y A. Akan, «Counting Bacteria Colonies Based on Image Processing Methods», en 2019 Medical Technologies Congress (TIPTEKNO), Izmir, Turkey, 2019, pp. 1-4. doi: https://doi.org/10.1109/TIPTEKNO.2019.8895213.

D. T. Boukouvalas, P. Belan, C. R. L. Leal, R. A. Prates, y S. A. de Araújo, «Automated colony counter for single plate serial dilution spotting», en Iberoamerican Congress on Pattern Recognition, Madrid, Spain, 2018, pp. 410-418. doi: https://doi.org/10.1007/978-3-030-13469-3_48.

P. Kalavathi y S. Naganandhini, «A Hybrid Method For Automatic Counting Of Microorganisms In Microscopic Images», Adv. Comput. Int. J., vol. 7, n.o 1/2, pp. 51-60, 2016. https://doi.org/10.5121/ACIJ.2016.7206.

J. Zhang et al., «A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation», BioMed Res. Int., vol. 2020, 2020. https://doi.org/10.1155/2020/4621403.

N. Dietler et al., «YeaZ: A convolutional neural network for highly accurate, label-free segmentation of yeast microscopy images», bioRxiv, 2020. https://doi.org/10.1101/2020.05.11.082594.

Y. He, W. Xu, Y. Zhi, R. Tyagi, Z. Hu, y G. Cao, «Rapid bacteria identification using structured illumination microscopy and machine learning», J. Innov. Opt. Health Sci., vol. 11, n.o 01, p. 1850007, 2018, doi: https://doi.org/10.1142/S1793545818500074.

C. Zheng, J. Liu, y G. Qiu, «Tuberculosis bacteria detection based on Random Forest using fluorescent images», en 2016 9th international congress on image and signal processing, BioMedical engineering and informatics (CISP-BMEI), Datong, China, 2016, pp. 553-558. doi: https://doi.org/10.1109/CISP-BMEI.2016.7852772.

«Instituto de Biotecnología de las Plantas», abr. 18, 2021. https://www.ibp.co.cu/es/ (accessed Apr. 18, 2021).

J. Moinar, A. I. Szucs, C. Molnar, y P. Horvath, «Active contours for selective object segmentation», en 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016, pp. 1-9. https://doi.org/10.1109/WACV.2016.7477572.

«HDCE-X5 Camera for Microscopic», abr. 18, 2021. http://beltec.com.pe/site/beltec1/catalog/product_info.php?products_id=44 (accessed Apr. 18, 2021).

A. Kaehler y G. Bradski, Learning OpenCV 3: computer vision in C++ with the OpenCV library. O’Reilly Media, Inc., 2016.

E. R. Davies, Computer and machine vision: theory, algorithms, practicalities. Academic Press, 2012.

J. Beyerer, F. P. León, y C. Frese, Machine vision: Automated visual inspection: Theory, practice and applications. Springer, 2016.

A. F. Villán, Mastering OpenCV 4 with Python: a practical guide covering topics from image processing, augmented reality to deep learning with OpenCV 4 and Python 3.7. Packt Publishing Ltd, 2019.

Z. Wang, E. Wang, y Y. Zhu, «Image segmentation evaluation: a survey of methods», Artif. Intell. Rev., vol. 53, n.o 8, Art. n.o 8, 2020, doi: https://doi.org/10.1007/s10462-020-09830-9.

J. Zhang et al., «A comprehensive review of image analysis methods for microorganism counting: from classical image processing to deep learning approaches», Artif. Intell. Rev., pp. 1-70, 2021. https://doi.org/10.1007/s10462-021-10082-4.

S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, y D. Terzopoulos, «Image segmentation using deep learning: A survey», IEEE Trans. Pattern Anal. Mach. Intell., 2021, doi: https://doi.org/10.1109/TPAMI.2021.3059968.

Published
2021-12-15
How to Cite
Martín, J., Alvarado-Capó, Y., Morales, R., Pichardo, T., & López, A. (2021). Count of bacteria and yeast in microbial bioproduct using digital image processing. ITEGAM-JETIA, 7(32), 12-22. https://doi.org/10.5935/jetia.v7i32.781
Section
Articles